
1/14

hasherezade April 11, 2016

Rokku Ransomware shows possible link with Chimera
blog.malwarebytes.com/threat-analysis/2016/04/rokku-ransomware/

Rokku is yet another ransomware, discovered in recent weeks. Currently, it’s most common
distribution method is spam where a malicious executable is dropped by a VB script
belonging to the e-mail’s attachment.

The building blocks of Rokku reminded us of the Chimera ransomware. That’s why we
decided to take a closer look, not only at the internal structure of this malware but also at the
similarities and differences between these two products.

 Analyzed samples

Malware:

Decryptor:

Special thanks to MalwareHunterTeam for sharing the sample.

Behavioral analysis

When we deploy the executable it runs silently – first dropping ransom notes (in two formats
– HTML and TXT), and after that substituting files with their encrypted versions.

Rokku doesn’t retrieve keys from the server, so the encryption process can be executed off-
line as well.

Encryption process

https://blog.malwarebytes.com/threat-analysis/2016/04/rokku-ransomware/
https://www.malwarebytes.com/ransomware
https://blog.malwarebytes.org/threat-analysis/2015/12/inside-chimera-ransomware-the-first-doxingware-in-wild/
https://twitter.com/malwrhunterteam

2/14

Files encrypted by this ransomware can be identified by the extension .rokku added to the
original name.

The encrypted content has a high level of entropy and no patterns are visible. See below a
visualization of bytes.

square.bmp : left – original, right encrypted with Rokku:

When the encryption finishes, the ransom note pops up:

Website for the victim

As many products of this type, Rokku has a web panel for victims, used to manage the
payment and decrypt files. It is available via Tor.

The website have a neat design, however is very simple in comparison to other recent
ransomware:

https://blog.malwarebytes.org/wp-content/uploads/2016/01/enc_square1_bmp.png
https://blog.malwarebytes.org/wp-content/uploads/2016/03/enc_square1-1.png
https://blog.malwarebytes.org/wp-content/uploads/2016/03/rokku_html.png

3/14

Rather than forcing a victim to type a unique ID it simply ask them to upload one file. All the
necessary data are automatically fetched from the file.

Then it redirects to the personalized part of the panel and shows the order ID. This unique
identifier can be used further to regain access to this page without the necessity to upload a
file again:

The required ransom amount is relatively low in comparison to other ransomware – 0.2402
BTC (around 100 USD). Currently we found no information suggesting that price is going to
be incremented with time – so we can assume, that in this case distributors decided to use a
fixed price.

https://blog.malwarebytes.org/wp-content/uploads/2016/03/page1.png
https://blog.malwarebytes.org/wp-content/uploads/2016/03/upload.png
https://blog.malwarebytes.org/wp-content/uploads/2016/03/order_id.png

4/14

From the same site we can download the decrypting application. After the payment is
processed, the root key, required to decrypt all the files is made available.

Even without a payment, one chosen file can be unlocked for demonstration purposes. Once
an encrypted file is uploaded, it’s individual file key is released. Then, it can be decrypted
using this key and the decryptor available on the site.

Findings

Looking at the features described above, we can deduce quite a lot of information about the
internal logic of the encryption process. As usual, two types of cryptographic algorithms are
used: asymmetric – for the root key, and symmetric – for the keys of individual files.
Individual (random) key is used to encrypt the file content – then, itself is encrypted by the
public root key and stored in the same file. Only an owner of the private root key can retrieve
it – and with its help decrypt the original content.

https://blog.malwarebytes.org/wp-content/uploads/2016/03/price.png
https://blog.malwarebytes.org/wp-content/uploads/2016/03/decryptor.png
https://blog.malwarebytes.org/wp-content/uploads/2016/03/1_unlock.png

5/14

The sample’s individual key, displayed to a user is 45 characters long (it can also be
interpreted as a Base64 encrypted, 36 byte long content).

Also, every file contains the Order ID. The displayed value is 86 characters long (may be
interpreted as 66 byte long value Base64 encoded).

Inside the malware

Lets’ have a look inside the malicious sample…

The original payload that is being distributed in a campaigns is UPX encrypted. This layer
can be easily removed using typical UPX.

The next layer consists of some underground crypter/FUD.

After unpacking the crypter layer we can find the DLL with core malicious functionality –
encryptor.dll (be6552aed5e7509b3b539cef8a965131)

Similarly to the Core.dll of Chimera ransomware, it uses ReflectiveLoader.

ReflectiveLoader is a special stub belonging to the technique of Reflective DLL Injection.
This technique allows to produce a DLL that can be easily injected into another process.
Similarly to a shellcode, such DLL is self-contained and automatically loads all it’s
dependencies.

Execution flow

Execution of the malicious core follows several steps:

Fetches information about the system.

https://blog.malwarebytes.org/threat-analysis/2015/12/malware-crypters-the-deceptive-first-layer/
https://www.virustotal.com/en/file/186073cd4539725cbc26f8dac867c97e21d4c88836305a16acf50a70d6121f51/analysis/
https://blog.malwarebytes.org/wp-content/uploads/2016/03/encryptor_dll.png
https://blog.malwarebytes.org/wp-content/uploads/2015/12/core_dll.png
https://blog.malwarebytes.org/intelligence/2015/12/inside-chimera-ransomware-the-first-doxingware-in-wild/
http://www.harmonysecurity.com/files/HS-P005_ReflectiveDllInjection.pdf

6/14

Removes local backups. It is very precise in this goal and it attacks several programs
used for this purpose (used commands are listed below).
Enumerates local disks, checking their existence by the alphabet (from Z to A) and
makes a list of all their directories. Directories on network disks are also listed.
Process the list of directories:

drops the ransom note in each of them
enumerates their files (using NtQueryDirectoryFile) and makes a list of paths.

Encrypting routine takes the list of paths and encrypts them one by one. Information
about the file, i.e size is retrieved using ZwQueryInformationFile.

In the initial phase, the malware makes a preparation to deploy its malicious features. It
scans the environment and closes some programs. For example – searches if any console
window is open, and if so, hides it:

In order to make analysis harder, this malware uses encrypted strings. They are decrypted
on fly, just before they are needed. As you can see at the above screenshot – it is
implemented with the help of small in-line routine using SSE (highlighted in the picture).
Using an in-line routine have an advantage over a separate decrypting function – it is harder
to locate all the calls to it and to decrypt strings just by tracing it’s output.

Next, it reads a unique identifier of the current machine: retrieves GUID from the registry…

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography -> "MachineGuid"

…and the volume serial number of the disk, where the Windows is installed (using
GetVolumeInformation). Both parts are concatenated together (<machine_guid>
<volume_serial>) and hashed using local implementation of SHA512 (this implementation
comes from OpenSSL)…

https://msdn.microsoft.com/en-us/library/windows/hardware/ff567047%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff567052%28v=vs.85%29.aspx
https://blog.malwarebytes.org/wp-content/uploads/2016/04/hide_console-1.png
https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions
https://msdn.microsoft.com/pl-pl/library/windows/desktop/aa364993%28v=vs.85%29.aspx
http://boinc.berkeley.edu/android-boinc/libssl/crypto/sha/sha512.c

7/14

We can see the typical SHA512 constants in the code:

First half of the SHA512 hash and the <machine_guid><volume_serial> are concatenated
together and used as a mutex name (with the help of mutex malware prevent from being run
more than once at the same time).

Finally, removing backups and stopping backup services is performed – by execution of the
following commands:

wmic shadowcopy delete /nointeractive
vssadmin delete shadows /all /quiet
reg add "HKLM\SYSTEM\CurrentControlSet\services\VSS" /v Start /t REG_DWORD /d 4 /f
reg add "HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\SystemRestore" /v
DisableSR /t REG_DWORD /d 1 /f
net stop vss
net stop swprv
net stop srservice

How does the encryption work?

From the behavioral analysis and experiments we concluded, that Rokku – like most of the
ransomware – uses symmetric and asymmetric encryption.

As the main, symmetric encryption algorithm, authors decided to use Salsa20 (Salsa was
also used by the Petya ransomware). Fragment of the implementation is shown below:

https://blog.malwarebytes.org/wp-content/uploads/2016/04/sha512.png
https://blog.malwarebytes.org/wp-content/uploads/2016/04/sha512_init.png
https://blog.malwarebytes.org/threat-analysis/2016/04/petya-ransomware/

8/14

Every file is encrypted by Salsa20 with a new, random key. Random values are retrieved
using advapi32.SystemFunction036 – that is RtlGenRandom. Then, the random key is
encrypted with a locally implemented RSA algorithm.

Research about the implementation details and possible flaws is in progress.

What is attacked?

Rokku attacks local disks as well as network shares.

This malware doesn’t have any external configuration – all the strings (including attacked file
extensions and blacklisted paths) are hardcoded in obfuscated form and decrypted in-line.
Loading the hardcoded settings is performed by dedicated functions (in the described
sample it starts at RVA = 0x2dcf):

Attacked extensions are decrypted in chunks (each chunk contains several extensions) and
then added to the list. Below you can see decrypting chunk of extensions:

https://blog.malwarebytes.org/wp-content/uploads/2016/04/salsa20_enc.png
https://msdn.microsoft.com/en-us/library/windows/desktop/aa387694%28v=vs.85%29.aspx
https://blog.malwarebytes.org/wp-content/uploads/2016/04/load_config.png

9/14

Summary of all the file extensions that are attacked:

https://blog.malwarebytes.org/wp-content/uploads/2016/04/decrypting_ext-1.png

10/14

001 1dc 3ds 3fr 7z a3s acb acbl accdb act ai ai3 ai4 ai5 ai6 ai7 ai8 aia aif aiff aip
ait anim apk arch00 ari art arw asc ase asef asp aspx asset avi bar bak bay bc6 bc7
bgeo big bik bkf bkp blob bmp bsa c c4d cap cas catpart catproduct cdr cef cer cfr
...
cgm cha chr cld clx cpp cr2 crt crw cs css csv cxx d3dbsp das dayzprofile dazip db
db0 dbf dbfv dcr dcs der desc dib dlc dle dlv dlv3 dlv4 dmp dng doc docm docx drf dvi
dvr dwf dwg dxf dxg eip emf emz epf epk eps eps2 eps3 epsf
...
epsp erf esm fbx ff fff fh10 fh11 fh7 fh8 fh9 fig flt flv fmod forge fos fpk fsh ft8
fxg gdb ge2 geo gho h hip hipnc hkdb hkx hplg hpp hvpl hxx iam ibank icb icxs idea
iff iiq indd ipt iros irs itdb itl itm iwd iwi
...
j2k java jp2 jpe jpeg jpf jpg jpx js k25 kdb kdc kf kys layout lbf lex litemod lrf
ltx lvl m m2 m2t m2ts m3u m4a m4v ma map mat mb mcfi mcfp mcgame mcmeta mdb mdbackup
mdc mddata mdf mdl mdlp mef mel menu mkv mll mlx mn
...
model mos mp mp4 mpqge mrw mrwref mts mu mxf nb ncf nef nrw ntl obm ocdc odb odc odm
odp ods odt omeg orf ott p12 p7b p7c pak pct pcx pdd pdf pef pem pfx php php4 php5
pic picnc pkpass png ppd ppt pptm pptx prj
...
prt prtl ps psb psd psf psid psk psq pst ptl ptx pwl pxn pxr py qdf qic r3d raa raf
rar raw rb re4 rgss3a rim rofl rtf rtg rvt rw2 rwl rwz sav sb sbx sc2save shp sid
sidd sidn sie sis skl skp sldasm sldprt slm
...
slx slxp snx soft sqlite sqlite3 sr2 srf srw step stl stp sum svg svgz swatch syncdb
t12 t13 tax tex tga tif tiff tor txt unity3d uof uos upk vda vdf vfl vfs0 vpk vpp_pc
vst vtf w3x wb2 wdx wma wmo wmv wallet ycbcra
...
wotreplay wpd wps x3f xf xl xlk xls xlsb xlsm xlsx xvc xvz xxx zdct zip ztmp py rb
tar gz sdf yuv max wav dat

In the same way, blacklisted paths are deobfuscated and loaded.

Here are some examples of in-line routines used to decrypt blacklisted paths:

Example 1 – adding hardcoded value “roaming”:

Example 2 – decrypting “system volume information”

https://blog.malwarebytes.org/wp-content/uploads/2016/04/hadcoded_roaming.png

11/14

Summary of folders excluded from encryption:

$recycle.bin
system volume information
windows.old
$windows.~bt
windows
windows
locallow
local
roaming
programdata
program files
program files (x86)

Some files – including ransom notes – are also excluded from encryption, i.e:

thumbs.db
iconcache.db
bootsec.bak

Inside the decryptor

Decryptor is an application that can be downloaded from the website for the victim and used
to recover the files after purchasing the key.

https://blog.malwarebytes.org/wp-content/uploads/2016/04/blacklist1.png
https://blog.malwarebytes.org/wp-content/uploads/2016/03/decryptor-1.png

12/14

It comes with a simple GUI, allowing two modes of decryption – for individual file of for full
folder.

It is also UPX packed, but after removing this layer we can see valid strings. We can find
there elements corresponding to the encryptor.dll – but with much less obfuscation added.
For example – the same paths are skipped, but this time we can see them in clear text:

https://blog.malwarebytes.org/wp-content/uploads/2016/03/decryptor_gui.png
https://blog.malwarebytes.org/wp-content/uploads/2016/04/skipped_paths.png

13/14

Below – fragment of Salsa20 implementation containing typical constants:

GUI programming in C++ is not the strong point of the authors. In the code of decryptor we
can find fragments of a ready-made template. See below:

code fragment found in Rokku’s decryptor:

corresponding code fragment – part of a skeleton application that have been
demonstrated in a GUI programming course:

Authors of Chimera also didn’t felt confident in native GUI programming. Although they wrote
most of the code in C++, the decryptor’s GUI was prepared in .NET framework (that makes
GUI programming much easier). Decryptor’s core functions were called from a DLL written in
C++.

Conclusion

In terms of architecture, Rokku shows several similarities with Chimera ransomware:

https://blog.malwarebytes.org/wp-content/uploads/2016/04/salsa20_decr.png
https://blog.malwarebytes.org/wp-content/uploads/2016/04/win32_guided.png
https://msdn.microsoft.com/library/bb384843.aspx
https://blog.malwarebytes.org/wp-content/uploads/2016/04/guided_tour_source-1.png
http://stackoverflow.com/questions/7697569/gui-easy-and-fast-without-net-framework

14/14

the main part is a DLL, using ReflectiveLoader
cryptography implemented locally (not via API calls)
external decryptor that can be downloaded from the given location, before paying the
ransom

Both products use, however, different ways to communicate with victims: Chimera uses
bitmessage, while Rokku uses a Tor website (like most of the ransomware). Chimera
requires an Internet connection in order to work – Rokku in contrary is fully independent from
the CnC server.

The found similarities lead us to the conclusion, that Rokku may be a product of the same
authors – prepared with a similar schema but with different needs in mind.

Rokku is detected by Malwarebytes Anti-Malware (MBAM) as well as by Malwarebytes Anti-
Ransomware (MBARW).

Appendix

About Rokku by other vendors:

http://www.bleepingcomputer.com/news/security/rokku-ransomware-encrypts-each-file-
with-its-own-unique-key/ – Bleeping Computer

About Chimera:

Inside Chimera Ransomware – the first ‘doxingware’ in wild

This video cannot be displayed because your Functional Cookies are currently disabled.
To enable them, please visit our privacy policy and search for the Cookies section. Select
“Click Here” to open the Privacy Preference Center and select “Functional Cookies” in the
menu. You can switch the tab back to “Active” or disable by moving the tab to “Inactive.”
Click “Save Settings.”

http://www.bleepingcomputer.com/news/security/rokku-ransomware-encrypts-each-file-with-its-own-unique-key/
https://blog.malwarebytes.com/threat-analysis/2015/12/inside-chimera-ransomware-the-first-doxingware-in-wild/
https://www.malwarebytes.com/privacy/#how-we-collect-information

