Rokku Ransomware shows possible link with Chimera

blog.malwarebytes.com/threat-analysis/2016/04/rokku-ransomware/

hasherezade April 11, 2016

YOUR FILE HAS BEEN LOCKED

In order to unlock your files, follow the
instructions bellow:

installation, run Tor Browser and wait

Rokku is yet another ransomware, discovered in recent weeks. Currently, it's most common
distribution method is spam where a malicious executable is dropped by a VB script
belonging to the e-mail’'s attachment.

The building blocks of Rokku reminded us of the Chimera ransomware. That’'s why we
decided to take a closer look, not only at the internal structure of this malware but also at the
similarities and differences between these two products.

Analyzed samples

Malware:
Decryptor:

Special thanks to MalwareHunterTeam for sharing the sample.

Behavioral analysis

When we deploy the executable it runs silently — first dropping ransom notes (in two formats
— HTML and TXT), and after that substituting files with their encrypted versions.

Rokku doesn’t retrieve keys from the server, so the encryption process can be executed off-
line as well.

Encryption process

1/14

https://blog.malwarebytes.com/threat-analysis/2016/04/rokku-ransomware/
https://www.malwarebytes.com/ransomware
https://blog.malwarebytes.org/threat-analysis/2015/12/inside-chimera-ransomware-the-first-doxingware-in-wild/
https://twitter.com/malwrhunterteam

Files encrypted by this ransomware can be identified by the extension .rokku added to the
original name.

The encrypted content has a high level of entropy and no patterns are visible. See below a
visualization of bytes.

square.bmp : left — original, right encrypted with Rokku:

When the encryption finishes, the ransom note pops up:

y
| Decryption Service x U+

files/#/ D/ rokku/README_HOW_TO_UNLOCK.HTML C || Q Szukaj wBa ¥+ &

YOUR FILE HAS BEEN LOCKED

In order to unlock your files, follow the
instructions bellow:

Website for the victim

As many products of this type, Rokku has a web panel for victims, used to manage the
payment and decrypt files. It is available via Tor.

The website have a neat design, however is very simple in comparison to other recent
ransomware:

2/14

https://blog.malwarebytes.org/wp-content/uploads/2016/01/enc_square1_bmp.png
https://blog.malwarebytes.org/wp-content/uploads/2016/03/enc_square1-1.png
https://blog.malwarebytes.org/wp-content/uploads/2016/03/rokku_html.png

. Unlock Service x

St @ v € @ zvnvp2rhe3lwi2m.onion v e[Q search | <

UNLOCK SERVICE

« This service allow you to purchase key fo unlock your file
« Enter your order id or upload one of locked file to go to your personal page

Select any encrypted file and click "Upload” to get your order id

Or submit your order id

Rather than forcing a victim to type a unique ID it simply ask them to upload one file. All the
necessary data are automatically fetched from the file.

Select any encrypted file and click "Upload™ to get your order id

Browse._. LICENSE txt.rokku Upload

Then it redirects to the personalized part of the panel and shows the order ID. This unique

identifier can be used further to regain access to this page without the necessity to upload a
file again:

ORDER ID

fwHcfhjFqCe2FzTanImvVBfFIWNL pZiZhoRXaMy5D88sY 6 FjtMANKPNSNRZShchSuD2DAsDSgSEY5r239Bv1uik

Status: Unconfirmed

Paid: 0/ 0.2402 BTC

To unlock your file, you need to buy decryption key, follow step bellow.

The required ransom amount is relatively low in comparison to other ransomware — 0.2402
BTC (around 100 USD). Currently we found no information suggesting that price is going to

be incremented with time — so we can assume, that in this case distributors decided to use a
fixed price.

3/14

https://blog.malwarebytes.org/wp-content/uploads/2016/03/page1.png
https://blog.malwarebytes.org/wp-content/uploads/2016/03/upload.png
https://blog.malwarebytes.org/wp-content/uploads/2016/03/order_id.png

© sSend bitcoin to bellow address

Price: 0.2402 BTC (around 100 USD
Bitcoin address: 18IERMoJV51npYpiHoVpfREOKKUAKINmFLT?
Qr address:

From the same site we can download the decrypting application. After the payment is
processed, the root key, required to decrypt all the files is made available.

© Get decryptor and root key to unlock your files

When payment is confirmed (the verification process can take a few hours) root key will be released.
Download Decryptor

Root Key

Even without a payment, one chosen file can be unlocked for demonstration purposes. Once
an encrypted file is uploaded, it’s individual file key is released. Then, it can be decrypted
using this key and the decryptor available on the site.

Free Unlock (You have 0 free unlock remain)

Browse ... ‘

Your file keys: (each key only works with its corresponding file)

FileName Key
LICENSE.txi.rokku 5fKevkE7gbRbMhTKQScxkKWuR1GVRgm2LgQiPp3dwWQ
Findings

Looking at the features described above, we can deduce quite a lot of information about the
internal logic of the encryption process. As usual, two types of cryptographic algorithms are
used: asymmetric — for the root key, and symmetric — for the keys of individual files.
Individual (random) key is used to encrypt the file content — then, itself is encrypted by the
public root key and stored in the same file. Only an owner of the private root key can retrieve
it — and with its help decrypt the original content.

a/14

https://blog.malwarebytes.org/wp-content/uploads/2016/03/price.png
https://blog.malwarebytes.org/wp-content/uploads/2016/03/decryptor.png
https://blog.malwarebytes.org/wp-content/uploads/2016/03/1_unlock.png

The sample’s individual key, displayed to a user is 45 characters long (it can also be
interpreted as a Base64 encrypted, 36 byte long content).

Also, every file contains the Order ID. The displayed value is 86 characters long (may be
interpreted as 66 byte long value Base64 encoded).

Inside the malware

Lets’ have a look inside the malicious sample...

The original payload that is being distributed in a campaigns is UPX encrypted. This layer
can be easily removed using typical UPX.

The next layer consists of some underground crypter/FUD.

After unpacking the crypter layer we can find the DLL with core malicious functionality —
encryptor.dil (be6552aed5e7509b3b539cef8a965131)

Offzet Marme Value Meaning

21EDD Characteristics]

21ED4 TirneDateStamp SBEAZTOA

Z21ED8 Majeriersion]

21EDA Minorersion 0

21EDC Mame 22002 encryptordll

Z21EED Base 1

21EE4 MumberOfFunctions 1

21EE8 MumberOfMames 1

21EEC AddressOfFunctions 22CF8

21ERD AddressOfMNames 22CFC

Details

Offset COrdinal Function RVA Mame BWA Mame
21EF8 1 1247 22010 _Reflectivel oader@4

Similarly to the Core.dll of Chimera ransomware, it uses ReflectiveLoader.

ReflectiveLoader is a special stub belonging to the technique of Reflective DLL Injection.
This technique allows to produce a DLL that can be easily injected into another process.
Similarly to a shellcode, such DLL is self-contained and automatically loads all it’s
dependencies.

Execution flow

Execution of the malicious core follows several steps:

o Fetches information about the system.

5/14

https://blog.malwarebytes.org/threat-analysis/2015/12/malware-crypters-the-deceptive-first-layer/
https://www.virustotal.com/en/file/186073cd4539725cbc26f8dac867c97e21d4c88836305a16acf50a70d6121f51/analysis/
https://blog.malwarebytes.org/wp-content/uploads/2016/03/encryptor_dll.png
https://blog.malwarebytes.org/wp-content/uploads/2015/12/core_dll.png
https://blog.malwarebytes.org/intelligence/2015/12/inside-chimera-ransomware-the-first-doxingware-in-wild/
http://www.harmonysecurity.com/files/HS-P005_ReflectiveDllInjection.pdf

e Removes local backups. It is very precise in this goal and it attacks several programs
used for this purpose (used commands are listed below).
o Enumerates local disks, checking their existence by the alphabet (from Z to A) and
makes a list of all their directories. Directories on network disks are also listed.
¢ Process the list of directories:
o drops the ransom note in each of them
o enumerates their files (using NtQueryDirectoryFile) and makes a list of paths.
e Encrypting routine takes the list of paths and encrypts them one by one. Information
about the file, i.e size is retrieved using ZwQuerylnformationFile.

In the initial phase, the malware makes a preparation to deploy its malicious features. It
scans the environment and closes some programs. For example — searches if any console
window is open, and if so, hides it:

bl L ndow

In order to make analysis harder, this malware uses encrypted strings. They are decrypted
on fly, just before they are needed. As you can see at the above screenshot — it is
implemented with the help of small in-line routine using SSE (highlighted in the picture).
Using an in-line routine have an advantage over a separate decrypting function — it is harder
to locate all the calls to it and to decrypt strings just by tracing it’s output.

Next, it reads a unique identifier of the current machine: retrieves GUID from the registry...

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography -> "MachineGuid"

...and the volume serial number of the disk, where the Windows is installed (using
GetVolumelnformation). Both parts are concatenated together (<machine_guid>
<volume_serial>) and hashed using local implementation of SHA512 (this implementation
comes from OpenSSL)...

6/14

https://msdn.microsoft.com/en-us/library/windows/hardware/ff567047%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff567052%28v=vs.85%29.aspx
https://blog.malwarebytes.org/wp-content/uploads/2016/04/hide_console-1.png
https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions
https://msdn.microsoft.com/pl-pl/library/windows/desktop/aa364993%28v=vs.85%29.aspx
http://boinc.berkeley.edu/android-boinc/libssl/crypto/sha/sha512.c

+ESF
. FFFFFFF&
. B0

I

SHRS1Z Init

. HMou
. HOu

FT
T
FTR
FT
FT
FT
FT
T
PT
T
T
FT
FT
FT
FT
T
PT
T
FTR

First half of the SHA512 hash and the <machine_guid><volume _serial> are concatenated
together and used as a mutex name (with the help of mutex malware prevent from being run
more than once at the same time).

Finally, removing backups and stopping backup services is performed — by execution of the
following commands:

wmic shadowcopy delete /nointeractive

vssadmin delete shadows /all /quiet

reg add "HKLM\SYSTEM\CurrentControlSet\services\VSS" /v Start /t REG_DWORD /d 4 /f
reg add "HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\SystemRestore" /v
DisableSR /t REG_DWORD /d 1 /f

net stop vss

net stop swprv

net stop srservice

How does the encryption work?

From the behavioral analysis and experiments we concluded, that Rokku — like most of the
ransomware — uses symmetric and asymmetric encryption.

As the main, symmetric encryption algorithm, authors decided to use Salsa20 (Salsa was
also used by the Petya ransomware). Fragment of the implementation is shown below:

7/14

https://blog.malwarebytes.org/wp-content/uploads/2016/04/sha512.png
https://blog.malwarebytes.org/wp-content/uploads/2016/04/sha512_init.png
https://blog.malwarebytes.org/threat-analysis/2016/04/petya-ransomware/

BFF2EBFE0
BFFZEVSE
BFF3EVEE
BFF3EVEE
BFFZEVED
BFF2B7 74
BFF2BFFE
BFF2BFFF
BFF2BFE2
BFFZEVSE
BFF3EVEE
BFF3EVEC
BFFZEVEF
BFF2B7I1
BFF2B794
BFF2BFS7
BFF2BF29
BFFZE7IC
BFF3E7RE
BFF3EVHS
BFFZEVH?
BFF2BFHS
BFF2BFAD
BFF2BFEE
BFF2BFE2
BFFZEVEE

5 PUSH ESI

. PUSH EDI

MOW EDI,ECH

MOW OWORD PTR D5:[EDI],A-cl7A7EES

MOU OWORD PTR D5: [EDI+Ex4], Ax3s2@646E
MOU OWORD PTR DS: [EDI+EXE], Au7ocz2052
MOU_OWORD PTR DS: [EDI+EXC], BucB2HEET 4
MOUEX ESILEYTE PTRE DS:[EDX+@:3]

MOUEX ERX,EBYTE PTR DS:[CEDX+8:2]

SHL ESI,Ens

OR ESI.ERA

MOVEX EAR,BYTE FTR DS:[CEDx+8:11]

SHL ESI,ExS

OFR ESI.ER®

MOUEY ERX,.BYTE PTR DS:CEDX]

SHL ESI,Bnf

OR ESI.ERX

MOU OWORD PTR DS: [EDI+Ex161,ESI

MOUEX ECK,BYTE FTR DS: [EDH+8:7]

SHL ECH,E:5

MOUEX EHR,.BYTE FTR DS:[EDX+8xE]

OF ECH.ERX

MOUEY ERX,.BYTE PTR DS:[EDX+E:5]

SHL ECH, Bnf

OR ECH.ERX

MOUEX ERX,BYTE PTR DOS:[CEDX+@n4]

SHL ECH,&:8

Salsaz2a@

Every file is encrypted by Salsa20 with a new, random key. Random values are retrieved
using advapi32.SystemFunction036 — that is RtlIGenRandom. Then, the random key is
encrypted with a locally implemented RSA algorithm.

Research about the implementation details and possible flaws is in progress.

What is attacked?

Rokku attacks local disks as well as network shares.

This malware doesn’t have any external configuration — all the strings (including attacked file
extensions and blacklisted paths) are hardcoded in obfuscated form and decrypted in-line.
Loading the hardcoded settings is performed by dedicated functions (in the described
sample it starts at RVA = 0x2dcf):

HFF3Z00&
HFFSZ2002
HFF 32005
HFF3z2005
HFF3z2009
BFF2zZ00E
BFF3Z0ES
HFF3Z0ES
HFFSZ0EC
HWFF320F 1
HFF320F &
HFFSZ0FE
BFF3ZEBQR

. | FOSH

FLSH

EEF

MU EEF, ESF
AHD ESP.BHFEFFFFFB

“OR EBX,EBX
MOY DWORD PTR DZ: [BRFFSEZEC], encrypto. BFFEE2ES

ESI

MOL OWORD PTR D5: [@xFFEEZEE], EBX
CALL encrupto.@FF3135A

encrypto. BFF32E8ER
encrypto.BFF32423
encrypto. FF32648

MOU CL,Exel

load_attacked extensions
load blacklisted folders
load blacklisted files
load_ransom_notes

Attacked extensions are decrypted in chunks (each chunk contains several extensions) and
then added to the list. Below you can see decrypting chunk of extensions:

8/14

https://blog.malwarebytes.org/wp-content/uploads/2016/04/salsa20_enc.png
https://msdn.microsoft.com/en-us/library/windows/desktop/aa387694%28v=vs.85%29.aspx
https://blog.malwarebytes.org/wp-content/uploads/2016/04/load_config.png

Summary of all the file extensions that are attacked:

GEFZ102S (1. |MOUARS «<MME, DRWORD PTR OS: [8xFFSEACE] Load
BFF210%F (] . |MOU ECK,EBX
GEFZI0AL (1. |MOVWUPS DEWORD FTR SS: [EEF-E=SESI, HHHE
BEFZ10AS (| . |MOW OWORD PTR S5: [EEF-BE=4ES], B2 ECHA4
GEFS10EZ (1. |MOUARS «MMa, DAWORD PTR O5: [AxFFSESFE]
GEFZI0ES (| . |MOUURS DREWORD FTR SS: [EEF-E2SAST, <HHE
GEF=10CE (1. |MOUAPS xMMa, DGWORD PTR OS: [AsFFSE906]
GEFZI0CY (1. |MOUUPS DREWORD PTR SS: [EBP-E:E9E], HHMHE
GEFSI0CE (1. |HOUARS xHHa@, DAWORD PTR OS: [AxFFSESEE]
GFFZI005 (| . |MOUUPS DRWORD PTR SS: [EEP-EBRE2E], HHHE
GEFS100C (1. |MOUARS «HMa, DRWORD PTR O5: [axFFSeeE]
BFFZI0ES || . |MOUWUPS DEWORD FTR SS: [EEF-E:SFS1, HHHE
GEFSI0EA (] . |MOUARS «MMa, DAWORD PTR O5: [EAxFFSEEFal
GEFZI0FL (1. |MOUURS DREWORD FTE SS: [EEF-E2SEC], <HHE
GEFZ10FS (1. |MOUARS xMMa, DGWORD PTR OS: [AsFFSEE261]
GEFZI0FF (1. |MOUUPS DREWORD PTR SS: [EBP-E:EECT. HMHE
BEFS1EEE (1. |HOURARS xHHa, DAWORD PTR OS:[AxFFS111@3]
GFFZIEED (| . |MOUUPS DRWORD PTR SS:[EEP-BRE45], <HHE
GEFS1EL4 (| . |MOUARS sMMa, DRWORD PTR O5: [axFFS1806]
BFFZIELE (|« |MOUUPS DEWORD FTR SS: [EEF-E:5351, -HHE
BEFS1EZ2 (1. |MOUARS xMMa, DAWORD PTR OS5: [AXFFS1836]
GEFZIEZS || . |MOUURS DREWORD FTR SS: [EEF-E2S2E]. <HHE
GEFZ1EZE (1. |MOUAPS xMMa, DGWORD PTR OS: [AsFFS18261]
GEFZIEZY |- |MOUUPS DREWORD PTR SS: [EBP-E:E157, <HMHE
BFFS1EZE (] . |HOUAPS xHHMa@, DAWORD PTR OS: [AxFFSEFEE]
GFFZ1E4S || . |MOUUPS DRWORD PTR SS:[EEF-BREES], <HHE
GEFS1E4C (1. |MOUARS xHMa, DRWORD PTR O5: [8xFFS11261]
BFFZIESS || . |MOUWUFS DEWORDSFTR SS: [EEF-B=4FS], <HHE
BFFS1ECH (] * rauw AL, EL
HFEF21EEC] . AOD AL,BYTE FTR S&: [EEF-E:SES]

. #“OR BYTE PTR SS: [EBP+ECH-GREB4]. AL decrupt
GEF21EED |] . IMC ECH
BFFS1EEA |] . CHP ECA, E=02
GEF21EFE || .~ |LJB SHORT encrupto.dFF31EER

» |LER EDw,OWORD PTR =5: CEEF—E:2]
BFFZIEFS || . |MOW BYWTE FTR S5: [EEP-E:4E2],EBL
BFFZIEFE || . |LEA ECK, CLOCHL. 365]
BFF21EES1 CALL encrupto.@FF31915 add_to_extensions_Llist
4
AL=E@ ["'")
Stack S5:[EE2YFECFI=13
Address | Hew dump ASCII
EzFFEFA el 6F 64 6E EC 20 60 6F 72 20 &0 70 28 60 FE 24| model mos mp mpd
GEZFFEZS | 28 60 78 Pl &F 65 2B 6D 72 F7 2B 6D V2 Y7 VP2 65| mpgas mow Mowee
BEZFFESY |66 28 60 P4 ¥2 2B 60 FE 28 6D 72 &5 28 6E &2 20 f mts mu muf nb
OEZFFEAS | 6E 62 66 2B 6E 65 66 2B 6E FZ2 V¥ 20 &E ¥4 &C 28 nof nef nrw ntl
HEZFFEES | 6F 62 60 28 &F 63 &4 6% 28 6F 64 62 208 &F &4 &3 obm ocdo odb odo
HEZFFECS | 28 6F 64 60 28 &F &4 FH 28 6F &4 13 41 B0 A7 18| odm odp od!H. -}
BEZFFEDS | 45 B9 B B0 EE 4H B4 1E BB 4E B8 B4 8BS 52 B3 45 E...AJedIN. +2ReE
GEZFFEES | 47 B& BF 4F| 1B SR BE 4B 1E BE BF E1 ER HZ F2 EV| GLO#Z KA #EQG " £
GEzFFEF4|FL AS F7 EE|FL AR FB E2 ES AE FF F4 F7 B2 EZ FL| =2, U~ R0 ~ @H
GEZFF1E4|F2 BS& EF FD|F4 BR EB FREE BE EF C2 D1 82 D2 CC) “ALE~| 0 6z =BEElF
GEZFF114| 05 92 87 D2|CL DA 9E 2C DD C7 CC 98 C1 OB D@ DA|ALeE =< ITAFE-ldr
BEZFF1Z4| D& 96 CF D2|C2? DB C2 CF |90 CE D1 AF E1 BZ BS AQ| irZeml“ckirbips|

9/14

https://blog.malwarebytes.org/wp-content/uploads/2016/04/decrypting_ext-1.png

001 1dc 3ds 3fr 7z a3s acb acbl accdb act ai ai3 ai4 ai5 ai6 ai7 ai8 aia aif aiff aip
ait anim apk archee ari art arw asc ase asef asp aspx asset avi bar bak bay bc6 bc7
bgeo big bik bkf bkp blob bmp bsa c c4d cap cas catpart catproduct cdr cef cer cfr

cgm cha chr cld clx cpp cr2 crt crw cs css csv cxx d3dbsp das dayzprofile dazip db
db® dbf dbfv dcr dcs der desc dib dlc dle dlv dlv3 dlv4 dmp dng doc docm docx drf dvi
dvr dwf dwg dxf dxg eip emf emz epf epk eps eps2 eps3 epsf

epsp erf esm fbx ff fff fhie fhii fh7 fh8 fh9 fig flt flv fmod forge fos fpk fsh ft8
fxg gdb ge2 geo gho h hip hipnc hkdb hkx hplg hpp hvpl hxx iam ibank icb icxs idea
iff iiq indd ipt iros irs itdb itl itm iwd iwi

j2k java jp2 jpe jpeg jpf jpg jpx js k25 kdb kdc kf kys layout 1lbf lex litemod 1rf
ltx 1vl m m2 m2t m2ts m3u md4a m4v ma map mat mb mcfi mcfp mcgame mcmeta mdb mdbackup
mdc mddata mdf mdl mdlp mef mel menu mkv mll mlx mn

model mos mp mp4 mpgge mrw mrwref mts mu mxf nb ncf nef nrw ntl obm ocdc odb odc odm
odp ods odt omeg orf ott pl2 p7b p7c pak pct pcx pdd pdf pef pem pfx php php4 php5
pic picnc pkpass png ppd ppt pptm pptx prj

prt prtl ps psb psd psf psid psk psqg pst ptl ptx pwl pxn pxr py qdf qic r3d raa raf
rar raw rb re4 rgss3a rim rofl rtf rtg rvt rw2 rwl rwz sav sb sbx sc2save shp sid
sidd sidn sie sis skl skp sldasm sldprt slm

slx slxp snx soft sqlite sqlite3 sr2 srf srw step stl stp sum svg svgz swatch syncdb
t12 t13 tax tex tga tif tiff tor txt unity3d uof uos upk vda vdf vfl vfsO vpk vpp_pc

vst vtf w3x wb2 wdx wma wmo wmv wallet ycbcra

wotreplay wpd wps x3f xf x1 x1k x1s x1lsb xlsm xlsx xvc xvz xxx zdct zip ztmp py rb
tar gz sdf yuv max wav dat

In the same way, blacklisted paths are deobfuscated and loaded.
Here are some examples of in-line routines used to decrypt blacklisted paths:

Example 1 — adding hardcoded value “roaming”:

AFF3ZZES] . FUSH ERX
BFF3ZZER (] - Mou BYTE PTR SS:[EBP-@8=11,.EBEL
BEF2ZZED (] - MOU CLOCAHL . 21, Bxc0e 16F 72 hardcoded ASCII = "roam™
AFF222F4 (] . HMOU CLOCAL. 71, BxEFEESS we e ing-an
= CALL =ncruoto.8FF3EDYE add to black list
4
EL=B&
Address |Hex dump ASCII
JOTCCLAC| 72 EF 61 60 €9 EE &7 98| roamina.

Example 2 — decrypting “system volume information”

10/14

https://blog.malwarebytes.org/wp-content/uploads/2016/04/hadcoded_roaming.png

BFF3214C
BFF22152
BFF321E5E
BFF22156
BFFZ2158
BFF3215E
BFF32150
BFFZ2168
BFF32162
BFF22165
BFF221&9
BFF22178
BFFZ2177
BFF32170
HFF 321568

BFF22137¢
AFF22 128

MAUARS =MME, DRWORD PTR D5: [AXFFSHE0E]
HMOL AL, ExEA

FOF ECH

0 MOL CL, 8= 48

0 Mol BYTE PTR S5: [EEF-8=41,EL

0 #OR AL, CL

0 MOl BYTE PTR S5:CEEBF-8X&]1,CL

HDU E?TE E;R 55: [EBFP-8151, AL

MOUUFS DRWORD FTR SS5: [EEFP-E233], <MMA
HMOL OWORD PTR 55: [EEP-E=231, G =2AZ7ZESE
0 MOL OWORD PTR SS:[EBP-B=1F1, @:=12C2925
0 MO WORD PTR 55: CEEF-B:1E1], b: 2537

0 MOy BYTE PTR 55:[CEEF-8:131],EL

¥ MO AL, BYTE FTR 55: [EEBF-Hx33]

g #0R BYTE PTR S5:[EBF+ECK-E2321, AL

IMC ECX

0 CHMP ECH, @x19

. JB SHORT encrupto.8FF321868

MOL ECH, DWORD FTR DS: [BxFFSEL13SC]

o
Ly

BEZTFFE4

encrypted string

decrupt ing

add_to_black_Llist

ASCII

BFF=22122 || - LER ERH,OWORD PTR 55: [EBFP-ExE5]

BFF32196 (] » FUSH ERX

BFF32197 (] . LER EDOX,OWORD PTE 55: [EEBFP-Ex32]

BFF3219AR HOL BYTE PTR S55:[EEBF-82191,EL

BFF32190 CALL encrypto.BFF3ED7E

BFF321A2 FOF ECX

1 [

AL=ES [("X")

Stack S5:[BE27YFEE1I=35 ("5"]

Address |Hex dump

BEZ7FEFE [[RENFSN P BB B0 Za Fe BF B0 FE 35| 20 T2 31 36
BEZFFEEE[3E 37 2ZA 35|39 2C 31 37|36 A8 20 73|64 &6 2@ 79

Summary of folders excluded from encryption:

$recycle.bin

system volume information

windows.old
$windows.~bt
windows

windows

locallow

local

roaming

programdata
program files
program files (x86)

Sustem wolus=x14

Hrag9, 176,

=df u

Some files — including ransom notes — are also excluded from encryption, i.e:

thumbs.db
iconcache.db
bootsec.bak

Inside the decryptor

Decryptor is an application that can be downloaded from the website for the victim and used

to recover the files after purchasing the key.

|]
e

decryptor.e
HE

11/14

https://blog.malwarebytes.org/wp-content/uploads/2016/04/blacklist1.png
https://blog.malwarebytes.org/wp-content/uploads/2016/03/decryptor-1.png

It comes with a simple GUI, allowing two modes of decryption — for individual file of for full
folder.

P "~

" File Unlocker E'@
Unlock using roaot key
Ro :

— | | Decrypt folder
(Select folder| | |
Unlock single file using free key

Fi 3 |

== I{e:.r| | Decrypt file
[Selectfiie | | |l
1 b

It is also UPX packed, but after removing this layer we can see valid strings. We can find
there elements corresponding to the encryptor.dil — but with much less obfuscation added.
For example — the same paths are skipped, but this time we can see them in clear text:

BORHZTHY push 1AN

aa4a2185 push offset adystemlolumeln ; “System Uolume Informatim
BaLB21BA push edi

BaLE21BE call compare_string

paye21CHe add esp, BCh
BBLBZ1C3 test Pax, eax
BBLBZ1CS jz short get next
e
BBLE21CT push BCh
B4 B21C9 push offset aWindows_old ; “"Windows._old”

BB4B21CE push edi
BBLB21CF call compare_string

BBy B2104 add esp, @Ch
ABLE21D7 test eax, eax
oy B2109 jz short get next
. I
h J
e
aa4a210B push BEh
aaya210D push offset aProgramFiles ; "Program Files"

BBLB21E2 push edi
ABYA21ED call compare_string

a04B821E8 add esp, BCh
BByBZ1ER test BaxX, Bax
BBLB2Z1ED j2 short get next

12/14

https://blog.malwarebytes.org/wp-content/uploads/2016/03/decryptor_gui.png
https://blog.malwarebytes.org/wp-content/uploads/2016/04/skipped_paths.png

Below — fragment of Salsa20 implementation containing typical constants:

80405828 salsa?f Init proc near
AB4 85628

AALAS 628 arg_ 6= dword ptr 4
BB485 628

064085628 push esi

864085629 push edi

8A4AS02A mov edi, ecx

884085 02C mov dword ptr [edi], 61787865h
804085832 mov dword ptr [edi+h], 857760878
804085839 mov dword ptr [edi+8], 2836477234
804085848 mov dword ptr [edi+BCh], 1797285236

B0405047 moOvZx esi, byte ptr [edx+3]
A0485048 movzz eax, byte ptr [edx+2]
A848584F shl esi, &

gAa4ASAS? or esi, eax

BALASA5L movuzx eax, byte ptr [edx+1]

GUI programming in C++ is not the strong point of the authors. In the code of decryptor we
can find fragments of a ready-made template. See below:

code fragment found in Rokku’s decryptor:

80482428 push ebx ; uType
8048242C push offset Caption "Win32? Guided Tour"
80482431 push offset Text "Call to RegisterClassEx failed®™

corresponding code fragment — part of a skeleton application that have been
demonstrated in a GUI programming_course:

if (lRegisterclassEx (&wcex))
{
MezsageEBox (MULL,
_Ti"call to RegisterclasseEx failedi"),
_Ti"win32 cuided Tour"),
HNULL) ;

return 1;

Authors of Chimera also didn’t felt confident in native GUI programming. Although they wrote
most of the code in C++, the decryptor’s GUI was prepared in .NET framework (that makes
GUI programming_much easier). Decryptor’s core functions were called from a DLL written in
C++.

Conclusion

In terms of architecture, Rokku shows several similarities with Chimera ransomware:

13/14

https://blog.malwarebytes.org/wp-content/uploads/2016/04/salsa20_decr.png
https://blog.malwarebytes.org/wp-content/uploads/2016/04/win32_guided.png
https://msdn.microsoft.com/library/bb384843.aspx
https://blog.malwarebytes.org/wp-content/uploads/2016/04/guided_tour_source-1.png
http://stackoverflow.com/questions/7697569/gui-easy-and-fast-without-net-framework

« the main part is a DLL, using ReflectiveLoader

» cryptography implemented locally (not via API calls)

o external decryptor that can be downloaded from the given location, before paying the
ransom

Both products use, however, different ways to communicate with victims: Chimera uses
bitmessage, while Rokku uses a Tor website (like most of the ransomware). Chimera
requires an Internet connection in order to work — Rokku in contrary is fully independent from
the CnC server.

The found similarities lead us to the conclusion, that Rokku may be a product of the same
authors — prepared with a similar schema but with different needs in mind.

Rokku is detected by Malwarebytes Anti-Malware (MBAM) as well as by Malwarebytes Anti-
Ransomware (MBARW).

Appendix

About Rokku by other vendors:

http://www.bleepingcomputer.com/news/security/rokku-ransomware-encrypts-each-file-

with-its-own-unique-key/ — Bleeping Computer
About Chimera:

Inside Chimera Ransomware — the first ‘doxingware’ in wild

This video cannot be displayed because your Functional Cookies are currently disabled.
To enable them, please visit our privacy policy and search for the Cookies section. Select
“Click Here” to open the Privacy Preference Center and select “Functional Cookies” in the
menu. You can switch the tab back to “Active” or disable by moving the tab to “Inactive.”
Click “Save Settings.”

14/14

http://www.bleepingcomputer.com/news/security/rokku-ransomware-encrypts-each-file-with-its-own-unique-key/
https://blog.malwarebytes.com/threat-analysis/2015/12/inside-chimera-ransomware-the-first-doxingware-in-wild/
https://www.malwarebytes.com/privacy/#how-we-collect-information

