
1/11

June 10, 2016

Reverse-engineering DUBNIUM
blogs.technet.microsoft.com/mmpc/2016/06/09/reverse-engineering-dubnium-2

DUBNIUM (which shares indicators with what Kaspersky researchers have called DarkHotel)
is one of the activity groups that has been very active in recent years, and has many
distinctive features.

We located multiple variants of multiple-stage droppers and payloads in the last few months,
and although they are not really packed or obfuscated in a conventional way, they use their
own methods and tactics of obfuscation and distraction.

In this blog, we will focus on analysis of the first-stage payload of the malware.

As the code is very complicated and twisted in many ways, it is a complex task to reverse-
engineer the malware. The complexity of the malware includes linking with unrelated code
statically (so that their logic can hide in a big, benign code dump) and excessive use of an in-
house encoding scheme. Their bootstrap logic is also hidden in plain sight, such that it might
be easy to miss.

Every sub-routine from the malicious code has a “memory cleaner routine” when the logic
ends. The memory snapshot of the process will not disclose many more details than the
static binary itself.

The malware is also very sneaky and sensitive to dynamic analysis. When it detects the
existence of analysis toolsets, the executable file bails out from further execution. Even
binary instrumentation tools like PIN or DynamoRio prevent the malware from running. This
effectively defeats many automation systems that rely on at least one of the toolsets they
check to avoid. Avoiding these toolsets during analysis makes the overall investigation even
more complex.

With this blog series, we want to discuss some of the simple techniques and tactics we’ve
used to break down the features of DUBNIUM.

We acquired multiple versions of DUBNIUM droppers through our daily operations. They are
evolving slowly, but basically their features have not changed over the last few months.

In this blog, we’ll be using sample SHA1: dc3ab3f6af87405d889b6af2557c835d7b7ed588 in
our examples and analysis.

Hiding in plain sight

https://blogs.technet.microsoft.com/mmpc/2016/06/09/reverse-engineering-dubnium-2

2/11

The malware used in a DUBNIUM attack is committed to disguising itself as Secure Shell
(SSH) tool. In this instance, it is attempting to look like a certificate generation tool. The file
descriptions and other properties of the malware look convincingly legitimate at first glance.

Figure 1: SSH tool disguise

When it is run, the program actually dumps out dummy certificate files into the file system
and, again, this can be very convincing to an analyst who is initially researching the file.

Figure 2 Create dummy certificate files

The binary is indeed statically linked with OpenSSL library, such that it really does look like
an SSH tool. The problem with reverse engineering this sample starts from the fact that it
has more than 2,000 functions and most of them are statically linked to OpenSSL code
without symbols.

Figure 3: DUBNIUM functions list

The following is an example of one of these functions – note it even has string references to
the source code file name.

https://www.microsoft.com/security/blog/uploads/2018/01/115.png
https://www.microsoft.com/security/blog/uploads/2018/01/211.png
https://www.microsoft.com/security/blog/uploads/2018/01/310.png

3/11

Figure 4: Code snippet that is linked from

OpenSSL library
It can be extremely time-consuming just going through the dump of functions that have no
meaning at all in the code – and this is only one of the more simplistic tactics this malware is
using.

We can solve this problem using binary similarity calculation. This technique has been
around for years for various purposes, and it can be used to detect code that steals
copyrighted code from other software.

The technique can be used to find patched code snippets in the software and to find code
that was vulnerable for attack. In this instance, we can use the same technique to clean up
unnecessary code snippets from our advanced persistent threat (APT) analysis and make a
reverse engineer’s life easier.

Many different algorithms exist for binary similarity calculation, but we are going to use one of
the simplest approach here. The algorithm will collect the op-code strings of each instruction
in the function first (Figure 5). It will then concatenate the whole string and will use a hash
algorithm to get the hash out of it. We used the SHA1 hash in this case.

Figure 5: Op code in the instructions

Figure 6 shows the Python-style pseudo-code that calculates the hash for a function.
Sometimes, the immediate constant operand is a valuable piece of information that can be
used to distinguish similar but different functions and it also includes the value in the hash
string. It is using our own utility function RetrieveFunctionInstructions which returns a list of
op-code and operand values from a designated function.

https://www.microsoft.com/security/blog/uploads/2018/01/47.png
https://www.microsoft.com/security/blog/uploads/2018/01/55.png

4/11

01 def CalculateFunctionHash(self,func_ea):
02 hash_string=''
03 for (op, operand) in self.RetrieveFunctionInstructions(func_ea):
04 hash_string+=op
05 if len(drefs)==0:
06 for operand in operands:
07 if operand.Type==idaapi.o_imm:
08 hash _string+=('%x' % operand.Value)
09
10 m=hashlib.sha1()
11 m.update(op_string)
12 return m.hexdigest()

Figure 6: Pseudo-code for CalculateFunctionHash

With these hash values calculated for the DUBNIUM binary, we can compare these values
with the hash values from the original OpenSSL library. We identified from the compiler-
generated meta-data that the version the sample is linked to is openssl-1.0.1l-i386-win. After
gathering same hash from the OpenSSL library, we could import symbols for the matched
functions. In this way, removed most of the functions from our analysis scope.

Figure 7: OpenSSL functions

Persistently encoded strings

The other issue when reverse-engineering DUBNIUM binaries is that it encodes every single
string that is used in the code (Figure 8). There is no clue on the functionality of purpose of
the binary by just looking at the string’s table. We had to decode each of these strings to
understand what the binary is intended to do. This may not be technically difficult, but it does
require a lot of time and effort.

https://www.microsoft.com/security/blog/uploads/2018/01/76.png

5/11

Figure 8: Encoded strings

Figure 9 shows how these encoded strings are used. For example, address 0x142C11C has
an instruction that loads an encoded string which is decoded as
“hook_disable_retaddr_check”. The encoded string is passed in ecx register to the decoder
function (decode_string). Note that the symbol names for the functions were made by us
during the analysis.

Figure 9: Excessive use of encoded strings

Because the decode_string function is excessively used and encoded gibberish strings are
always passed to it, we can be confident that the function is truly a string decoder. The
decode_string function looks like Figure 10. There are some approaches that can be taken
for decoding these files: you could port the code to C or Python and run them through
encoded strings, or you could reuse the code snippet itself and pass the encoded string to
the decoder function. We took the second option and reused the existing code for decoding
strings, for faster analysis of the sample.

Figure 10: decode_string routine

For example, we have an encoded string at address 0x013C992C.

Figure 11: Encoded string
The decode_string function is located at 0x01437036 in our case. The ecx register will point
to the encoded string and edx is the destination buffer address for the decoded string. We
just came up with the right place on the stack with enough buffer, which in this case is
esp+0x348.

https://www.microsoft.com/security/blog/uploads/2018/01/84.png
https://www.microsoft.com/security/blog/uploads/2018/01/93.png
https://www.microsoft.com/security/blog/uploads/2018/01/102.png
https://www.microsoft.com/security/blog/uploads/2018/01/116.png

6/11

lea edx,[esp+0x348] – pointer to stack buffer address
mov ecx, 0x013C992C – pointer to encoded string
call 0x01437036 – call to decode_string

As the instructions above will decode the encoded string for us, we can use Windbg to run
our code. First we prepared a virtual machine environment, because we can possibly run
malicious routines from the sample. As there are some possibilities that the decode_string
function is dependent on some initialization routines called at startup, we put our first
breakpoint to the location where the first instance of decode_string is called. In this way, we
can guarantee that our own decode_string call will be surely called with proper setup. That
address we came up with is 0x0142BFEE (Figure 12).

Figure 12: First breakpoint

Here’s where our breakpoint is hit at this address.

Figure 13: Breakpoint on 0142bfee hit

Now we need to write the memory over with our own code.

Figure 14: Use ‘a’ command to write instructions

over the current eip location
The memory location where eip is pointing looks like the following.

Figure 15: New disassembly code
Basically, we put the breakpoint on the entry of the decode_string and exit of the function.
With the entry of the function, we save the edx register value to a temporary register and use
it to dump out the decoded string memory location at the exit point.

Figure 16: Breakpoints and dump of decoded

string
Now we have a handy way to decrypt the strings we have. Just after a few IDAPython scripts
that retrieve all possible encoded strings and automatically generates the assembly code
that calls decode_string, we can come up with a new IDA listing that shows the decoded
string as the comment.

https://www.microsoft.com/security/blog/uploads/2018/01/122.png
https://www.microsoft.com/security/blog/uploads/2018/01/131.png
https://www.microsoft.com/security/blog/uploads/2018/01/141.png
https://www.microsoft.com/security/blog/uploads/2018/01/151.png
https://www.microsoft.com/security/blog/uploads/2018/01/161.png

7/11

Figure 17: Decoded strings

Memory cleanup

Even after encoding every single string related to malicious code, the DUBNIUM malware
goes one more step to hide its internal operations. When it calls decode_string to decode an
encoded string, it will use the local stack variable to save the decoded string. Whenever the
function returns, it calls fill_memory_with_random_bytes function for every local variable it
used, so that the stack is cleared from decoded strings.

Figure 18: Calling memory cleaner function

The memory cleaner function generates random bytes and fills the memory area. This can
be very simple, and but still can be very annoying to malware analysts because, even with
memory snapshot, we can’t acquire any meaningful strings out of it. It’s not easy to get a
clue of what this binary is doing internally by just skimming through a memory snapshot.

Figure 18b: Calling memory cleaner function

Various environment check

Once we have decoded the string, further reverse engineering becomes trivial. It is no more
complicated than any other malware we observe on a daily basis. The DUBNIUM binary
checks for the running environment very extensively. It has a very long list of security
products and other software it detects, and it appears that it detects all major antimalware
and antivirus vendor process names.

https://www.microsoft.com/security/blog/uploads/2018/01/171.png
https://www.microsoft.com/security/blog/uploads/2018/01/181.png
https://www.microsoft.com/security/blog/uploads/2018/01/18b.png

8/11

One other very interesting fact is the presence of process names that are associated with
software mainly used in China. For example, QQPCRTP.exe and QQPCTray.exe are from a
messaging software by a company based in China. Also, ZhuDongFangYu.exe, 360tray.exe
and 360sd.exe process names are used by security products that originate from China. From
the software it detects, we get the impression that the malware is focusing on a specific
geolocation as its target.

Figure 19: Extensive list of process names

Aside from security programs and other programs used daily that can be used to profile its
targets, the DUBNIUM malware also checks for various program analysis tools including Pin
and DynamoRIO. It also checks for a virtual machine environment. If some of these are
detected, it quits its execution. Overall, the malware is very cautious and deterministic in
running its main code.

The following figure shows the code that checks for the existence of the Fiddler web
debugger, which is very popular among malware analysts. As we wanted to use Fiddler to
get a better understanding on the network activity of the malware, we manually patched the
routine so it would not detect the Fiddler mutex.

Figure 20: Fiddler mutex check

Second payload download

The DUBNIUM samples are distributed in various ways, one instance was using a zero-day
exploit that targets Adobe Flash, in December 2015. We also observed the malware is
distributed through spear-phishing campaigns that involve social engineering with LNK files.

After downloading this payload, it would check the running environment and will only proceed
with the next stage when it determines the target is a valid one for its purpose.

If software and environment check passes, the first stage payload will try to download the
second stage payload from the command and control (C&C) server. It will pass information
such as the IP, MAC address, hostname and Windows language ID to the server, and the
server will return the encoded second stage payload.

https://www.microsoft.com/security/blog/uploads/2018/01/191.png
https://www.microsoft.com/security/blog/uploads/2018/01/20.png

9/11

Figure 21: 2nd payload download traffic

Figure 22: Encoded strings of the client informationThe way the first stage payload
downloads the second payload is both interesting and unique. It doesn’t access the Internet
directly from the code, but it uses the system-installed mshta.exe binary. Mshta.exe is often
used by malware to run VBscript for malicious purposes, but using it for downloading a
general purpose payload is not so common. This is because mshta.exe doesn’t support
downloading URL contents directly to an arbitrary location.

DUBNIUM spawns the mshta.exe process with the URL to download and waits for some
time, after that it opens the mshta.exe process and goes through open file handles to find a
handle for the temporary file that is associated with the downloaded contents.

This is a very inconvenient way to download a payload from the Internet, but it is useful for
hiding the originating process for network activities. Sometimes network security programs
check for the process name and their digital signature to check if they have the right to
access outside the network. In that case, this feature will be very handy for the malware.

Figure 23: mshta.exe execution code

As you can see from the figures below, it uses process-related documented and
undocumented APIs to retrieve file handles from the mshta.exe process, resolves their
names and uses filename heuristics to check if it is a response file or not.

https://www.microsoft.com/security/blog/uploads/2018/01/212.png
https://www.microsoft.com/security/blog/uploads/2018/01/221.png
https://www.microsoft.com/security/blog/uploads/2018/01/231.png

10/11

Figure 24: API calls to retrieve handle file name in

mshta.exe process
The cache filename will be retrieved and opened to retrieve the payload from the C&C
server.

Figure 25: Cache filename

Figure 26: Using mshta.exe to download

additional payload

Conclusion

Overall, the functionality of the DUBNIUM first stage payload is not so advanced in its
functionality. It is a very simple downloader for the second stage payload.

However, the way it operates is very strategic:

It hides in plain sight.
It is very careful in initiating the next stage of the attack.
It checks many different security products and user-installed programs that are bound
to specific geolocations and cultures.
It encodes every string that can be useful for quick analysis.
It encodes outbound web traffic.
It doesn’t use high class encryption – but it does use an excessive amount of in-house
string scrambling algorithms.

https://www.microsoft.com/security/blog/uploads/2018/01/242.png
https://www.microsoft.com/security/blog/uploads/2018/01/251.png
https://www.microsoft.com/security/blog/uploads/2018/01/261.png

11/11

It checks for many popular virtual environments and automatic analysis systems that
are used for malware analysis, including VMware, Virtualbox and Cuckoo Sandbox
It checks for popular dynamic analysis tools like PIN tool, DynamoRIO and other
emulators.

In conclusion, this is the first stage payload with more of reconnaissance purpose and it will
trigger next stage attack only when it decides the environment is safe enough for attack.

Appendix – Indicators of compromise

We discovered the following SHA1s in relation to DUBNIUM:

35847c56e3068a98cff85088005ba1a611b6261f
09b022ef88b825041b67da9c9a2588e962817f6d
7f9ecfc95462b5e01e233b64dcedbcf944e97fca
cad21e4ae48f2f1ba91faa9f875816f83737bcaf
ebccb1e12c88d838db15957366cee93c079b5a8e
aee8d6f39e4286506cee0c849ede01d6f42110cc
b42ca359fe942456de14283fd2e199113c8789e6
0ac65c60ad6f23b2b2f208e5ab8be0372371e4b3
1949a9753df57eec586aeb6b4763f92c0ca6a895
259f0d98e96602223d7694852137d6312af78967
4627cff4cd90dc47df5c4d53480101bdc1d46720
561db51eba971ab4afe0a811361e7a678b8f8129
6e74da35695e7838456f3f719d6eb283d4198735
8ff7f64356f7577623bf424f601c7fa0f720e5fb
a3bcaecf62d9bc92e48b703750b78816bc38dbe8
c9cd559ed73a0b066b48090243436103eb52cc45
dc3ab3f6af87405d889b6af2557c835d7b7ed588
df793d097017b90bc9d7da9a85f929422004f6b6
8ff7f64356f7577623bf424f601c7fa0f720e5fb
6ccba071425ba9ed69d5a79bb53ad27541577cb9

-Jeong Wook Oh

Talk to us

Questions, concerns, or insights on this story? Join discussions at the Microsoft community
and Windows Defender Security Intelligence.

https://answers.microsoft.com/en-us/protect
https://www.microsoft.com/en-us/wdsi

