
1/8

Cyber Heist Attribution
baesystemsai.blogspot.de/2016/05/cyber-heist-attribution.html

Written by Sergei Shevchenko and Adrian Nish

BACKGROUND

Attributing a single cyber-attack is a hard task and often impossible. However, when multiple attacks
are conducted over long periods of time, they leave a trail of digital evidence. Piecing this together
into a campaign can help investigators to see the bigger picture, and even hint at who may be
behind the attacks.

Our research into malware used on SWIFT based systems running in banks has turned up multiple
bespoke tools used by a set of attackers. What initially looked to be an isolated incident at one Asian
bank turned out to be part of a wider campaign. This led to the identification of a commercial bank in
Vietnam that also appears to have been targeted in a similar fashion using tailored malware, but
based off a common code-base.

In the bank malware cases we know of, the coders used a unique file wipe-out function. This
implementation was so distinctive that it further drew our attention – and so we began to look for
other instances of code which had used the same function. Using disassembled machine opcodes
(with masked out dynamic virtual addresses) we generated signatures to scan a large malware
corpus.

Our initial search turned up an additional sample which implemented the same wipe-out function.

This sample was uploaded from a user in the US on 4th March 2016:

SHA1 Compile
time

Size
(bytes)

Name Country

c6eb8e46810f5806d056c4aa34e7b8d8a2c37cad 2014-10-24
09:28:55

45,056 msoutc.exe US

ANALYSIS

The msoutc.exe functionality

msoutc.exe accepts a number of parameters passed with the command line. When executed, it

http://baesystemsai.blogspot.de/2016/05/cyber-heist-attribution.html
http://baesystemsai.blogspot.com/2016/04/two-bytes-to-951m.html

2/8

checks if there is another instance of itself already running on a system, by attempting to create a
mutex called:

Global\FwtSqmSession106839323_S-1-5-20

If the mutex creation attempt fails, returning the 'already exists' error code, the bot will quit and
delete itself by executing a self-delete batch file. The bot then copies itself into a temporary directory
as:

%TEMP%\sysman\svchost.exe

Next, it recreates its configuration file wmplog09c.sqm in the same directory. As in case with the
malware described in our blogpost, it will also install itself as a system service.

The service will be called "Indman", "Indexing Manager", and described as "Provides fast indexing
service".

The malware keeps its logs within an encrypted file wmplog15r.sqm and/or wmplog21t.sqm, located
in the same directory. The logged messages are encrypted with a key:

y@s!11yid60u7f!07ou74n001

Back in 2015, PwC reported a malware with an identical encryption key as above and a very similar
unique mutex name. The msoutc.exe bot matches the description of other tools from the same
toolkit, as described in the US CERT Alert TA14-353A:

US Cert Alert PwC msoutc.exe

FwtSqmSession106829323_S-1-
5-19

FwtSqmSession106829323_S-
1-5-19

FwtSqmSession106839323_S-
1-5-20

y0uar3@s!llyid!07,ou74n60u7f001 y@s!11yid60u7f!07ou74n001 y@s!11yid60u7f!07ou74n001

If the configuration file is missing, the bot initiates a default configuration and saves it to the
wmplog09c.sqm file, located in the same directory. The default parameters specify 127.0.0.1 (local
host) and port 443 as the default address for the C&C server.

In this case, the bot expects the C&C server's IP address and port number to be passed as the
command line parameters. These parameters are then used to update the configuration file.

Since the configuration file is not available for analysis, the C&C IP remains unknown, but the port
number is likely to be 443, same as the default value.

Every 5 minutes it initiates a communication to the remote C&C. All communications are encrypted.
The beacon signal it sends contains the local IP address. The data it receives from the C&C is first
decrypted, and then used to update its own executable and the wmplog09c.sqm configuration file.
The updated executable may have additional functionality that is missing in the analysed sample.

http://baesystemsai.blogspot.com/2016/04/two-bytes-to-951m.html
http://pwc.blogs.com/cyber_security_updates/2015/01/destructive-malware.html

3/8

The msoutc.exe 'wipe-out' and 'file-delete' functions

When the malware reaches out to the C&C server, it may receive a special instruction to terminate
itself. In that case, it uninstalls its service, deletes its configuration and log files, then quits and
deletes itself by executing a self-delete batch file that has the following format:

.data:0040A400 echoOffD1Del db '@echo off',0Dh,0Ah

.data:0040A400 db ':D1',0Dh,0Ah

.data:0040A400 db 'del /a %1',0Dh,0Ah

.data:0040A400 db 'if exist %1 goto D1',0Dh,0Ah

.data:0040A400 db 'del /a %0',0

The batch file format is identical to the one previously reported by Novetta.

In order to delete its configuration and log files, the bot calls an internal function that wipes these
files out so that their contents cannot be forensically restored.

The implementation of this function is very unique - it involves complete filling of the file with the
random data in order to occupy all associated disk sectors, before the file is deleted. The file-delete
function itself is also unique – the file is first renamed into a temporary file with a random name, and
that temporary file is also deleted.

Let's compare the wipe-out function employed by this bot to the wipe-out function within the malware
that was involved in the operation against the bank in Vietnam.

Machine Opcode Disassembled Code

B8 20 10 00 00

E8 96 EA 04 00

53

55

57

FF 15 4C F0 45 00

...

mov eax, 1020h

call __alloca_probe

push ebx

push ebp

push edi

call ds:GetTickCount

...

https://www.operationblockbuster.com/wp-content/uploads/2016/02/Operation-Blockbuster-Report.pdf
https://3.bp.blogspot.com/-AGZFpSzvRaM/VzQgdK6LJUI/AAAAAAAAAgk/C0Av_qVA7UgZ9gIxfmRCUzoZ6T9B4ravwCLcB/s1600/scheme.png

4/8

The first instruction is to assign 0x1020 to EAX - this instruction is represented with an opcode B8 20
10 00 00, and it stays the same across the compared samples.

The second instruction is to call a function located at the address calculated as the address of the
next instruction (push ebx) plus 0x4EA96. Depending on a sample, the compiler may place
__alloca_probe() function at a different offset within the executable, hence the 0x4EA96 offset is
dynamic and the opcode bytes 96 EA 04 (representing 0x4EA96) should be ignored in our
comparison.

The API GetTickCount() is called with the last instruction, but again, the pointer into the API is stored
in this particular sample at the virtual address of 0x45F04C. In a modified sample with a different
image base, the virtual address of this pointer will also be different. Hence, the bytes 4C F0 45
(representing 0x45F04C) should also be masked out (ignored).

Using this principle, full comparison of this function's implementation can now be done.

As it turns out, the wipe-out function employed by this bot is byte-to-byte identical to wipe-out
function within the malware that was involved in the operation against the bank in Vietnam, as
shown below:

Wipe-out function

(msoutc.exe, 2014)

Wipe-out function

(Vietnam malware, 2015)

B820100000E8B64E0000535557FF1500

90400050FF154C90400083C404C64424

0CFFFF156890400025FF000080790748

0D00FFFFFF408844240DB9FF03000033

C08D7C242DC644242C5F33DBF3AB66AB

5368800000006A0353AA8B8424401000

0053680000004050C644242AFF885C24

2BC644242C7EC644242DE7FF15A4AC40

008BE883FDFF7510FF151C9040005F5D

5B81C420100000C3566A02536AFF55FF

15D4AC40008D4C242453518D5424386A

015255FF15ACAC400055FF15C8AC4000

8D44241C5055FF15D0AC400033F68974

24188B84243810000083F8067E05B806

0000003BF00F8DC900000053535355FF

15D4AC40008A4434103CFF75148D4C24

30680010000051E8C4FDFFFF83C408EB

1C25FF000000B9000400008AD08D7C24

308AF28BC2C1E010668BC2F3AB8B4424

208B4C241C33FF33F63BC37C607F0A3B

CB765AEB048B4C241C2BCF1BC678157F

0881F900100000760BB900100000895C

242CEB048944242C8D4424245350518D

4C243C5155FF15ACAC400085C0741E8B

4424243BC3741603F88B44242013F33B

F07CB27F088B4C241C3BF972AC55FF15

C8AC40008B44241840894424188BF0E9

1EFFFFFF55FF15A8AC40008B94243410

00005352E847FDFFFF83C4085E5F5D5B

81C420100000C3

B820100000E896EA0400535557FF154C

F0450050FF152CF1450083C404C64424

0CFFFF1524F1450025FF000080790748

0D00FFFFFF408844240DB9FF03000033

C08D7C242DC644242C5F33DBF3AB66AB

5368800000006A0353AA8B8424401000

0053680000004050C644242AFF885C24

2BC644242C7EC644242DE7FF1548F045

008BE883FDFF7510FF1508F045005F5D

5B81C420100000C3566A02536AFF55FF

1544F045008D4C242453518D5424386A

015255FF1540F0450055FF153CF04500

8D44241C5055FF1538F0450033F68974

24188B84243810000083F8067E05B806

0000003BF00F8DC900000053535355FF

1544F045008A4434103CFF75148D4C24

30680010000051E8C4FDFFFF83C408EB

1C25FF000000B9000400008AD08D7C24

308AF28BC2C1E010668BC2F3AB8B4424

208B4C241C33FF33F63BC37C607F0A3B

CB765AEB048B4C241C2BCF1BC678157F

0881F900100000760BB900100000895C

242CEB048944242C8D4424245350518D

4C243C5155FF1540F0450085C0741E8B

4424243BC3741603F88B44242013F33B

F07CB27F088B4C241C3BF972AC55FF15

3CF045008B44241840894424188BF0E9

1EFFFFFF55FF1510F045008B94243410

00005352E847FDFFFF83C4085E5F5D5B

81C420100000C3

5/8

NOTE: the greyed-out areas correspond to the virtual addresses of the called APIs – these
addresses would not be expected to be constant across different samples, and hence, should be
ignored.

The wipe-out function used in the Bangladesh malware case was slightly different: the author
removed one outer loop from the writing into the file, and one randomisation layer, as shown below.
However, the core of the function was left intact.

At the end of the file writing, the wipe-out function makes a call to a file-delete function that removes
the file/directory – this is named removeFileDir() in our reconstructed code.

This function is implemented identically in all the analysed samples, up to the last character. It’s very
distinctive as the file is first renamed into a random filename in the same directory, and then deleted,
as shown below in the reconstructed code:

https://1.bp.blogspot.com/-y24tzOTcouE/VzLBTu0Po0I/AAAAAAAAAf8/C9hjW5Y-of45MJOGfDvur3v-jP4E0yszgCLcB/s1600/wipe_out_comparison.png

6/8

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

DWORD removeFileDir(LPCSTR lpExistingFileName, bool bDir)
{
const CHAR *_filePath;
char *backslash;
char *fileName;
char next_char;
char _filepath;
char buf;
_filepath = 0;
_filePath = lpExistingFileName;
memset(&buf, 0, 0x100u);
strcpy(&_filepath, lpExistingFileName);
backslash = strrchr(&_filepath, '\\');
if (backslash)
fileName = backslash + 1;
else
fileName = &_filepath;
if (*fileName)
{
do
{
*fileName = rand() % 26 + 'a';
next_char = (fileName++)[1];
}
while (next_char);
}
if (MoveFileA(lpExistingFileName, &_filepath))
_filePath = &_filepath;
if (bDir)
{
if (!RemoveDirectoryA(_filePath))
return GetLastError();
}
else if (!DeleteFileA(_filePath))
{
return GetLastError();
}
return 0;
}

ATTRIBUTION

So what else do we know about msoutc.exe? It turns out that this malware exhibits the same unique
characteristics, such as mutex names and encryption keys, as other tools from a larger toolkit
described in US-CERT Alert TA14-353A.

The US-CERT alert mentions "a major entertainment company" and is widely believed to describe
the toolkit used to conduct destructive cyber-attack which took place in late 2014. Further details of
this same toolkit were disclosed in the 'Op Blockbuster' report in February 2016.

msoutc.exe matches the description of the 'Sierra Charlie' variants in their report. From their
analysis this is described as a spreader type of malware, presumably used to gain a foothold on
multiple devices within a target environment before launching further actions.

Summarising the overlaps:

https://www.us-cert.gov/ncas/alerts/TA14-353A
http://www.operationblockbuster.com/wp-content/uploads/2016/02/Operation-Blockbuster-Report.pdf

7/8

Typos

Typos are not uncommon in cyber-attacks, as developers and operators rush through their tasks in
an effort to stay ahead of network-defenders. However, this provides another soft link across the
different sets of activity.

Instance Comment

Operation Blockbuster
campaign

The Kaspersky Labs team noted a typo in the User-Agent of
'Mozillar' instead of 'Mozilla'

Vietnam case Attacker code featured the string 'FilleOut' instead of 'FileOut'

Bangladesh case Attacker code featured the string 'alreay' instead of 'already'

Attacker mis-spelled 'foundation'
as 'fandation'

Development environment

The coder makes exclusive use of Visual C++ 6.0, an older development environment released in
1998. The use of such infrastructure for development is not unheard of, but it does leave a
distinctive tool-mark with which to link the malware samples.

The use of this compiler was also noted in the 'Kordllbot' samples described in a recent report by
BlueCoat. This report details the same activity as discussed in the Operation Blockbuster reports.

Instance Comment

Kordllbot malware (BlueCoat report / Op Blockbuster) Noted to have used Visual C++ 6.0

Vietnam case Malware compiled in Visual C++ 6.0

Bangladesh case Malware compiled in Visual C++ 6.0

File-wipe / file-delete functionality

As noted already, the developers coded a specific function for securely erasing files from disk. The
author of this function took great care in writing a large amount of random data into a file, before
passing it to a file delete command. This was done in order to make sure the deleted file could not
be forensically restored as all the original contents of the hard disk sectors associated with the file
would be lost.

Instance Comment

Operation Blockbuster campaign Described under the 'Secure File Delete' section

https://securelist.com/blog/incidents/73914/operation-blockbuster-revealed/
http://www.reuters.com/article/us-usa-fed-bangladesh-typo-insight-idUSKCN0WC0TC
https://www.bluecoat.com/security-blog/2016-02-24/seoul-sony

8/8

msoutc.exe Contains both 'file-wipe' and 'file-delete' functions

Vietnam case Contains identical functions to the above sample

Bangladesh case Contains modified 'file-wipe' but identical 'file-delete' function

CONCLUSIONS

The overlaps between these samples provide strong links for the same coder being behind the
recent bank heist cases and a wider known campaign stretching back almost a decade.

It is possible that this particular file-delete function exists as shared code, distributed between
multiple coders who look to achieve similar results. However, we have noted that this code isn't
publically available or present in any other software after searching through tens of millions of files.
The unique decision to move and rename the file before deletion after overwriting is unusual, and
not a common step we would expect to see when implementing this capability.

A motivated and talented coder could implement the same function and choose to compile their
project in Visual Studio 6.0 to achieve the same binary result for the purposes of misattribution. We
cannot prove for certain that this is not the case, and further investigation of command infrastructure
and related tools is needed before any definitive statements on attribution can be made.

Whilst there are possibilities that exist which may lead to alternative hypotheses, these are unlikely
and as such, we believe that the same coder is central to these attacks. Who the coder is, who they
work for, and what their motivation is for conducting these attacks cannot be determined from the
digital evidence alone. However, this adds a significant lead to the investigation.

