
1/17

hasherezade May 6, 2016

7ev3n ransomware turning ‘HONE$T’
blog.malwarebytes.com/threat-analysis/2016/05/7ev3n-ransomware/

7ev3n ransomware appeared at the beginning of this year. In addition to typical features of
encrypting files, it was blocking access to the system using a fullscreen window, and was
difficult to remove. It also became famous for demanding an unrealistic price of 13 bitcoins.

At that time the product looked like in early stage of development, however, the code was
showing a potential to evolve into something smarter in the future. Indeed – the authors
decided to actively work on making improvements. Currently we are facing an outbreak of a
new campaign with an improved version of this ransomware – this time named 7ev3n-
HONE$T. Probably the new name refers to the added feature of decrypting test files before
the payment – as a proof of the authors’ “honesty” in giving files back.

In this post we will take a look at its evolution.

[UPDATE] See also: decryptors for 7ev3n ransomware

Analyzed samples

7ev3n (old edition):

https://blog.malwarebytes.com/threat-analysis/2016/05/7ev3n-ransomware/
https://www.malwarebytes.com/ransomware
https://hshrzd.wordpress.com/2016/06/13/decoder-for-7ev3n-ransomware/


2/17

7ev3n-HONE$T (new edition):

Behavioral analysis

73v3n – old version

Once executed, 7ev3n ransomware was installing itself, deleting the clicked copy and silently
encrypting files. The first symptom that something was wrong was a notification that User
Account Control is going to be turned off, and the system needed to be restarted:

The malware was not waiting for the next restart, but executing it by its own. Shortly after
another notification the system was going to shut down:

On the next reboot, the attack of that version of 7ev3n ransomware was announced by a big
window, covering the entire desktop and blocking access to the system. It was difficult to
bypass. In order to regain the control over the system, the user needed to put some special
effort (guidance has been provided, i.e. by BleepingComputer).

https://blog.malwarebytes.org/wp-content/uploads/2016/04/UAC_notification.png
https://blog.malwarebytes.org/wp-content/uploads/2016/04/logging_off.png
http://www.bleepingcomputer.com/news/security/7ev3n-ransomware-trashes-your-pc-and-then-demands-13-bitcoins/


3/17

The ransomware installed itself in %LOCALAPPDATA% – the main file is dropped under the
name system.exe:

In addition, it dropped one more executable: uac.exe – for User Account Controll bypass,
using a well-known trick with Cabinet files (Akagi) and two bat scripts: del.bat (responsible
for deleting the original file) and bcd.bat – responsible for disabling backup. Content of
bcd.bat demonstrated below:

bcdedit /set {current} bootems no  
bcdedit /set {current} advancedoptions off  
bcdedit /set {current} optionsedit off  
bcdedit /set {current} bootstatuspolicy IgnoreAllFailures  
bcdedit /set {current} recoveryenabled off 
del %0 

Encryption process

https://blog.malwarebytes.org/wp-content/uploads/2016/01/ransom_note.png
https://blog.malwarebytes.org/wp-content/uploads/2016/04/dropped_seven1.png
https://github.com/hfiref0x/UACME/tree/master/Source/Akagi


4/17

This ransomware is capable of encrypting files off-line.

Encrypted files had their name changed to <number in directory>.R5A.

Patterns found in the encrypted files (R5A extension) look like two different algorithms have
been used for it’s different chunks.

square.bmp : left – original, right encrypted with 7ev3n

 

Every file was encrypted with a different key.

73v3n – HONE$T

The new edition comes with an improved interface. The most important difference is that the
authors gave up the idea of blocking the full desktop of the infected computer. Although the
window with ransom demand cannot be closed, it is still possible to access other programs.
Moreover, the GUI itself has been enriched with features allowing for navigation and getting
more information. Similarly to other ransomware, it provides a possibility to decrypt a few
files for the test.

https://blog.malwarebytes.org/wp-content/uploads/2016/01/7ev3n_encrypted.png
https://blog.malwarebytes.org/wp-content/uploads/2016/03/enc_square1.png
https://blog.malwarebytes.org/wp-content/uploads/2016/04/enc_1.png


5/17

In the new edition the price of decryption is only 1 BTC  (in some samples even 0.5) – that is
a huge difference in comparison to 13 BTC from the previous campaign. The new ransom
note offers various models of payment (i.e possibility to decrypt half of the files for 60% of the
original price) and a 20% discount in case of paying full sum at once. As we can see, the
authors learned to be more user-friendly and made a step towards “honesty”.

Installation folder and dropped files are different than in the previous version (sample 1
BTC):

https://blog.malwarebytes.org/wp-content/uploads/2016/05/enc_win-1024x731.png
https://www.hybrid-analysis.com/sample/2955d081ed9bca764f5037728125a7487f29925956f3095c58035919d50290b5?environmentId=4
https://blog.malwarebytes.org/wp-content/uploads/2016/04/installed.png


6/17

However, this feature depends rather on the particular campaign – in some of the new
samples the installation path is like in the previous edition (sample 0.5 BTC)

This time, the main executable is dropped either as conlhost.exe or as  system.exe
(depending on the sample). Also, in the same folder, the ransomware creates 2 files with lists
of paths:

files – containing all the encrypted files
testdecrypt – containing files that have been chosen as testfiles that can be decrypted
for free

The dropped executable have some unique ID appended to it’s end. It is an array of 34
random characters, with ‘*’ used as a prefix/suffix – format:  ‘*[\x00-\xff]{34}*’. This key is
same on every run for a particular machine.

Example: Left – the sample before being run. Right – the sample that was run and installed
on the system:

Persistence is based on a Run registry key:

https://blog.malwarebytes.org/wp-content/uploads/2016/05/installation_05.png
https://blog.malwarebytes.org/wp-content/uploads/2016/04/appended_content.png


7/17

In addition to displaying the GUI with ransom note it also drops a TXT file with contact
information, that can be used if – for any reason – the main windows didn’t manage to pop-
up:

The victim ID is the same after every execution on the same machine, so we can be sure
that it is not random (it may be generated from some local identifiers, i.e. GUID).

Encryption process

The new version also can encrypt files off-line (no key needs to be downloaded from the
server).

Encrypted files had their name changed to A<number in directory>.R5A (or, for some of
the new samples <number in directory>.R5A –just like in the old version). The new feature
is that some randomly selected files are given a different extension: .R4A.

 

Just like in the to the previous edition, patterns found in the encrypted files (R5A extension)
look like two different algorithms have been used for its different chunks.

square.bmp : first – original, second- encrypted with 7ev3n-HONE$T, third – encrypted with
old 7ev3n.

 

https://blog.malwarebytes.org/wp-content/uploads/2016/04/regedit.png
https://blog.malwarebytes.org/wp-content/uploads/2016/04/files_back_note.png
https://blog.malwarebytes.org/wp-content/uploads/2016/04/encrypted_files.png


8/17

  

Completely different algorithm has been deployed on the files with R4A extension
(introduced newly in 7ev3n-HONE$T)

 

We can see the patterns of the original file reflected in it’s encrypted content. Such an effect
depicts, that file could have been encrypted by some block cipher – but as well it can be a
custom, XOR-based algorithm.

Also in this version, every file with R5A extension is encrypted with a different key.

Experiment

For the purpose of experiments I prepared set of short TXT files, as given below:

https://blog.malwarebytes.org/wp-content/uploads/2016/03/enc_square1.png
https://blog.malwarebytes.org/wp-content/uploads/2016/04/enc_A0.png
https://blog.malwarebytes.org/wp-content/uploads/2016/04/enc_1.png
https://blog.malwarebytes.org/wp-content/uploads/2016/03/enc_square1.png
https://blog.malwarebytes.org/wp-content/uploads/2016/04/enc_A2_R4A.png


9/17

They have been encrypted as following:

1.txt

16A.txt

long_filename.txt

The file 16M.txt has not been encrypted at all.

We can see that each end every encrypted file starts with a character ‘M’. After that, there is
an encrypted content – it’s length is the same like the original. However, the same plaintext
does not produce the same encrypted content (compare 1.txt and 16A.txt).

https://blog.malwarebytes.org/wp-content/uploads/2016/04/test_fileset.png
https://blog.malwarebytes.org/wp-content/uploads/2016/04/1_txt_encrypted.png
https://blog.malwarebytes.org/wp-content/uploads/2016/04/16A_txt_enc.png
https://blog.malwarebytes.org/wp-content/uploads/2016/04/long_name_enc.png


10/17

The encrypted content is suffixed with a separator ‘**’ and then the encrypted filename is
stored (it’s original length is preserved). The last character is always ‘\x0A’. Format of the
encrypted file can be defined as:

M<encrypted content>**<encrypted filename>\x0A 

Files with content length shorter or equal 8 are excluded from the encryption. Similarly,
excluded are files which content begins with ‘M’. More details about why it happens, we will
find by analyzing the code.

Network communication

Although the internet connection is not required in the process of encryption, 7even is
capable of communicating with C&C for the purpose of collecting information about the
attacked machines.

During beaconing, various information about the current infection are sent. As usual, the
victim ID (the same that is mentioned in the ransom note), wallet ID (hardcoded in the
binary), operating system, etc.

Sending statistics from the encryption:

Inside 7ev3n (the old version)

The techniques used by 7ev3n are not very advanced, but yet it is worth to take a look.

Analyzed files:

https://blog.malwarebytes.org/wp-content/uploads/2016/04/beacon_1.png
https://blog.malwarebytes.org/wp-content/uploads/2016/04/send_encrypted_info.png


11/17

system.exe (a3dfd4a7f7c334cb48c35ca8cd431071) – main file
uac.exe (7a681d8650d2c28d18ac630c34b2014e)– upx-packed payload

The main file (system.exe) comes with UAC bypassing tools embedded (32 and 64 bit
version – the one that is deployed is chosen appropriately for the system). Among strings we
can see list of decimal numbers, that need to be simply converted into ASCII.
Beginning of the new PE in strings of the file:

77 90 144 0 3 0 0 0 4 0 0 0 255 255 0 0 184 0 0 0 0 0 0 0 64 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
[...] 

We can convert it easily into a binary (i.e by this script) getting as a result 64 bit version of
the same UAC bypassing tool (original is packed by UPX  unpacked version available here).

Registry manipulation

Adding a registry key indicating that files are encrypted:

REG ADD "HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion" /v "crypted" 
/t REG_SZ /d 1 /f 

Manipulating registry keys – i.e. in order to block the screen:

REG ADD \"HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Run\" /v 
\"System\" /t REG_SZ /d \"                                 
REG ADD \"HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\Windows\\CurrentVersion\" /v 
\"rgd_bcd_condition\" /t REG_SZ /d 1 /f /reg:64                 
REG ADD 
\"HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Policies\\System\"
/v \"EnableLUA\" /t REG_DWORD /d 0 /f /reg:64    
REG ADD \"HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\Windows 
NT\\CurrentVersion\\Winlogon\" /v \"Shell\" /t REG_SZ /d \"explorer.exe\" /f /reg:64 
REG DELETE \"HKEY_LOCAL_MACHINE\\SYSTEM\\CurrentControlSet\\Control\\Keyboard 
Layout\" /v \"Scancode Map\" /f /reg:64                           
REG DELETE \"HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Run\" 
/v \"System\" /f /reg:64  

Inside 7ev3n-HONE$T

The first layer is a packing: a simple crypter/FUD with an icon added. It’s role is deception:
delivering malicious payload in a way unnoticed by antimalware tools, as well as making it’s
analysis harder.

After defeating the FUD layer we get the first payload
(32a56ca79f17fea432250ee704432dfc). Strings and imported functions are not obfuscated.
We can find the path to the project inside the binary – it suggests that we are dealing with the
variant without UAC bypass (in contrary to the previous version, that had it implemented):

C:\Users\admin\Desktop\new version with NO UAC\Release\Win32Project9.pdb 

https://github.com/hasherezade/crypto_utils/blob/master/convert.py
https://virustotal.com/en/file/740623ad32b8da524b0b77eee9cd3bb92cc9c050db479551a799d1b064b7fe38/analysis/1461610564/
https://virustotal.com/en/file/758b3c4beb8a0a8ed26830b0e79fc7da20de1c4943c3314c966d3227ed829974/analysis/1461513713/


12/17

Inside this payload we can find yet another, UPX packed executable:
5b5e2d894cdd5aeeed41cc073b1c0d0f . It is also not very well protected and after unpacking
it with standard UPX application we get another executable
(d004776ff5f77a2d2cab52232028ddeb) with all the strings and API calls visible.

Execution flow

First execution is used just for the purpose of installation.

When the sample is deployed, it makes it’s copy into the predefined installation folder
(destination may vary for various samples). It drops a batch script that is supposed to delete
the initial sample

The unique, hardware-based ID is written at the end of the executable that has been copied
to the destination path:

Below – the same key – at the end of the installed sample:

https://virustotal.com/en/file/965dd4497093621c56679508e4b76f9f0fc2daf8a205be90a144cf92eecb3210/analysis/1461516239/
https://virustotal.com/en/file/56169b64ca71f7919a0f30621fb17fc040c2274772c0c4c328bb02a0de6d7d9a/analysis/1461513247/
https://blog.malwarebytes.org/wp-content/uploads/2016/04/del_bat.png
https://blog.malwarebytes.org/wp-content/uploads/2016/04/append_key.png
https://blog.malwarebytes.org/wp-content/uploads/2016/04/appended_key.png


13/17

In the meanwhile,  of the installation, malware sends the beacon to a hardcoded URL.

Then, the new sample is deployed and the initial sample terminates and gets deleted.

The installed sample is supposed to run the second phase – that encrypt the files. Decision
which execution path should be deployed (installation, encrypion, or GUI is based on the
environment check.

Registry manipulation

Adding a registry key indicating that files are encrypted:

REG ADD "HKEY_CURRENT_USER\SOFTWARE" /v "crypted" /t REG_SZ /d "1"

Manipulating other registry keys – related with persistance, status of decrypting etc.

REG ADD "HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\Run" /v 
"allkeeper" /t REG_SZ /d "" /f 
REG ADD "HKEY_CURRENT_USER\SOFTWARE" /v "testdecrypt" /t REG_SZ /d 1  
REG DELETE "HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\Run" /v 
"allkeeper" /f 
REG ADD "HKEY_CURRENT_USER\SOFTWARE" /v "Decrypt50" /t REG_SZ /d 1 

What is attacked?

This ransomware encrypts local drives as well as mapped network shares.

Encrypted extensions are hardcoded in the binary as UNICODE strings:

Summary of all the file extensions that are attacked:

https://blog.malwarebytes.org/wp-content/uploads/2016/04/run_installed_copy-1.png
https://blog.malwarebytes.org/wp-content/uploads/2016/04/extensions-1.png


14/17

ai arw txt doc docm docx zip rar xlsx xls xlsb xlsm jpg jpe jpeg bmp eql sql adp mdf 
mdb odb odm odp ods pds pdt pdf dt cf cfu mxl epf kdbx erf vrp grs geo st pff mft efd 
3dm 3ds rib ma max lwo lws m3d mb obj x3d c4d fbx dgn dwg 4db 4dl 4mp abs adn a3d aft 
ahd alf ask awdb azz bdb bib bnd bok btr bak cdb ckp clkw cma crd dad daf db3 dbk dbt 
dbv dbx dcb dct dcx ddl df1 dmo dnc dp1 dqy dsk dsn dta dtsx dxl eco ecx edb emd fcd 
fic fid fil fm5 fol fp3 fp4 fp5 fp7 fpt fzb fzv gdb gwi hdb his ib idc ihx itdb itw 
jtx kdb lgc maq mdn mdt mrg mud mwb s3m myd ndf ns2 ns3 ns4 nsf nv2 nyf oce oqy ora 
orx owc owg oyx p96 p97 pan pdb pdm phm pnz pth pwa qpx qry qvd rctd rdb rpd rsd sbf 
sdb sdf spq sqb stp str tcx tdt te tmd trm udb usr v12 vdb vpd wdb wmdb xdb xld xlgc 
zdb zdc cdr cdr3 ppt pptx abw act aim ans apt asc ase aty awp awt aww bad bbs bdp bdr 
bean bna boc btd cnm crwl cyi dca dgs diz dne docz dot dotm dotx dsv dvi dx eio eit 
emlx epp err etf etx euc faq fb2 fbl fcf fdf fdr fds fdt fdx fdxt fes fft flr fodt 
gtp frt fwdn fxc gdoc gio gpn gsd gthr gv hbk hht hs htc hwp hz idx iil ipf jis joe 
jp1 jrtf kes klg knt kon kwd lbt lis lit lnt lp2 lrc lst ltr ltx lue luf lwp lyt lyx 
man map mbox me mell min mnt msg mwp nfo njx now nzb ocr odo odt ofl oft ort ott p7s 
pfs pfx pjt prt psw pu pvj pvm pwi pwr qdl rad rft ris rng rpt rst rt rtd rtf rtx run 
rzk rzn saf sam scc scm sct scw sdm sdoc sdw sgm sig sla sls smf sms ssa stw sty sub 
sxg sxw tab tdf tex text thp tlb tm tmv tmx tpc tvj u3d u3i unx uof uot upd utf8 utxt 
vct vnt vw wbk wcf wgz wn wp wp4 wp5 wp6 wp7 wpa wpd wpl wps wpt wpw wri wsc wsd wsh 
wtx xdl xlf xps xwp xy3 xyp xyw ybk yml zabw zw abm afx agif agp aic albm apd apm 
apng aps apx art asw bay bm2 bmx brk brn brt bss bti c4 cal cals can cd5 cdc cdg cimg 
cin cit colz cpc cpd cpg cps cpx c2 c2 rdds dg dib djv djvu dm3 dmi vue dpx wire drz 
dt2 dtw dvl ecw eip exr fal fax fpos fpx gcdp gfb ggr gif gih gim spr scad gpd gro 
grob hdp hdr hpi i3d icn icon iiq info ipx iwi j2c j2k jas jb2 jbmp jbr jfif jia jng 
jp2 jpg2 jps jpx tf jwl jxr kdc kdi kdk kic kpg lbm ljp mac mbm mef mnr mos mpf mpo 
mrxs myl ncr nct nlm nrw oc3 oc4 oc5 oci omf oplc af2 af3 asy cdmm cdmt cdt cgm cmx 
cnv csy cv5 cvg cvi cvs cvx cwt cxf dcs ded dhs dpp drw dxb dxf egc emf ep eps epsf 
fh10 fh11 fh3 fh4 fh5 fh6 fh7 fh8 fif fig fmv ft10 ft11 ft7 ft8 ft9 ftn fxg gem glox 
hpg hpgl hpl idea igt igx imd ink lmk mgcb mgmt mt9 mgmx mmat mat otg ovp ovr pcs pfv 
pl plt vrml psid rdl scv sk1 sk2 ssk stn svf svgz sxd tlc tne ufr vbr vec vml vsd 
vsdm vsdx stm vstx wpg vsm xar yal orf ota oti ozb ozj ozt pal pano pap pbm pc1 pc2 
pc3 pcd pdd pe4 pef pfi pgf pgm pi1 pi2 pi3 pic pict pix pjpg pm pmg pni pnm pntg pop 
pp4 pp5 ppm prw psdx pse psp ptg ptx pvr pxr pz3 pza pzp pzs z3d qmg ras rcu rgb rgf 
ric riff rix rle rli rpf rri rsb rsr rw2 rwl s2mv sci sep sfc sfw skm sld sob spa spe 
sph spj spp sr2 srw ste sumo sva save t2b tb0 tbn tfc tg4 thm tjp tm2 tn tpi ufo uga 
vda vff vpe vst wb1 wbc wbd wbm wbmp wbz wdp webp pb wpe wvl x3f ysp zif cdr4 cdr6 
ddoc css pptm raw cpt pcx pdn png psd tga tiff tif xpm ps sai wmf ani fl fb3 fli mng 
smil svg mobi swf html csv xhtm  

How does the encryption work?

7ev3n-HONE$T encrypts files in a loop, one by one. It completely changes their names – but
at the same time it stores the previous name (as we know, files that are decrypted have their
names recovered).

The executable comes with 3 hardcoded strings, that are used in the process of encryption.
Their exact role will be described further.

https://blog.malwarebytes.org/wp-content/uploads/2016/05/hardcoded_keys.png


15/17

Every encrypted file have it’s content prefixed with ‘M’. This character is also checked in
order to distinguish, if the file has been encrypted. If the ‘M’ was found as a first character of
the buffer, the file will not be encrypted:

Authors left a log in the code, leaving no doubt about their intentions, that this character is
used as an indicator of the encrypted file:

Of course such a check is not giving a precise detection and if it happens that we have a file
starting from ‘M’ it will not be encrypted.

This ransomware produce encrypted files by two ways – they can be distinguished by
different extensions: .R4A or .R5A.

After deobfuscation we were able to reconstruct both algorithms and notice, that they are
custom and not employing any strong cryptography.

R4A algorithm turned out to be an XOR with a hardcoded key:

ANOASudgfjfirtj4k504iojm5io5nm59uh5vob5mho5p6gf2u43i5hojg4mf4i05j6g594cn9mjg6h 

R5A algorithm is also XOR-based, but not that simple – It have several execution steps:

1. A hardcoded string is scrambled and expanded to a predefined length (in analyzed
samples it was 0x10C). The algorithm used for scrambling differs from sample to
sample.

https://blog.malwarebytes.org/wp-content/uploads/2016/04/cant_encrypt.png
https://blog.malwarebytes.org/wp-content/uploads/2016/04/cant_enc-1.png


16/17

2. The scrambled key (0x10C byte long)  is XOR-ed with the original file path.
3. The key created in the previous step is used to XOR file content
4. The XORed content is divided to 4 parts, that are processed by 2 different XOR-based

algorithms. First and Third quarter are processed by algorithm I. Second and fourth –
by algorithm II. (That’s why we have seen 4 ‘strips’ on the visualized content).

Full reconstruction of the used algorithms you can see here.

Adding appropriate extension to the file name:

After encrypting the content, some more data is appended to it. At the beginning – the
previously mentioned ‘M’ character – as an indicator that file is encrypted. At the end – a
string “**” –  as a separator after which the encrypted file name of the particular file is stored.

Filename is also encrypted in a very simple way – by XOR with one of the hardcoded keys.

for R4A:

ANOASudgfjfirtj4k504iojm5io5nm59uh5vob5mho5p6gf2u43i5hojg4mf4i05j6g594cn9mjg6h 

for R5A:

https://github.com/hasherezade/malware_analysis/tree/master/7ev3n
https://blog.malwarebytes.org/wp-content/uploads/2016/04/choose_extension-1.png
https://blog.malwarebytes.org/wp-content/uploads/2016/04/added_to_content.png
https://blog.malwarebytes.org/wp-content/uploads/2016/05/encrypting_filename.png


17/17

ASIBVbhciJ5hv6bjyuwetjykok7mbvtbvtiJ5h6jg54ifj0655iJ5hok7mbok7mbvtvtv6bjfib56j45fkmbvt

The encrypted content is saved first to the original file. After that the file is moved under the
new name:

Conclusion

7ev3n ransomware has been around for quite a while, but till now not many details about its
internals have been revealed. It turned out to have pretty unexpected features. Although a lot
has been told about weakness of solutions that are based on custom encryption, there
are still some ransomware authors going for it. That’s why it is worth not making any rushed
decisions in paying the ransom. Sometimes the code is obfuscated and finding out how it
really works takes some time for analysts – but it doesn’t mean that the encryption is really
unbreakable.

Work on the full version of the decryptor is in progress. For now you can see the proof-of-
concept script (tested on this variant):
https://github.com/hasherezade/malware_analysis/tree/master/7ev3n

Appendix

https://blog.malwarebytes.org/wp-content/uploads/2016/04/move_file-1.png
https://www.hybrid-analysis.com/sample/2955d081ed9bca764f5037728125a7487f29925956f3095c58035919d50290b5?environmentId=4
https://github.com/hasherezade/malware_analysis/tree/master/7ev3n

