
1/8

Trojan.GodzillaLoader (alias Godzilla Loader)
kernelmode.info/forum/viewtopic0692.html

Example for "SeChangeNotifyPrivilege" parameter:

Code: Select all

char privilege[] =
{'S','e','C','h','a','n','g','e','N','o','t','i','f','y','P','r','i','v','i','l',e','
g','e',0};

This results in the following disassembly:

string-obfuscation.png (2.47 KiB) Viewed 1001 times
Complete list of deobfuscated strings:
Code: Select all

SeChangeNotifyPrivilege

shell.view

%s\wbem\wmic.exe

process call create "%s"

runas

atl.dll

AtlAxWinInit

AtlAxGetControl

AtlAxWin

%s\%S

open

/c del %s >> NUL

ComSpec

Further, the URL string which gets used to contact the C&C server to obtain the payload is
encrypted with a simple XOR algorithmn. As decryption key, the string "GODZILLA" is used.
In January of 2016, a tiny downloader named Godzilla Loader was advertised in the
Damagelab forum. Despite its small size of 6 KB, this downloader didn't look very special at
first. However, a closer look into a sample showed an interesting downloading method which
I haven't seen before.

In this post, I will discuss some general aspects of this loader and especially the
downloading mechanism.

https://www.kernelmode.info/forum/viewtopic0692.html?f=16&t=4349

2/8

Godzilla Loader
In general, this downloader isn't very widespread probably due to its high price of 750$. I
have found only one example where it was deployed by a JavaScript downloader and in turn
downloaded a Dridex sample:

https://malwr.com/analysis/MDM1M2NiM2Rl ... VlZTEyZGI/

The loader uses a few simple tricks to hide sensitive strings from recognizing them in
plaintext. It obfuscates some function parameters, dynamically loaded API functions and
library names by constructing them byte-by-byte.

Roughly reconstructed decryption algorithm:

Code: Select all

#include <Windows.h>

void Decrypt(char *string)

{

int i, len;

const char key[] = {'G',0,'O',0,'D',0,'Z',0,'I',0,'L',0,'L',0,'A',0,0,0,};

len = lstrlenW(string);

for(i=0; i<len; i++)

{

	 string[i * 2] ^= key[i * 2 % 16];

}

}

void main()

{

unsigned char url[] =
{0x2F,0,0x3B,0,0x30,0,0x2A,0,0x73,0,0x63,0,0x63,0,0x25,0,0x28,0,0x22,0,0x21,0,0x34,0,
0x25,0,0x23,0,0x2D,0,0x25,0,0x22,0,0x3D,0,0x23,0,0x3D,0,0x2E,0,0x62,0,0x25,0,0x2F,0,0
x68,0,0x28,0,0x25,0,0x2E,0,0x2C,0,0x62,0,0x3C,0,0x29,0,0x37,0,0,0};

Decrypt(url);

MessageBoxW(NULL, url, L"Decrypted", MB_OK);

}

Decrypted C&C server URL: http://domenloaderggg.in/gate.php
As you can see in the list of decrypted strings above, the malware also tries to elevate
privileges with the help of WMI console application, already described here.

Downloading mechanism

This malware uses the Component Object Model (COM) to download a Base64 encoded

payload, but not in the usual way with CoInitialize() and CoCreateInstance(). Instead, it

https://malwr.com/analysis/MDM1M2NiM2RlMmQ1NGY3NWJmZTY4OTg0YzVlZTEyZGI/
http://domenloaderggg.in/gate.php
https://www.kernelmode.info/forum/viewtopica381.html?f=16&t=3851#p28028

3/8

makes use of the Active Template Library (ATL), but also not in the way it is intended to be
used. Instead of using the set of template-based C++ classes, it directly uses the API
functions which are normally called under the hood.

This way, it is possible to circumvent the use of CoInitialize/CoCreateInstance function pair,
no Internet Explorer process will be created and also no networking APIs (Wininet, Winsock,
ws2_32, ...) have to to used. This probably results in the bypass of some security solutions.
Let's see how this works in detail.

First, let's take a look at the simplified reconstructed code of the important part of the
malware:

Code: Select all

4/8

#include <Windows.h>

#include <Unknwn.h>

typedef void (WINAPI *pAtlAxGetControl)(_In_ HWND h, _Out_ IUnknown** pp);

typedef BOOL (WINAPI *pAtlAxWinInit)();

IID IWebBrowser2 = {0xD30C1661, 0xCDAF, 0x11D0, {0x8A, 0x3E, 0x00, 0xC0, 0x4F, 0xC9,
0xE2, 0x6E} };

void main()

{

pAtlAxWinInit AtlAxWinInit;

pAtlAxGetControl AtlAxGetControl;

HINSTANCE hATL;

HWND hWnd;

IUnknown *pUnk;

HRESULT res;

LPVOID pBrowser = NULL;

CoInitialize(NULL);

hATL = LoadLibrary("atl.dll");

AtlAxWinInit = (pAtlAxWinInit)GetProcAddress(hATL, "AtlAxWinInit");

AtlAxGetControl = (pAtlAxGetControl)GetProcAddress(hATL, "AtlAxGetControl");

AtlAxWinInit();

hWnd = CreateWindowEx(0, "AtlAxWin", "shell.view", WS_POPUP | WS_DISABLED, 0,
0, 0, 0, NULL, NULL, NULL, NULL);

AtlAxGetControl(hWnd, &pUnk);

res = pUnk->lpVtbl->QueryInterface(pUnk, &IWebBrowser2, &pBrowser);

...

}

Maybe you are now as clueless as I was when I first looked at the disassembly, but let's
dissect the code one by one. At the beginning, the malware calls CoInitialze() to initialise the
COM library. I am not sure if this function call is actually needed, but more on this in the
following chapter.

Next, the function pointers of AtlAxWinInit() and AtlAxGetControl() are obtained. These
functions are part of the Active Template Library (ATL) implementation of Windows. But what
is the ATL?

5/8

The Active Template Library (ATL) is a wrapper library that simplifies COM
development and is used extensively for creating ActiveX controls.

...

ATL provides class templates and other use constructs to simplify creation of COM

objects in C++.

Source: https://msdn.microsoft.com/en-us/library/hh967573.aspx

So, with the help of ATL classes one can create ActiveX controls and COM objects in a
simplified manner in C++. Now, what is an ActiveX control?

ActiveX controls technology rests on a foundation consisting of COM, connectable
objects, compound documents, property pages, OLE automation, object persistence,
and system-provided font and picture objects.

...

A control is essentially a COM object that exposes the IUnknown interface, through

which clients can obtain pointers to its other interfaces.

Source: https://msdn.microsoft.com/en-us/librar ... 10%29.aspx

To sum up, an ActiveX control is a COM object that exposes the IUnknown interface.
However, as the malware isn't written in C++ but rather in plain C (as also stated by the
author), how does it make use of the Active Template Library?

Let's take a look at the description of the API function AtlAxWinInit():

AtlAxWinInit

This function must be called before using the ATL control hosting API. Following a call
to this function, the "AtlAxWin" window class can be used in calls to CreateWindow or
CreateWindowEx, as described in the Windows SDK.

Source: https://msdn.microsoft.com/en-us/library/d5f8cs41.aspx

The description offers a rich set of additional information and also the explanation why the
malware uses the CreateWindowEx() function along with the AtlAxWin window class. It's also
pointed out that there is a ATL control hosting API. This set of functions perform the
underlying functionality of the ATL classes of C++ which can be read in the following two
descriptions:

ATL's control-hosting API is the set of functions that allows any window to act as an
ActiveX control container. These functions can be statically or dynamically linked into
your project since they are available as source code and exposed by ATL90.dll. The
control-hosting functions are listed in the table below.

Source: https://msdn.microsoft.com/en-us/library/bk2e31we.aspx

https://msdn.microsoft.com/en-us/library/hh967573.aspx
https://msdn.microsoft.com/en-us/library/ms693753(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/d5f8cs41.aspx
https://msdn.microsoft.com/en-us/library/bk2e31we.aspx

6/8

The control-hosting API forms the foundation of ATL's support for ActiveX control
containment. However, there is usually little need to call these functions directly if you
take advantage of or make full use of ATL's wrapper classes.

Source: https://msdn.microsoft.com/en-us/library/bk2e31we.aspx

Finally, the question arises what the AtlAxWin class actually is and why it is needed. Here is
an explanation:

"AtlAxWin" is the name of a window class that helps provide ATL's control hosting
functionality. When you create an instance of this class, the window procedure will
automatically use the control hosting API to create a host object associated with the
window and load it with the control that you specify as the title of the window.

Source: https://msdn.microsoft.com/en-us/librar ... 60%29.aspx

After the malware created a window with the AtlAxClass, it calls AtlAxGetControl. The
description of this function is as follows:

AtlAxGetControl

Returns the IUnknown interface pointer of the control hosted in a window.

Source: https://msdn.microsoft.com/en-us/library/bk2e31we.aspx

With the help of the IUnknown interface pointer, one can now work with whatever interface it
want. In case of Godzilla loader, the malware uses the IWebBrowser2, IHTMLDocument3
and IHTMLElement interfaces to download and parse a HTML document which contains the
Base64 encoded payload. It should be noted that the document isn't visible when you
browse the C&C URL, because the content is made invisible inside div elements with style
property style="display:none".
In summary, the malware makes use of the "underlying" ATL API for downloading the
malware payload. The high level equivalent of the described initialisation would be the
following ATL class:

CAxWindow

Wraps an "AtlAxWin80" window, providing methods for creating the window, creating a
control and/or attaching a control to the window, and retrieving interface pointers on the
host object.

Source: https://msdn.microsoft.com/en-us/library/9e501a82.aspx

What happens under the hood?

https://msdn.microsoft.com/en-us/library/bk2e31we.aspx
https://msdn.microsoft.com/en-us/library/aa229401(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/bk2e31we.aspx
https://msdn.microsoft.com/en-us/library/9e501a82.aspx

7/8

I have tried to gain some insights into what's going on behind the scenes, in order to
understand why there is no instance of the Internet Explorer created during the execution.
Additionally, I wanted to check if it is possible to avoid CoInitialize() and also find the reason
if so.
First, let's take a look at the question of why there is no Internet Explorer process created.
Therefore, I have carried out a dynamical analysis and picked out the important parts which
gives a rough picture:

Query CLSID: HKEY_CLASSES_ROOT\CLSID\{8856F961-340A-11D0-A96B-
00C04FD705A2} (Microsoft Web Browser)

-> includes TypeLib {EAB22AC0-30C1-11CF-A7EB-0000C05BAE0B} (Microsoft
Internet Controls)

Query TypeLib: HKEY_CLASSES_ROOT\TypeLib\{EAB22AC0-30C1-11CF-A7EB-
0000C05BAE0B}

-> contains path to ieframe.dll for both versions (x86/64)

ieframe.dll gets loaded

atl.dll gets loaded

stdole2.tlb gets loaded

Query TypeLib: HKEY_CLASSES_ROOT\TypeLib\{44EC0535-400F-11D0-9DCD-
00A0C90391D3} (ATL 2.0 Type Library)

-> contains path to atl.dll for both versions (x86/64)

Query TypeLib: HKEY_CLASSES_ROOT\TypeLib\{00020430-0000-0000-C000-
000000000046} (OLE Automation)

-> contains path to stdole2.tlb for both versions (x86/64)

Query CLSID: HKEY_CLASSES_ROOT\CLSID\{871C5380-42A0-1069-A2EA-
08002B30309D}

->InProcServer32 (contains path to ieframe.dll)

->ShellFolder

Query numerous properties of Internet Explorer and Internet Settings

...

As you can see, various COM class objects and their registry keys are queried. Ultimately,
the InProcServer32 key of the CLSID {871C5380-42A0-1069-A2EA-08002B30309D} gets
queried which holds the path of the Windows DLL ieframe.dll. Internally, the function
CoCreateInstance() with context of CLSCTX_INPROC_SERVER |
CLSCTX_LOCAL_SERVER | CLSCTX_REMOTE_SERVER gets called. This DLL carries
out the networking methods used by the IWebBrowser2 interface. As for the other interfaces

8/8

(IHTMLDocument3, IHTMLElement) probably other system DLLs get loaded into the
malware process.
And finally to the question if CoInitialize() is needed at the beginning of the code. My tests
showed that it isn't needed, since the malware also works perfectly without this function call.
The reason might be that the function is internally called by CreateWindowEx() which
somewhere calls OleInitialize() that in turn calls CoInitializeEx() for which CoInitialize() is just
a wrapper.

