
1/36

Andromeda under the microscope
blog.avast.com/andromeda-under-the-microscope

 Threat Intelligence Team 6 Apr 2016

Andromeda is one of the longest running and most prevalent malware families to have
existed.

Andromeda is one of the longest running and most prevalent
malware families to have existed. Andromeda was first discovered in
late 2011 and it probably evolved from ngrBot/DorkBot. Throughout
its existence, the groups behind Andromeda have used various
methods to spread the malware and infect users.

We have seen Andromeda spread via spam email campaigns with infected files attached
(doc, xls, pdf, zip.), through illegal download sites, warez (infected cracks, keygens, ..), or
infecting users via other phishing campaigns.

Infection vector

https://blog.avast.com/andromeda-under-the-microscope
https://blog.avast.com/author/threat-intelligence-team
https://blog.avast.com/author/threat-intelligence-team
https://en.wikipedia.org/wiki/Warez

2/36

In recent months, the authors have mainly focused on spreading Andromeda via exploit kits
(Neutrino, Nuclear, Angler,..) located on compromised websites or advertisement services.
These exploit kits are mainly found on a dubious sites (p0rn, warez, video streaming sites,
share sites etc.) but occasionally appear on trusted sites as well.

Andromeda binary files are almost always stored on hacked websites, but we have also
discovered files hosted on a few dedicated servers that only host malware. Not only have we
seen Andromeda appear on hacked websites, but we have also seen its plugins being
distributed on SourceForge.net, a repository that hosts 7zip, VLC player, OpenOffice,
FileZilla and other popular open source projects.

Andromeda’s core anatomy

This analysis covers the latest variant of Andromeda samples, which began spreading since
the beginning of this year. The authors have not made many changes to Andromeda’s core
binary file, but they are constantly changing the PE packer/obfuscator in the top most layer.
Andromeda uses various PE packers of different quality to avoid AV detections. Some
packers also contain other anti-vm/emul/debug tricks. We’ve seen a packer very similar to
Zbot (based on its source code), obfuscated Visual Basic and .NET binaries and even a few
custom packers reminiscent of Dridex included in the Andromeda variant.

Andromeda’s authors put a lot of effort into diversifying their portfolio of infection droppers
and to disable, or at least complicate the sample submission and exchange between AV
companies and their regular process used to scan and thoroughly analyze files. To achieve
this, they update the custom packers daily and as a bonus, they bloat the binaries with more
than 70 MB of garbage. This strategy can either significantly prolong the sample upload (on

3/36

a slow connection) or cause an overflow of scan/submit limits of some antivirus scanning
engines (or online scanning services respectively). On the other hand, this trick is suspicious
and it can help to heuristically detect the file.

Zbot-like packer in detail

Andromeda’s top-layer packer is interesting and deserves a closer look. The packer is very
similar to that of Zbot, based on the source code. The encrypted payload is stored inside the
“.rsrc” section as the “raw data”.

The Andromeda payload is twice encrypted with custom encryption and compressed by the
RtlCompressBuffer API function with LZ compression (0x002 -
COMPRESSION_FORMAT_LZNT1). The custom encryption uses random seed values and
generic obfuscation with lots of SMC (self-modificated code) and junk instructions.

First payload custom encryption:

4/36

Second encryption:

5/36

The decrypted data is then ready for a decompression via the significant
RtlDecompressBuffer API function.

Payload Loader

Under all of the obfuscated layers, we found a typical Andromeda payload loader binary. The
entire loader is very minimalistic (~20kB) and includes the final malware payload in
compressed (Aplib) and encrypted (RC4) form and hardcoded config structure.

Loader config structure

The structure is hardcoded right before the encrypted payload that is 0x28h (40) bytes long
and it contains seven values:

6/36

RC4 key for payload decryption (first 16 bytes).
Payload size (dword).
Payload CRC32 hash (dword).
Heap allocation size for decompressed payload data (dword).
Entry point of decompressed payload (dword).
Pointer to decompressed payload data section (dword).
Size of decompressed payload data section (dword). This value is unused by loader.

Entire config structure is located at the beginning of “.rdata” section (VA offset:
0x00402000h).

Loader API hashes

It’s interesting that Andromeda’s loader binary has no imports (in PE directories). The
payload loader uses only the ntdll.dll library and all imported API functions are hardcoded as
custom hash values.

The malware obtains a handle of the ntdll.dll library via a PEB_LDR_DATA (contains the
base address of ntdll and kernel32) trick, well known from many shellcodes:

Hashing algorithm is trivial and combines XOR and ROL operations over API names (ASCII).

All API hashes are stored at the beginning of “.text” section (VA offset 0x00401000h) as
DWORD values.

7/36

loader_api_hashes.png

The authors seem to be very experienced native subsystem and low-level programmers and
have deep knowledge of the AV detection methods. This malware uses very uncommon API
functions in low-level form (Nt/Rtl), which is probably used to avoid standard API
monitors/tracers, sandboxes and other dynamic analysis tools with predefined API lists or
well known API combinations patterns.

List of all hashes and resolved API functions:

Hash value API function

0AB48C65 LdrLoadDll

8/36

DE604C6A RtlDosPathNameToNtPathName_U

925F5D71 RtlFreeAnsiString

EFD32EF6 LdrProcessRelocationBlock

B8E06C7D RtlComputeCrc32

831D0FAA RtlExitUserThread

A62BF608 NtSetInformationProcess

102DE0D9 NtAllocateVirtualMemory

7CD8E53D NtFreeVirtualMemory

6815415A NtOpenFile

E7F9919F NtQueryDirectoryFile

64C4ACE4 NtClose

028C54D3 memcpy

82D84ED3 memset

Payload encryption & compression

The final Andromeda payload is compressed with Aplib and encrypted with RC4 stream
cipher. The encrypted payload is verified with a hardcoded CRC32 hash and proceeds to
decryption if this check passes.

RC4 decryption followed by Aplib decompression:

9/36

Final payload fixups

Once the payload is decrypted and unpacked, it’s necessary to relocate it to its new base
address, because it is not a position independent code. This is done through another
uncommon API call - LdrProcessRelocationBlock - which is a function used only internally by
the system to relocate loaded PE modules.

The API function takes a pointer to a relocation record and information about the old and
new base address. First relocation record is stored at the beginning of payload data section.

10/36

After processing each relocation record, the LdrProcessRelocationBlock function returns a
pointer to the next record. This makes it possible to traverse to the end of relocations (there’s
a terminating null, which signals that there’s nothing else to process).

The last step in the loader part is the API function preparation for the final Andromeda
payload. All API functions are represented by the same custom hash form (XOR+ROL)
described earlier.

There is also a little config structure located right after the relocation records. The first value
of this structure is a custom hash (DWORD) of the DLL file name. The second value is offset
to the final payload (DWORD), where resolved API functions will be stored. The custom
hashes (DWORD) of API functions from DLL terminated with 0x0000h are also stored.

The algorithm for resolving the DLL file name from the hash is similar to resolving API
hashes, but it also contains lower-case transformation.

11/36

The loader uses a very uncommon method to search and load resolved DLL files. All steps
are made through low-level API and the authors use the same method with PEB_LDR_DATA
structure as described above. The loader uses returned UNICODE string from the
FullDllName value this time.

This unicode string with the full DLL path is used as an argument for the
RtlDosPathNameToNtPathName_U API function, which transforms the unicode file path
string into following unicode format:

“\??\C:\WINDOWS\system32\ntdll.dll"

This string is used to extract the fully qualified path and the “*.dll” file mask and pass them to
the NtQueryDirectoryFile API function, which then enumerates libraries in the system
directory. Each library name is hashed and compared with stored custom hashes. If the
hashes are equal, the DLL file is directly loaded via the LdrLoadDll API function and the
loader continues to resolve API function names from hard-coded hashes.

Finally, the loader writes all the resolved function pointers to the payload. The payload itself
uses a more sophisticated API redirection method, which first copies an instruction from the
particular API function to the final payload, then executes it and redirects back to the original
API function’s second instruction. This technique is known as stolen bytes. The authors use
JMP instructions 0xEB and 0xE9 for this trick.

12/36

Example of the API redirection:

These mangled calls of API functions made our analysis harder, because the debugger
cannot correctly identify/resolve the names of the API functions when they are called this
way.

List of all used API functions inside final payload:

13/36

ntdll.dll isdigit, memcpy, memset, NtDelayExecution, NtMapViewOfSection,
NtQueryInformationProcess, NtQuerySection, NtUnmapViewOfSection,
pow, RtlComputeCrc32, RtlImageHeader, RtlRandom, RtlWalkHeap,
_allmul, _alloca_probe

ws2_32.dll closesocket, connect, FreeAddrInfoW, getaddrinfo, getsockname, htonl,
ioctlsocket, recv, sendto, socket, WSACloseEvent, WSACreateEvent,
WSAEventSelect, WSAStartup

kernel32.dll CloseHandle, CopyFileW, CreateEventW, CreateFileMappingA,
CreateFileW, CreateProcessW, CreateThread, CreateToolhelp32Snapshot,
DeleteFileW, ExitProcess, ExitThread, ExpandEnvironmentStringsW,
FlushInstructionCache, FreeLibrary, GetCurrentProcess,
GetEnvironmentVariableW, GetFileTime, GetModuleFileNameW,
GetModuleHandleA, GetModuleHandleW, GetProcAddress,
GetProcessHeap, GetSystemTimeAsFileTime, GetThreadContext,
GetTickCount, GetVersionExW, GetVolumeInformationW,
GetWindowsDirectoryW, GlobalAlloc, GlobalFree, GlobalLock,
GlobalReAlloc, GlobalSize, GlobalUnlock, HeapDestroy, LoadLibraryA,
LoadLibraryW, LocalFree, lstrcatW, lstrcmpiW, lstrcpy, lstrcpyW, lstrlen,
lstrlenW, MapViewOfFile, Module32FirstW, Module32NextW, MoveFileExW,
MultiByteToWideChar, NTDLL.RtlAllocateHeap, NTDLL.RtlFreeHeap,
NTDLL.RtlGetLastWin32Error, NTDLL.RtlSizeHeap, OpenEvenW,
Process32First, Process32Next, QueueUserAPC, ResumeThread,
SetEnvironmentVariableW, SetErrorMode, SetEvent, SetFileAttributesW,
SetFileTime, Sleep, TerminateProcess, UnmapViewOfFile, VirtualAlloc,
VirtualFree, VirtualProtect, WaitForSingleObject, WriteFile

advapi32.dll AdjustTokenPrivileges, CheckTockenMembership,
ConvertStringSecurityDescriptorToSecurityDescriptorA,
ConvertStringSidToSidA, GetSidSubAuthority, GetSidSubAuthorityCount,
GetTokenInformation, LookupPrivilegeValueA, OpenProcessToken,
RedEnumValueW, RegCloseKey, RegCreateKeyExW, RegDeleteValueW,
RegFlushKey, RegOpenKeyExW, RegQueryValueExW, RegSetKeySecurity,
RegSetValueExW

user32.dll FindWindowA, GetKeyboardLayoutList, mouse_event, SendMessageA,
wsprintfA, wsprintfW

shell32.dll ShellExecuteExW

ole32.dll CoInitialize, CreateStreamOnHGlobal

14/36

winhttp.dll WinHttpCloseHandle, WinHttpConnect, WinHttpCrackUrl, WinHttpOpen,
WinHttpOpenRequest, WinHttpQueryHeaders, WinHttpReadData,
WinHttpRecieveResponse, WinHttpSendRequest, WinHttpSetOption

dnsapi.dll DnsExtractRecordsFromMessage_W, DnsFree,
DnsWriteQuestionToBuffer_W

shlwapi.dll PathFindFileNameW, PathQuoteSpacesW, PathRemoveBackslashW,
PathRemoveFileSpecsW, StrChrW, StrRChrW, StrToIntW

 As you can see, the authors use many uncommon or undocumented API functions.

There are some special cases matched by RegEx, where the authors use NTDLL.Rtl
functions from the kernel32.dll library and the Andromeda loader had to load the ntdll.dll
again and use proper pointers for the Rtl API functions.

After resolving all hard-coded DLLs and API functions, the loader continues to final payload
Entry Point.

Final Andromeda payload

Although the final payload is very small (~24 kb), the code is very complex and sophisticated.
The authors, again, use a variety of anti-emul and anti-vm tricks.

15/36

At the very beginning, Andromeda disables Windows error notifications via the SetErrorMode
API function with 0x8007h parameter, which means SEM_FAILCRITICALERRORS,
SEM_NOALIGNMENTFAULTEXCEPT, SEM_NOGPFAULTERRORBOX,
SEM_NOOPENFILEERRORBOX.

Anti-VirtualMachine protection

Andromeda uses a simple and well-known anti-vm trick that compares the names of running
processes with a “black list” of prohibited process names stored as CRC32 hashes.

List of forbidden process names:

99DD4432 vmwareuser.exe

2D859DB4 vmwareservice.exe

64340DCE vboxservice.exe

63C54474 vboxtray.exe

349C9C8B sandboxiedcomlaunch.exe

3446EBCE sandboxierpcss.exe

5BA9B1FE procmon.exe

3CE2BEF3 regmon.exe

3D46F02B filemon.exe

16/36

77AE10F7 wireshark.exe

0F344E95D netmon.exe

2DBE6D6F prl_tools_service.exe

0A3D10244 prl_tools.exe

1D72ED91 prl_cc.exe

96936BBE sharedintapp.exe

278CDF58 vmtoolsd.exe

3BFFF885 vmsrvc.exe

6D3323D9 vmusrvc.exe

0D2EFC6C4 python.exe

0DE1BACD2 perl.exe

3044F7D4 avpui.exe

This procedure is implemented through the classic API functions, CreateToolhelp32Snapshot
and Process32First / Process32Next. If the malware reveals a forbidden running process,
the execution flow ends in an infinite loop.

17/36

An interesting feature is the possibility of creating a special key in the registry, which allows
Andromeda to infect the system even with a running blacklisted processes.

The process blacklisting functionality is ignored when “is_not_vm” key is present inside the
"HKEY_LOCAL_MACHINE \ SOFTWARE \ Policies" registry and when the proper UserID
(DWORD) is set.

Persistence

The techniques to persist the infection and to camouflage the Andromeda PE binary among
regular system binaries are well designed. All communication goes through an injected
system application - msiexec.exe, which is a part of the standard Windows Installer.

Andromeda copies itself to the %ALLUSERPROFILE% folder and renames the binary to "ms
{random [az] {5}}.exe” where the UserID is used as a seed for the RtlRandom API function.

18/36

Later, the resulting file’s attributes are set to “FILE_ATTRIBUTE_HIDDEN” and
“FILE_ATTRIBUTE_SYSTEM” (+h +s) and the file time is set to the file time obtained from
the original msiexec.exe file. The well known functions - GetFileTime and SetFileTime are
used.

Another trick used by the authors is deleting the NTFS stream bound to the file. They call the
DeleteFile API to remove the :Zone.Identifier flag from the newly created ms*.exe file (to
bypass the “File Downloaded from the Internet” warning).

zoneidentifier.png
 In the next step, Andromeda prevents the displaying of hidden files via the registry key

"Software\Microsoft\Windows\CurrentVersion\Explorer\Advanced" and sets proper “Hidden”
and “ShowSuperHidden” values.

Finally, Andromeda creates a new value (UserID) inside the
“Software\Microsoft\Windows\CurrentVersion\Policies\Explorer\Run” registry key and sets
the path to the previously created “ms*.exe” file. After that, it protects the value by changing
the permissions through Security Descriptors. Andromeda tries to avoid modifications or
deleting of this value, however, modern AV engines are able to bypass this restriction.

19/36

Injection of msiexec.exe and system API function hooks

The entire final payload is injected to a newly created msiexec.exe process and activated via
the ResumeThread API function. The original payload process is terminated after a new
thread activation and the malware only continues from the injected msiexec.exe process.

20/36

Andromeda also injects ntdll.dll and ws2_32.dll system libraries. Inside ntdll.dll Andromeda
hooks the NtMapViewOfSection API function and replaces it with a jump to payload, and
 also hooks the GetAddrInfoW API function inside the ws2_32.dll library.

Both API hooks are resolved inside the payload and then jump to the affected API functions
after being replaced by jmp instructions.

Part of the resolved code for the GetAddrInfoW API function by payload:

21/36

Language exclusions

Another interesting feature is the detection of keyboard layout settings. If Andromeda detects
the Russian, Ukrainian, Belarusian or Kazakh keyboard, it sets a special flag that disables
the infection, persistence, NTP traffic and injection of ntdll and ws2_32 libraries.

22/36

The malware is also completely removed from the infected machine if it detects one of these
keyboard layouts.

NTP traffic

Andromeda uses hardcoded NTP (Network Time Protocol) domains to obtain the current
time, which is received by the “Transmit Timestamp”, if this connection isn’t successful the
current time is obtained from infected computer.

The hardcoded NTP domains are africa.pool.ntp.org, asia.pool.ntp.org, europe.pool.ntp.org,
oceania.pool.ntp.org and pool.ntp.org as the last attempt if the other domains fail. NTP traffic
uses port 123.

The malware verifies if the size of the received data is 0x30h (48) bytes and first parses
DWORD from the “Transmit Timestamp” value.

23/36

This value is increased by 0x7C558180h and the result is used as an argument of the
“aStart” function exported by a plugin.

24/36

If all connections to the NTP domains fail, an argument for the aStart function is computed by
the payload via the following algorithm based on the result of the GetSystemTimeAsFileTime
API function, instead of the Transmit Timestamp value from the NTP request.

The “compute_aStart_arg” function algorithm:

Obtain local IP via sockaddr struct

Andromeda uses a very uncommon method to obtain local IP addresses of infected
machines.

https://www.avast.com/c-how-to-find-ip-address

25/36

The malware tries to connect various legal servers on port 80 with a crafted socket and
obtain the infected machine’s IP address from the sockaddr structure via the getsockname
API function.

The resolved value is used as “la” parameter for C&C requests.

List of domains that Andromeda tries to connect to in the following
order: update.microsoft.com, microsoft.com, bing.com, google.com, yahoo.com

C&C communication

All communication is RC4 encrypted and uses HTTP/1.1 in the raw data format “Content-
Type: application/octet-stream” with predefined “Mozilla/4.0” User-Agent.

Andromeda contains a hard-coded RC4 key, which is used for C&C server communication,
for the downloaded plugin decryption and also for decrypting hard-coded C&C URLs where
the key is used backwards.

All values are hardcoded to a structure located in the beginning of payload data. The first
value is BID (Botnet/BuildID), which is also used as a parameter for C&C requests. RC4 key
is hard-coded between random junk data and is followed by encrypted C&C URLs. The first
byte of each encrypted URL is the length of data and it is used as a pointer to the next
encrypted URL. Zero byte indicates the end of an encrypted URL data block.

26/36

C&C JSON requests

Andromeda uses JSON format for all communication with C&C servers encrypted with RC4.

The malware includes two types of JSON requests and one command object.

Infection report / Ask for action request

{"id":%lu,"bid":%lu,"os":%lu,"la":%lu,"rg":%lu}

JSON
item

Name Info

id User ID Computed from VolumeSerialNumber of infected machine
HDD.

bid Botnet/Build ID Hard-coded inside Andromeda payload.

27/36

os OS version Version of current operating system.

la Local IP address Obtained from sockaddr structure.

rg Administrator
rights

Set 1 if malware process runs under an administrator
account.

Live example:

{"id":1839815145,"bid":8384538,"os":65889,"la":168732589,"rg":0}

Received command object from C&C server

[sleep_before_request, {unused_object}, [TaskID, RequestType, URL,..]..]

Object item Info

sleep_before_request Sleep time in minutes before send next request to the C&C server,
the most common value is 60.

{unused_object} When this object is found, it is skipped. The most common value
is {“klt:0”}.

TaskID ID of a task provided by the C&C server. This ID is send back to
server with status/error report request.

RequestType Identifier of the task type (update plugin, download exe, install
plugin, delete bot)

URL URL for downloading plugin or other malware.

Live example of a command to download Andromeda plugins:

[60,{"klt":0},[15,2,"http:\/\/netcologne.dl.sourceforge.net\/project\/googlecodefork\/g11.pack"]]

Task report request

28/36

{“id”:%lu, “tid”:%lu, “err”:%lu, “w32”:%lu}

JSON
item

Name Info

id User ID Computed from VolumeSerialNumber of infected machine
HDD.

tid TaskID ID of task provided by the C&C server.

err Error Set 0 if task is successfully completed.

w32 System error
code

Obtained from RtlGetLastWin32Error API function.

Live example:

{"id":1839815145,"tid":15,"err":0,"w32":127}

C&C servers

The Andromeda payload uses two domains as C&C servers for a very long time period and
requests are sent via POST method.

Server one:

hxxp://disorderstatus.ru/order.php

Server two:

hxxp://differentia.ru/diff.php

Both domains are connected to multiple DNS servers located throughout the world.

Below is the differentia.ru DNS graph up to the April 2016 hosted on pointhq.com servers:

29/36

The above map shows where the servers are located.

List of “A” IP domain records:

IP Hosted by Location

46.4.114.61 Hetzner Online GmbH Germany

95.213.192.71 Selectel Net Russian Federation

176.9.48.86 Hetzner Online GmbH Germany

The below shows a DNS graph of the differentia.ru domain hosted on Hurricane Electric
servers, where the authors currenlty moved the entire network infrastructure.

30/36

Complete current DNS record of differentia.ru:

NS ns1.he.net 216.218.130.2 United States CA Fremont Hurricane Electric
HURRICANE-1

SOA ns1.he.net 216.218.130.2

NS ns2.he.net 216.218.131.2

31/36

NS ns3.he.net 216.218.132.2

NS ns4.he.net 216.66.1.2 United States CA Fremont Hurricane Electric
HURRICANE-6

NS ns5.he.net 216.66.80.18

A 95.213.186.51 Russian Federation SELECTEL-NET SELECTEL
OOO "Network of data-centers "S RU-
SELECTEL-20090812

A 176.9.174.220 Germany HETZNER-RZ-FKS-BLK4 HETZNER-
AS Hetzner Online GmbH DE-HETZNER-
20110517

Statistics of blocked differentia.ru domain:

32/36

Downloaded plugins includes other C&C server domains:

atomictrivia.ru, designthefuture.ru, gvaq70s7he.ru, getuptateserv.eu,..

Andromeda Plugins

This malware is modular and Andromeda offers several plugins like Keylogger, Browser
Formgrabber, Rootkit, Hidden TeamViewer remote control, etc. We are preparing a detailed
analysis of the all modules which we will publish at a later date.

The plugins are hosted and downloaded from the Source Forge repository.

33/36

The authors recently updated the plugin files, repacked binaries with PE packers and
changed their file names. This Source Forge project was registered on 2015-05-16 under
“dofeedthetrolls” username.

Plugin encryption

The plugin binaries are twice encrypted with RC4 encryption and compressed by Aplib. Each
plugin contains 43 bytes of config header, with a hard-coded RC4 key, CRC32 hashes and
data length values for validation and a parameter for the case the plugin is stored in the
registry.

Encrypted plugin header:

Decrypted plugin header:

34/36

Decrypting the plugin is a bit tricky:

1. Decrypt header (43 bytes) with a RC4 encryption key from the Andromeda payload
(used for C&C communication).

2. The first DWORD value is the XOR key to decrypt the config header values.
3. The first 16 bytes are the RC4 key to decrypt the plugin.
4. Decompress (Aplib) decrypted data.

Plugin persistence

Downloaded plugins are stored in the registry and in the %TEMP% directory under two file
names.

The first file name is saved in the following format: %TEMP%\KB{GetTickCount}.exe

35/36

The second file name is %TEMP%\cdo*.dll

36/36

The Andromeda payload also searches for three plugin exports aStart, aUpdate and aReport
via the GetProcAddress API function.

Conclusion

Andromeda malware has very long history. It’s one of the most prevalent malware families
and nothing indicates that it will disappear anytime soon. The authors are skilled
programmers and operators, recently updating plugins, maintaining entire systems and
looking for new infected domains with Exploit Kits. Analyzing Andromeda's very complex
ecosystem is a challenging task, but we're investigating it further. Stay tuned for the next blog
post!

