Petya – Taking Ransomware To The Low Level

blog.malwarebytes.com/threat-analysis/2016/04/petya-ransomware/

Malwarebytes Labs

April 1, 2016

Petya is different from the other popular <u>ransomware</u> these days. Instead of encrypting files one by one, it denies access to the full system by attacking low-level structures on the disk. This ransomware's authors have not only created their own <u>boot loader</u> but also a tiny kernel, which is 32 sectors long.

Petya's dropper writes the malicious code at the beginning of the disk. The affected system's <u>master boot record (MBR)</u> is overwritten by the custom boot loader that loads a tiny malicious kernel. Then, this kernel proceeds with further encryption. Petya's ransom note states that it encrypts the full disk, but this is not true. Instead, it encrypts the <u>master file table</u> (<u>MFT</u>) so that the file system is not readable.

[UPDATE] READ ABOUT THE LATEST VERSION: GOLDENEYE

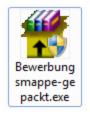
PREVENTION TIP: Petya is most dangerous in Stage 2 of the infection, which starts when the affected system is being rebooted after the BSOD caused by the dropper. In order to prevent your computer from going automatically to this stage, turn off *automatic restart after a system failure* (see how to do this).

If you detect Petya in Stage 1, your data can still be recovered. More information about it is [here] and in this article.

UPDATE: 8-th April 2016 Petya at Stage 2 has been cracked by <u>leo-stone</u>. Read more: <u>https://petya-pay-no-ransom.herokuapp.com/</u> and <u>https://github.com/leo-stone/hack-petya</u>. Tutorial helping in disk recovery is <u>here</u>.

Analyzed samples

Main executable from another campaign (PDF icon)

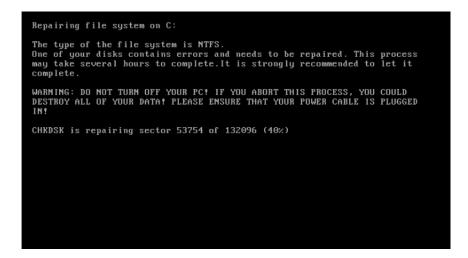

```
a92f13f3a1b3b39833d3cc336301b713
```

Special thanks to: <u>Florian Roth</u> – for sharing the samples, <u>Petr Beneš</u> – for<u>a constructive</u> <u>discussion</u> on Twitter.

Behavioral analysis

This ransomware is delivered via scam emails themed as a job application. E-mail comes with a Dropbox link, where the malicious ZIP is hosted. This initial ZIP contains two elements:

- a photo of a young man, purporting to be an applicant (in fact it is a publicly available stock image)
- an executable, pretending to be a CV in a self-extracting archive or in PDF (in fact it is a malicious dropper in the form of a 32bit PE file):



In order to execute its harmful features, it needs to run with Administrator privileges. However, it doesn't even try to deploy any <u>user account control (UAC)</u> bypass technique. It relies fully on social engineering.

When we try to run it, UAC pops up this alert:

😗 Use	r Account Control											
0	Do you want to allow the following program from an unknown publisher to make changes to this computer?											
	Program name: Bewerbungsmappe-gepackt.exe Publisher: Unknown File origin: Hard drive on this computer											
🕑 s	how details	Yes No										
		Change when these notifications appear										

After deploying the application, the system crashes. When it restarts, we see the following screen, which is an imitation of a <u>CHKDSK</u> scan:

In reality, the malicious kernel is already encrypting. When it finishes, the affected user encounters this blinking screen with an ASCII art:

Pressing a key leads to the main screen with the ransom note and all information necessary to reach the Web panel and proceed with the payment:

You became victim of the PETYA RANSOMWARE!
The harddisks of your computer have been encrypted with an military grade encryption algorithm. There is no way to restore your data without a special key. You can purchase this key on the darknet page shown in step 2.
To purchase your key and restore your data, please follow these three easy steps:
 Download the Tor Browser at "https://www.torproject.org/". If you need help, please google for "access onion page". Visit one of the following pages with the Tor Browser:
http://petya37h5tbhyvki.onion/MvnHqz http://petya5koahtsf?sv.onion/MvnHqz
3. Enter your personal decryption code there:
af Mf5Z-C83M2q-Nv9uR1-g9GZXY-a4iU47-c5R4iT-xR1WZk-nX4HmW-rnc1Kg-HMekdy- W8WDRr-rXz6TZ-jo69HJ-pre5Ry-Myg9rt
If you already purchased your key, please enter it below.
Key: _

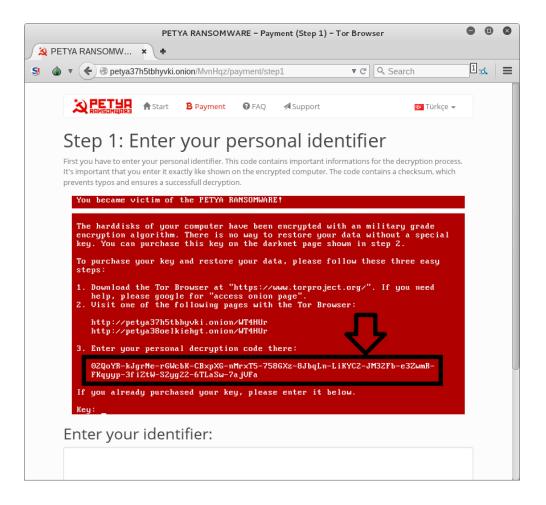
Infection stages

This ransomware have two infection stages.

The first is executed by the dropper (Windows executable file). It overwrites the beginning of the disk (including MBR) and makes an XOR encrypted backup of the original data. This stage ends with an intentional execution of <u>BSOD</u>. Saving data at this point is relatively easy, because only the beginning of the attacked disk is overwritten. The file system is not destroyed, and we can still mount this disk and use its content. That's why, if you suspect that you have this ransomware, the first thing we recommend is to not reboot the system. Instead, make a disk dump. Eventually you can, at this stage, mount this disk to another operating system and make the file backup. *See also: <u>Petya key decoder</u>.*

The second stage is executed by the fake CHKDSK scan. After this, the file system is destroyed and cannot be read.

However, it is not true that the full disk is encrypted. If we view it by forensic tools, we can see many valid elements, including strings.


```
02BBAD30 04 00 00 00 01 00 00 00 7B 36 44 46 44 37 43 35
                                                    .....{6DFD7C5
02BBAD40 43 2D 32 34 35 31 2D 31 31 64 33 2D 41 32 39 39 C-2451-11d3-A299
02BBAD50 2D 30 30 43 30 34 46 38 45 46 36 41 46 7D 00 00 -00C04F8EF6AF} ..
02BBAD70 D8 FF FF FF 76 6B 10 00 04 00 00 80 00 00 00 00 Ř…vk....€....
                                                     .....qŰShutdown
02BBAD80 04 00 00 00 01 00 71 DB 53 68 75 74 64 6F 77 6E
                                                     ReasonUIr<sup>°°</sup>vk..
        52 65 61 73 6F 6E 55 49 E0 FF FF FF 76 6B 08 00
02BBAD90
02BBADA0 12 00 00 00 B8 03 7C 00 01 00 00 00 01 00 00 00
                                                     .....
02BBADB0 30 30 30 30 33 43 30 41 E8 FF FF FF 2A 00 32 00
                                                    00003C0Ač'''*.2.
02BBADC0 35 00 30 00 2C 00 31 00 36 00 39 00 00 00 00 00
                                                    5.0.,.1.6.9....
02BBADD0 E0 FF FF FF 76 6B 08 00 12 00 00 00 F0 03 7C 00
                                                    ŕ vk....đ.|.
02BBADE0 01 00 00 00 01 00 01 00 30 30 30 34 30 30 31
                                                    02BBADF0 E8 FF FF FF FF 2A 00 32 00 35 00 30 00 2C 00 31 00 č<sup>....</sup>*.2.5.0.,.1.
02BBAE00 38 00 36 00 00 00 01 00 80 FE FF FF D8 D6 7B 00 8.6....€t. ŘÖ{.
                                                                       Sector 89559
```

Website for the victim

We noted that the website for the victim is well prepared and very informative. The menu offers several language versions, but so far only English works:

It also provides a step-by-step process on how affected users can recover their data:

- Step1: Enter your personal identifier
- Step2: Purchase Bitcoins
- Step3: Do a Bitcoin transaction
- Step4: Wait for confirmation

We expect that cybercriminals release as little information about themselves as possible. But in this case, the authors and/or distributors are very open, sharing the team name—"Janus Cybercrime Solutions"—and the project release date—12th December 2015. Also, they offer a news feed with updates, including press references about them:

News

24.03.2015 WARNING

Do not restore the MBR with the Windows Recovery Tools. This could destroy your data completly!

There are a lot of wrong informations online. If you are looking for reliable informations, please visit https://blog.gdata.de /2016/03/28222-ransomware-petya-verschlusselt-die-festplatte

In case of questions or problems, it is also possible to contact them via a Web form.

Inside

Stage 1

As we have stated earlier, the first stage of execution is in the Windows executable. It is packed in a good quality <u>FUD/cryptor</u> that's why we cannot see the malicious code at first. Executions starts in a layer that is harmless and used only for the purpose of deception and protecting the payload. The real malicious functionality is inside the payload dynamically unpacked to the memory.

Below you can see the memory of the running process. The code belonging to the original EXE is marked red. The unpacked malicious code is marked blue:

00200000 00003000			Priv	R₩	RW
00210000 00012000			Priv		RWE
00230000 00003000			Priv	R₩	RW
00240000 00011000			Map	R	R I
00280000 00029000			Priv	RW	RW
00400000 00001000 Petya		PE header	Imag	??? Gula:	RWE
00401000 00027000 Petya	.text	code	Imag	??? Gula:	RWE
00428000 0000D000 Petya	.rdata	imports	Imag	??? Gula:	RWE
00435000 00005000 Petya	.data	data	Imag	??? Gula:	RWE
0043A000 00002000 Petya	.rsrc	resources	Imag	??? Gula:	RWE
0043C000 00003000 Petya	.reloc	relocations	Imag	??? Gula:	RWE

The unpacked content is another PE file:

D Dump - 0021000	000221FFF	
00210000 4D 5A 90 00210020 4D 5A 90 00210020 00 00 00 00210030 00 00 00 00210030 6D 6F 5A 00210050 69 73 20 00210050 6P 73 20 00210050 6P 64 00210050 AS 8E 53 00210070 6D 6F 64 00210070 6D 67 85 00210070 6D 67 85 00210000 6D 67 85 00210000 6D 67 85 000000000000000000000000000000000000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00 MZE. ● ● ▲ 00 S @ ▲ 00 S @ ▲ 00 A ↓ A = t S0L= t Th 6F is program canno 20 t be run in DOS 00 mode S FE aAXsp16=p16=p16= FE ASa=016=p16=p16= FE j2i=016=j2i=016= FE j2i=016=j2i=016= FE j2i=016=j2i=016= 90 Richp16=
002100E0 00 40 00 00210100 00 34 00 00210100 00 34 00 00210120 05 00 01 00210120 05 00 01 00210120 05 00 01	00 E0 00 02 21 0B 01 0C 00 00 84 00 00 00 00 00 00 D0 90 00 00 00 10 00 00 00 00 00 10 00 10 00 00 00 00 02 00	00 - 4

However, if we try to dump it, we don't get a valid executable. Its data directories are destroyed. The PE file have been processed by the cryptor in order to be loaded in a continuous space, not divided by sections. It lost the ability to run independently, without being loaded by the cryptor's stub. Addresses saved as RVA are in reality raw addresses.

I have remapped them using a custom tool, and it revealed more information, i.e. the name of this PE file is *Setup.dll*:

Offset	Name		Va	lue	Me	aning					
A7E0	Characteristics		0	0							
A7E4	TimeDateStam	р	56	56F2F77D							
A7E8	MajorVersion		0								
A7EA	MinorVersion		0								
A7EC	Name		FE	12	Set	tup.dll					
A7F0	Base		1								
A7F4	NumberOfFunc	tions	1								
A7F8	NumberOfNam	es	1								
A7FC	AddressOfFunc	tions	FE08								
A800	AddressOfNam	es	FEOC								
A804	AddressOfNam	eOrdinals	FE10								
Details											
Offset	Ordinal	Function R	VA	VA Name RVA		Name					
A808	1	1DC0	FE1C			_ZuWQdweafdsg345312@0					

UPDATE: if we catch the process of unpacking in correct moment, we can dump the DLL before it is destroyed. The resulting payload is: <u>7899d6090efae964024e11f6586a69ce</u>

As the name suggest, the role of the payload is to setup everything for the next stage. First, it generates a unique key that will be used for further encryption. This key must be also known to attackers. That's why it is encrypted by ECC and displayed to the victim as a personal

identifier, that must be send to attackers via personalized page.

Random values are retrieved by Windows Crypto API function: <u>CryptGenRandom</u>. Below, it gets 128 random bytes:

003D5F41 PUSH EDI	
003D5F42 MOV EDI,DWORD PTR SS:[EBP+14] 003D5F45 LEA EAX,DWORD PTR SS:[EBP+14]	
003D5F45 LEH EHX,000RD PTR 55:LEBP+14] 003D5F48 PUSH F0000000	
003D5F40 PUSH 1	
003D5F4D PUSH 1 003D5F4F XOR EBX,EBX	
003D5F51 PUSH EBX	
003D5F51 PUSH EBX 003D5F52 PUSH EBX	
003D5F53 PUSH EAX	
003D5F54 MOV DWORD PTR DS:[EDI].EBX	
003D5F54 MOU DWORD PTR DS:[EDI],EBX 003D5F56 CALL DWORD PTR DS:[3DA00C]	ADVAPI32.CryptAcquireContextA
003D5F5C TEST EAX,EAX	
003D5F5E JNZ SHORT 003D5F65	
003D5F60 PUSH3C	
003D5F62 POP EAX	
003D5F63 JMP SHORT 003D5F8E	
003D5F65 PUSH ESI 003D5F66 PUSH DWORD PTR SS:[EBP+C]	
003D5F66 MOV ESI,DWORD PTR SS:LEBP+CJ 003D5F69 MOV ESI,DWORD PTR SS:LEBP+10]	
003D5F6C PUSH ESI	$0 \times 80 = 128$
003D5F6C PUSH ESI 003D5F6C PUSH ESI 003D5F6D PUSH DWORD PTR SS:[EBP+14]	pContext
003D5F70 CALL DWORD PTR DS: [3DA008]	ADVAPI32.CryptGenRandom
003D5F76 TEST EAX, EAX	hove receively procentian don
003D5F78 JNZ SHORT 003D5F7F	
003D5F7A PUSH -3C	
003D5F7C POP EAX	
003D5F7D JMP SHORT 003D5F8D	
003D5F7F PUSH EBX 003D5F80 PUSH DWORD PTR SS:[EBP+14]	
003D5F80 POSH DWORD PTR SS:[EBP+14] 003D5F83 CALL DWORD PTR DS:[3DA010]	
003D5F83 CALL DWORD PTR DS:[3DA010]	ADVAPI32.CryptReleaseContext
003D5F89 MOV DWORD PTR DS:[EDI],ESI	
EAX=00000001	
Address Hex dump ASCII	
0012E7D8 2A 41 F1 0A 18 0B 8A 54 *A~.↑∂ԾT 0012E7E0 31 E2 B6 3D 62 A3 10 21 10A=bù≯t 0012E7E8 F7 24 D4 A3 E9 E2 06 30 ,\$ďú00∳0	
0012E7E0 31 E2 B6 3D 62 A3 10 21 10A=bu▶† 0012E7E8 F7 24 D4 A3 E9 E2 06 30 ,\$ďul0⊕0	
0012E7E8 F7 24 D4 A3 E9 E2 06 30 .\$ďul0∳0 0012E7F0 29 74 73 36 F6 52 FC EF ∫ts6÷RŘ′	
0012E7E8 F7 24 D4 A3 E9 E2 06 30 \$ďu00∳0 0012E7F0 29 74 73 36 F6 52 FC EF)ts6÷RR 0012E7F8 C8 A1 0A BE 9E E6 27 8D ⊨(.ź×S'2	
0012E7F8 C8 A1 0A BE 9E E6 27 8D ⊭i.ż×\$'2 0012E800 C8 20 B0 FE 3C 60 E0 55 ⊭ ∭ ≾i-U	
0012E800 C8 20 B0 FF 3C 6A F0 55 ≞ ∭ <j-u 0012E808 8E 84 9C 4E 00 F5 FC 4C AätN.\$RL</j-u 	
0012E810 3F 6C 29 86 98 84 DF 45 ?l)AT⊣≖E 0012E818 9A D1 D8 97 87 08 83 75 üĐĕ≾c∎āu	
0012E818 9A D1 D8 97 87 08 83 75 üĐêšc∎au 0012E820 41 16 C3 06 9A 79 80 CB A_ +±üyÇπ	
0012E828 15 E0 59 B0 40 BE 40 7D \$070000	
0012E818 9A DI D8 97 87 08 83 75 üθêsc∎au 0012E820 41 16 C3 06 9A 79 80 CB A ⊨€üu(T 0012E828 15 E0 59 B0 40 BE 40 7D 807\\@êêû 0012E830 49 26 BA A3 35 B7 4E 22 I&∥u5€N"	
ИИТ 26838 18 51 45 50 00, 85 66 59 ТИЕТ-ФЛУ	
0012E840 F7 5F 1A 6D 72 B8 FA 93+mrS 6	
0012E840 F7 5F 1A 6D 72 B8 FA 93 ,mrs`o 0012E848 03 E6 C6 57 B0 29 53 09 ∲5AW∭)S. 0012E850 0F 59 04 EF 16 AD 88 EA *Y♦(şŏř 0012E858 D2 00 00 00 77 5E 3D 00 Dw^=.	
0012E850 0F 59 04 EF 16 AD 88 EA *Y*'_sör	
0012E858 D2 00 00 00 77 5E 3D 00 Dw^=. 0012E860 98 EA 12 00 28 ED 12 00 srt.(Yt.	

Making of onion addresses:

0030840F PUSH 30A780 0030840F PUSH ESI	ASCII "http://petya37h5tbhyvki.onion/"	Registers (MMX) <
		EAX 001B3468
003D8415 MOV EAX, DWORD PTR DS:[EDI]		ECX 0000000
003D8417 ADD ESP,0C		EDX 001B3463
003D841A MOV DWORD PTR DS:[ESI+1E],EAX		EBX 0000000
003D841D MOV AX.WORD PTR DS:[EDI+4]		ESP 0012EAAC
003D8421 MOV WORD PTR DS:[ESI+22],AX		EBP 0012EE70
003D8425 LEA EAX, DWORD PTR DS:[ESI+24]		ESI 001B3468
003D8428 PUSH 24		EDI 001B3F48 ASCII "acskisC8ps8"
003D8425 LEA EAX, DWORD PTR DS: [ES1+24] 003D8428 PUSH 24 003D8428 PUSH 24 003D8428 PUSH 3DA758	ASCII "/回 http://petya5koahtsf7sv.onion/"	EIP 003D840A
003D842F PUSH EAX		
		C 0 ES 0023 32bit 0(FFFFFFF)
003D8435 MOU EAX, DWORD PTR DS:[EDI] 003D8437 ADD ESP,0C		P Ø CS Ø01B 32bit Ø(FFFFFFF) A 1 SS Ø023 32bit Ø(FFFFFFFF)
003D8437 ADD ESP,0C		
003D843A MOV DWORD PTR DS:[ESI+48],EAX		
003D843D MOV AX.WORD PTR DS:[EDI+4]		S 0 FS 003B 32bit 7FFDE000(FFF) T 0 GS 0000 NULL
003D8441 MOV WORD PTR DS:[ESI+4C].AX		D 0
003D8445 MOV EAX,ESI		О́ Ö LastErr ERROR_SUCCESS (00000000)
003D8447 POP EDI		
003D8448 POP ESI		EFL 00000212 (NO,NB,NE,A,NS,PO,GE,G)
003D8449 MOV ESP,EBP		MM0 0000 0000 0000 0000
003D844B POP EBP		MM1 0000 0000 0000 0000
003D844C RETN		MM2 0000 0000 0000 0000
003D844D SUB ESP,6D4		MM3 0000 0000 0000 0000
003D8453 PUSH EBX		MM4 0000 0000 0000 0000
003D8454 PUSH EBP		MM5 0000 0000 0000 0000
003D8455 XOR EBX,EBX		MM6 0000 0000 0000 0000
003D8457 MOV EBP,ECX 003D8459 MOV DWORD PTR SS:[ESP+C],EBX		MM7 0000 003B 0000 0000
003D8455 PUSH ESI		
003D845E MOV ESI,EBX		
003D8460 MOV DWORD PTR SS:[ESP+C],ESI		
003D8464 PUSH EDI		
003D8465 TEST EBP-EBP		

Retrieving parameters of the disk using <u>DeviceIoControl</u>

Read/write to the disk:

0218966 10218967 10218967 10218968 10218969 10218966 1021896E 10218976 10218976 10218976 10218977 102189779 10218977	PUSH ECX PUSH EBX PUSH ESI XOR EBX, EDI XOR EBX, EBX MOU EDI, EDX PUSH EBX PUSH 30000000 PUSH 3 PUSH 20000000 PUSH C00000000 PUSH CO0000000 PUSH CO0000000				
021897F	CALL DWORD PTR DS: [210	90381	kernel32.Cre	ateFileA	
10218985 10218987 1021898A 1021898D 1021898D 10218993 10218995 10218995 10218995 1021899D 1021899D 1021899D 1021899D 1021899E	MOV ESI, EAX CMP ESI, -1 JN2 SHORT 00218997 PUSH EAX CALL DWORD PTR DS:[214 XOR EAX,EAX JNP SHORT 002189D5 MOV ECX, DWORD PTR SS: MOV EAX, DWORD PTR SS: MOV EAX, DWORD PTR SS: MOV EAX, DWORD PTR SS: SHLD EAX,ECX,9 038]=7551CEE8 (kernel32	[EBP+8] [EBP+C]	kernel32.Cld	oseHandle	
	llau duua	LOCCTT L 00	12F204 0012F2	54 T. ‡.	FileName = "\\.\PhysicalDrive0"
012F490 012F498 012F4A0 0012F4A8 0012F4A8 0012F4B0	Heat Gump 37	777777777 00 777777777 00 7777777777 00 77777777	12F208 C00000 12F20C 000000 12F210 000000 12F214 000000 12F218 300000 12F218 300000 12F220 000000 12F220 000000	00 03 * 00 . 03 * 000 00 01 0	Access = GENERIC_READIGENERIC_WRITE ShareMode = FILE_SHARE_READ!FILE_SHARE_WRITE pSecurity = NULL Mode = OPEN_EXISTING Attributes = NO_BUFFERING!RANDOM_ACCESS hTemplateFile = NULL

After overwriting the beginning of the disk, it intentionally crashes the system, using an undocumented function <u>NtRaiseHardError</u>:

00219012	PUSH EAX	
00219019	PUSH ESI	
0021901B	PUSH DWORD PTR SS: [EBP-4]	
0021901E	MOV DWORD PTR SS:[EBP-C],2	
00219025	CALL DWORD PTR DS: [21A014]	ADVAPI32.AdjustTokenPrivileges
0021902B	CALL DWORD PTR DS:[21A03C]	kernel32.GetLastError
00219031	TEST EAX,EAX	
00219033 /	NUNZ SHORT 00218FF6	
00219035	PUSH 21A7B4	ASCII "NtRaiseHardError"
0021903A	PUSH 21A7C8	ASCII "NTDLL.DLL"
0021903F	CALL DWORD PTR DS:[21A044]	kernel32.GetModuleHandleA
00219045	PUSH EAX	
00219046	CALL DWORD PTR DS: [21A040]	kernel32.GetProcAddress
0021904C	LEA ECX.DWORD PTR SS:[EBP-8]	
0021904F	PUSH ECX	
00219050	PUSH 6	OptionShutdownSystem
00219052	PUSH ESI	oprionanaoanoyoren
00219053	PUSH ESI	
00219054	PUSH ESI	
00219055	PUSH C0000350	
88219850	CALL EAX	ntdll.ZwRaiseHardError
00219050	XOR EAX.EAX	Involt cwhat senarocitor
0021905C 0021905F	ADD ESP.18	
00219050	INC FOY	

At this point, first stage of changes on the disk have been already made. Below you can see the MBR overwritten by the Petya's boot loader:

Offset(h)	00	01	02	03	04	05	06	07	08	09	0A	0B	oc	0D	0E	OF	
000000000	FA	66	31	C0	8E	DO	8E	C0	8E	D8	BC	00	7C	FB	88	16	úflŔŽÐŽŔŽŘL. ű Sector 0
000000010	93	7C	66	B8	20	00	00	00	66	BB	22	00	00	00	В9	00	" f,f»"ą.
000000020	80	E8	14	00	66	48	66	83	F8	00	75	F5	66	A1	00	80	€čfHf.ř.uőfĭ.€
000000030	EA	00	80	00	00	F4	EB	FD	66	50	66	31	C0	52	56	57	ę.€ôëýfPf1ŔRVW
000000040	66	50	66	53	89	E7	66	50	66	53	06	51	6A	01	6A	10	fPfS%çfPfS.Qj.j.
000000050	89	E6	8A	16	93	7C	В4	42	CD	13	89	FC	66	5B	66	58	‰ćŠ.`` ´BÍ.‰üf[fX
000000060	73	08	50	30	Ε4	CD	13	58	EB	D6	66	83	C3	01	66	83	s.POäÍ.XëÖf.Ă.f.
000000070	DO	00	81	C1	00	02	73	07	8C	C2	80	C6	10	8E	C2	5F	ÐÁs.ŚÂ€Ć.ŽÂ_
000000080	5E	5A	66	58	C3	60	В4	0E	AC	3C	00	74	04	CD	10	EB	^ZfXĂ`´.⊣<.t.Í.ë
000000090	F7	61	C3	00	00	00	00	00	00	00	00	00	00	00	00	00	÷aĂ
0A000000	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0000000B0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0000000000	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000000D0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0000000E0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0000000F0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000000100	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000000110	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000000120	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000000130	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000000140	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000000150	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000000160	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	• • • • • • • • • • • • • • • • • • • •
000000170	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	• • • • • • • • • • • • • • • • • • • •
000000180	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000000190	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	• • • • • • • • • • • • • • • • • • • •
0000001A0			00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0000001B0		00	00	00	00	00	00	00	D5	EE	6F	ЗD	00	00	80	20	Öîo=€
0000001C0	21	00	07	DF	13	0C	00	08	00	00	00	20	03	00	00	DF	!B
0000001D0	14	0C	07	FE	FF	FF	00		03	00	00	DO	1C	03	00		ţ``.(Ð
0000001E0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	• • • • • • • • • • • • • • • • • • • •
0000001F0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	55	AA	UŞ
000000200			37	37	37	37	37	37	37	37	37	37	37	37	37	37	77777777777777777777777777777777777777
000000210	37	37	37	37	37	37	37	37	37	37	37	37	37	37	37	37	7777777777777777
000000220	37	37	37	37	37	37	37	37	37	37	37	37	37	37	37	37	7777777777777777
000000230	37	37	37	37	37	37	37	37	37	37	37	37	37	37	37	37	7777777777777777

Next few sectors contains backup of original data XORed with '7'. After that we can find the copied <u>Petya code</u> (starting at 0x4400 – sector 34).

We can also see the strings that are displayed in the ransom note, copied to the the disk:

000005D60	74	68	65	20	50	45	54	59	41	20	52	41	4E	53	4F	4D	the PETYA RANSOM
000005D70	57	41	52	45	21	0D	0A	00	0D	0A	20	54	68	65	20	68	WARE! The h
000005D80	61	72	64	64	69	73	6B	73	20	6F	66	20	79	6F	75	72	arddisks of your
000005D90	20	63	6F	6D	70	75	74	65	72	20	68	61	76	65	20	62	computer have b
000005DA0	65	65	6E	20	65	6E	63	72	79	70	74	65	64	20	77	69	een encrypted wi
000005DB0	74	68	20	61	6E	20	6D	69	6C	69	74	61	72	79	20	67	th an military g
000005DC0	72	61	64	65	0D	0A	20	65	6E	63	72	79	70	74	69	6F	rade encryptio
000005DD0	6E	20	61	6C	67	6F	72	69	74	68	6D	2E	20	54	68	65	n algorithm. The
000005DE0	72	65	20	69	73	20	6E	6F	20	77	61	79	20	74	6F	20	re is no way to
000005DF0	72	65	73	74	6F	72	65	20	79	6F	75	72	20	64	61	74	restore your dat
000005E00	61	20	77	69	74	68	6F	75	74	20	61	20	73	70	65	63	a without a spec Sector 47

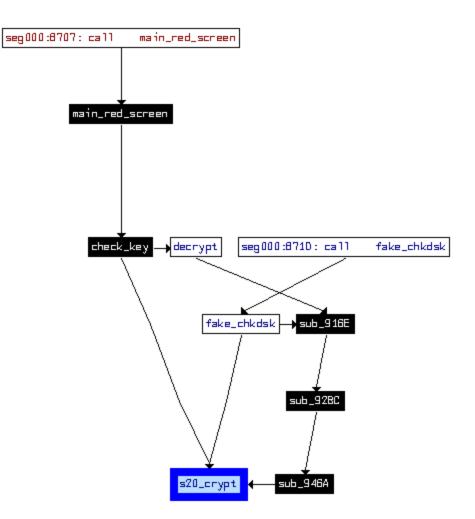
Stage 2

Stage 2 is inside the code written to the disk's beginning. This code uses 16 bit architecture.

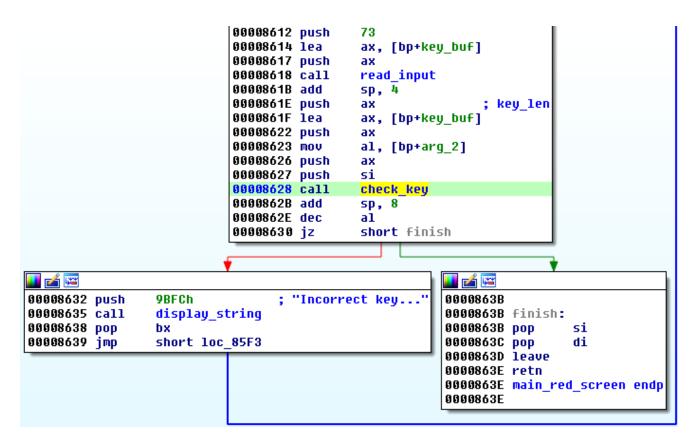
Execution starts with a boot loader, that loads into memory the tiny malicious kernel. Below we can see execution of the loading function. Kernel starts at sector 34 and it is 32 sectors long (including saved data):

	seg000:0012 seg000:0018 seg000:001E	MOV MOV MOV	eax, 32 ebx, 34 cx, 8000h	; sectors_number ; start_sector ; output_address
	seg000:0021 seg000:0021 loc_21: seg000:0021	call	read_sector	; CODE XREF: seg000:002Aij
	seg000:0024 seg000:0026 seg000:002A seg000:002C seg000:0030	dec cmp jnz mov jmp	eax eax, 0 short loc_21 eax, ds:8000h far ptr <mark>0:8000h</mark>	; jump to the copied code

Beginning of the kernel:


seg000:8000 loc_8000:		
seg000:8000		
seg000:8000	jmp	<mark>10c_8640</mark>

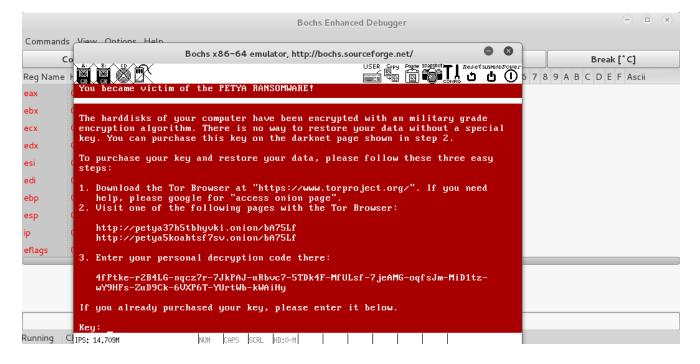
Checking if the data is already encrypted is performed using one byte flag that is saved at the beginning of sector 54. If this flag is unset, program proceeds to the fake CHKDSK scan. Otherwise, it displays the main red screen.


seg000:86D9 seg000:86DB seg000:86DD seg000:86DF seg000:86E1 seg000:86E5 seg000:86E6 seg000:86E9 seg000:86E9	push push push lea push mov push call	0 ; read 1 0 54 ; sector ax, [bp-286h] ; out_buf ax al, [bp-2] ax disk read or write
seg000:86ED seg000:86F0 seg000:86F2 seg000:86F4	add or jz	<pre>sp, 0Ch al, al short loc_86F7 ; is data encrypted?</pre>
<pre>seg000:86F4 error2: seg000:86F4 seg000:86F7 ; seg000:86F7</pre>	jmp	; CODE XREF: seg000:86D7†j error
<pre>seg000:86F7 loc_86F7: seg000:86F7 seg000:86F7 seg000:86FC</pre>	cmp jb	; CODE XREF: seg000:86F2†j byte ptr [bp-286h], 1 ; is data encrypted? short <mark>to_fake_chkdsk</mark>

The fake CHKDSK encrypts MFT using <u>Salsa20</u> algorithm. The used key is 32 byte long, read from the address 0x6C01. After that, the key gets erased.

<u>Salsa20</u> is used in several places in Petya's code – for encryption, decryption and key verification. See the diagram below:

Inside the same function that displays the red screen, the *Key* checking routine is called. First, user is prompted to supply the key. The maximal input length is 73 bytes, the minimal is 16 bytes.

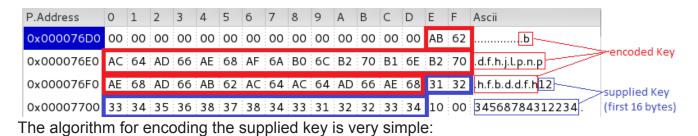


Debugging

Of course, we cannot debug this stage of Petya via typical <u>userland</u> debuggers that are the casual tools in analyzing malware. We need to go to the low level. The simplest way (in my opinion) is to use <u>Bochs internal debugger</u>. We need to make a full dump of the infected disk. Then, we can load it under Bochs.

I used the following Bochs configuration ('infected.dsk' is my disk dump): bochsrc.txt

This is how it looks running under Bochs:



Key verification

Key verification is performed in the following steps:

- 1. Input from the user is read.
 - Accepted
 - charset: 123456789abcdefghijkmnopqrstuvwxABCDEFGHJKLMNPQRSTUVWX
 - if the character outside of this charset occurred, it is skipped.
 - Only first **16 bytes** are stored
- 2. The *supplied key* is encoded by a custom algorithm. *Encoded key* is 32 bytes long.
- 3. Data from sector 55 (512 bytes) is read into memory *// it will be denoted as verification buffer*
- 4. The value stored at physical address 0x6c21 (just before the Tor address) is read into memory. It is an 8 byte long array, unique for a specific infection. // it will be denoted as **nonce**
- 5. The *verification buffer* is encrypted by 256 bit <u>Salsa20</u> with *encoded key* and the *nonce*
- If, as the result of applied procedure, *verification buffer* is fully filled with '7' it means the *supplied key* is correct.

Example: encoded key versus supplied key:

This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.

Learn more about bidirectional Unicode characters

Show hidden characters

bool encode(char* key, BYTE *encoc	led)			
{				
if (!key !encoded) {				
printf("Invalid buffer\n");				
return false;				
}				
size_t len = strlen(key);				
if (len < 16) {				
printf("Invalid key\n");				
return false;				
}				
if (len > 16) len = 16;				
int i, j;				
i = j = 0;				
for (i = 0, j = 0; i < len; i++, j += 2) {				
char k = key[i];				
encoded[j] = k + 'z';				
encoded[j+1] = k * 2;				
}				
encoded[j] = 0;				
encoded[j+1] = 0;				

return true;

}

<u>view raw</u>

petya_encoder.cpp

hosted with ♥ by <u>GitHub</u>

Valid key is important for the process of decryption. If we supply a bogus key and try to pass it as valid by modifying jump conditions, Petya will recover the original MBR but other data will not be decrypted properly and the operating system will not run.

When the key passed the check, Petya shows the message "Decrypting sectors" with a progress.

The harddisks of your computer have been encrypted with an military grade encryption algorithm. There is no way to restore your data without a special key. You can purchase this key on the darknet page shown in step 2.				
To purchase your key and restore your data, please follow these three easy steps:				
 Download the Tor Browser at "https://www.torproject.org/". If you need help, please google for "access onion page". Uisit one of the following pages with the Tor Browser: 				
http://petya37h5tbhyvki.onion/P9UUR3 http://petya5koahtsf7sv.onion/P9UUR3				
3. Enter your personal decryption code there:				
cdSPP4-JUZrRr-pMSxia-gXpmfB-vGWoRf-FfMph1-XTUzVn-QmFeeV-ofb94y-HuScaa- rB1gmV-djYAEH-8WEakz-wrQ85W-BbsCzw				
If you already purchased your key, please enter it below.				
Key: 8x3qrMHjmkrN9jfd Decrypting sector 83234 of 126464 (65%)				

After it finishes, it asks to reboot the computer. Below is Petya's last screen, showing that user finally got rid of this ransomware:

Conclusion

In terms of architecture, Petya is very advanced and atypical. Good quality FUD, well obfuscated dropper – and the heart of the ransomware – a little kernel – depicts that authors are highly skilled. However, the chosen low-level architecture enforced some limitations, i.e.: small size of code and inability to use API calls. It makes cryptography difficult. That's why the key was generated by the higher layer – the windows executable. This solution works well, but introduces a weakness that allowed to restore the key (if we manage to catch Petya at Stage 1, before the key is erased). Moreover, authors tried to use a ready made <u>Salsa20</u> implementation and make slight changes in order to adopt it to 16-bit architecture. But they didn't realized, that changing size of variables triggers serious vulnerabilities (detailed description you can find in <u>CheckPoint's article</u>).

Most of the ransomware authors take care of the user experience, so that even a non technical person will have easy way to make a payment. In this case, user experience is very bad. First – denying access to the full system is not only harmful to a user, but also for the ransomware distributor, because it makes much harder for the victim to pay the ransom. Second – the individual identificator is very long and it cannot be copied from the screen. Typing it without mistake is almost impossible.

Overall, authors of Petya ransomware wrote a good quality code, that, however – missed the goals. Ransomware running in userland can be equally or more dangerous.

Appendix

About Petya by other vendors:

Read also:

- <u>http://www.invoke-ir.com/2015/05/ontheforensictrail-part2.html</u> Master Boot Record
- <u>http://sysforensics.org/2012/06/mbr-malware-analysis/</u> MBR malware analysis
- <u>https://socprime.com/en/blog/dismantling-killdisk-reverse-of-the-blackenergy-</u> <u>destructive-component/</u> – Dismantling KillDisk: reverse of the BlackEnergy destructive component (another malware attacking hard disk)

This was a guest post written by Hasherezade, an independent researcher and programmer with a strong interest in InfoSec. She loves going in details about malware and sharing threat information with the community. Check her out on Twitter @hasherezade and her personal blog: <u>https://hshrzd.wordpress.com</u>.