
1/19

Malwarebytes Labs April 1, 2016

Petya – Taking Ransomware To The Low Level
blog.malwarebytes.com/threat-analysis/2016/04/petya-ransomware/

Petya is different from the other popular ransomware these days. Instead of encrypting files
one by one, it denies access to the full system by attacking low-level structures on the disk.
This ransomware’s authors have not only created their own boot loader but also a tiny
kernel, which is 32 sectors long.

Petya’s dropper writes the malicious code at the beginning of the disk. The affected system’s
master boot record (MBR) is overwritten by the custom boot loader that loads a tiny
malicious kernel. Then, this kernel proceeds with further encryption. Petya’s ransom note
states that it encrypts the full disk, but this is not true. Instead, it encrypts the master file table
(MFT) so that the file system is not readable.

[UPDATE] READ ABOUT THE LATEST VERSION: GOLDENEYE

PREVENTION TIP: Petya is most dangerous in Stage 2 of the infection, which starts when
the affected system is being rebooted after the BSOD caused by the dropper. In order to
prevent your computer from going automatically to this stage, turn off automatic restart after
a system failure (see how to do this).

If you detect Petya in Stage 1, your data can still be recovered. More information about it is
[here] and in this article.

UPDATE: 8-th April 2016 Petya at Stage 2 has been cracked by leo-stone. Read more:
https://petya-pay-no-ransom.herokuapp.com/ and https://github.com/leo-stone/hack-
petya. Tutorial helping in disk recovery is here.

Analyzed samples

Main executable from another campaign (PDF icon)

a92f13f3a1b3b39833d3cc336301b713

Special thanks to: Florian Roth – for sharing the samples, Petr Beneš – for a constructive
discussion on 

 Twitter.

Behavioral analysis

https://blog.malwarebytes.com/threat-analysis/2016/04/petya-ransomware/
https://www.malwarebytes.com/ransomware
http://www.codeproject.com/Articles/36907/How-to-develop-your-own-Boot-Loader#_Toc231383168
https://en.wikipedia.org/wiki/Master_boot_record
http://searchwindowsserver.techtarget.com/definition/master-file-table
https://blog.malwarebytes.com/threat-analysis/2016/12/goldeneye-ransomware-the-petyamischa-combo-rebranded/
https://support.microsoft.com/en-us/kb/307973
https://hshrzd.wordpress.com/2016/03/31/petya-key-decoder/
https://twitter.com/leo_and_stone
https://petya-pay-no-ransom.herokuapp.com/
https://github.com/leo-stone/hack-petya
https://hshrzd.wordpress.com/2016/03/31/petya-key-decoder/
https://www.virustotal.com/en/file/4c1dc737915d76b7ce579abddaba74ead6fdb5b519a1ea45308b8c49b950655c/analysis/
https://twitter.com/Cyb3rOps
https://twitter.com/PetrBenes
https://twitter.com/hasherezade/status/715153359154593792


2/19

This ransomware is delivered via scam emails themed as a job application. E-mail comes
with a Dropbox link, where the malicious ZIP is hosted. This initial ZIP contains two
elements:

a photo of a young man, purporting to be an applicant (in fact it is a publicly available
stock image)
an executable, pretending to be a CV in a self-extracting archive or in PDF (in fact it is
a malicious dropper in the form of a 32bit PE file):

In order to execute its harmful features, it needs to run with Administrator privileges.
However, it doesn’t even try to deploy any user account control (UAC) bypass technique. It
relies fully on social engineering.

When we try to run it, UAC pops up this alert:

After deploying the application, the system crashes. When it restarts, we see the following
screen, which is an imitation of a CHKDSK scan:

https://blog.malwarebytes.org/wp-content/uploads/2016/03/petya_exe-1.png
https://en.wikipedia.org/wiki/User_Account_Control
https://blog.malwarebytes.org/wp-content/uploads/2016/03/uac_popup.png
https://en.wikipedia.org/wiki/CHKDSK


3/19

In reality, the malicious kernel is already encrypting. When it finishes, the affected user
encounters this blinking screen with an ASCII art:

Pressing a key leads to the main screen with the ransom note and all information necessary
to reach the Web panel and proceed with the payment:

https://blog.malwarebytes.org/wp-content/uploads/2016/03/1.png
https://blog.malwarebytes.org/wp-content/uploads/2016/03/2.png
https://blog.malwarebytes.org/wp-content/uploads/2016/03/3.png


4/19

Infection stages

This ransomware have two infection stages.

The first is executed by the dropper (Windows executable file). It overwrites the beginning of
the disk (including MBR) and makes an XOR encrypted backup of the original data. This
stage ends with an intentional execution of BSOD. Saving data at this point is relatively easy,
because only the beginning of the attacked disk is overwritten. The file system is not
destroyed, and we can still mount this disk and use its content. That’s why, if you suspect
that you have this ransomware, the first thing we recommend is to not reboot the system.
Instead, make a disk dump. Eventually you can, at this stage, mount this disk to another
operating system and make the file backup. See also: Petya key decoder.

The second stage is executed by the fake CHKDSK scan. After this, the file system is
destroyed and cannot be read.

However, it is not true that the full disk is encrypted. If we view it by forensic tools, we can
see many valid elements, including strings.

Website for the victim

We noted that the website for the victim is well prepared and very informative. The menu
offers several language versions, but so far only English works:

https://en.wikipedia.org/wiki/Blue_Screen_of_Death
https://hshrzd.wordpress.com/2016/03/31/petya-key-decoder/
https://blog.malwarebytes.org/wp-content/uploads/2016/03/before_reboot.png
https://blog.malwarebytes.org/wp-content/uploads/2016/03/destroyed_filesystem.png
https://blog.malwarebytes.org/wp-content/uploads/2016/03/infected_disk_fragment.png


5/19

It also provides a step-by-step process on how affected users can recover their data:

https://blog.malwarebytes.org/wp-content/uploads/2016/03/page_main.png


6/19

Step1: Enter your personal identifier
Step2: Purchase Bitcoins
Step3: Do a Bitcoin transaction
Step4: Wait for confirmation

We expect that cybercriminals release as little information about themselves as possible. But
in this case, the authors and/or distributors are very open, sharing the team name—”Janus
Cybercrime Solutions”—and the project release date—12th December 2015. Also, they offer
a news feed with updates, including press references about them:

https://blog.malwarebytes.org/wp-content/uploads/2016/03/guide.png


7/19

In case of questions or problems, it is also possible to contact them via a Web form.

Inside

Stage 1

As we have stated earlier, the first stage of execution is in the Windows executable. It is
packed in a good quality FUD/cryptor that’s why we cannot see the malicious code at first.
Executions starts in a layer that is harmless and used only for the purpose of deception and
protecting the payload. The real malicious functionality is inside the payload dynamically
unpacked to the memory.

Below you can see the memory of the running process. The code belonging to the original
EXE is marked red. The unpacked malicious code is marked blue:

The unpacked content is another PE file:

https://blog.malwarebytes.org/wp-content/uploads/2016/03/news.png
https://blog.malwarebytes.org/wp-content/uploads/2016/04/petya_support-1.png
https://blog.malwarebytes.org/threat-analysis/2015/12/malware-crypters-the-deceptive-first-layer/
https://blog.malwarebytes.org/wp-content/uploads/2016/03/petya_payload_mem.png


8/19

However, if we try to dump it, we don’t get a valid executable. Its data directories are
destroyed. The PE file have been processed by the cryptor in order to be loaded in a
continuous space, not divided by sections. It lost the ability to run independently, without
being loaded by the cryptor’s stub. Addresses saved as RVA are in reality raw addresses.

I have remapped them using a custom tool, and it revealed more information, i.e. the name
of this PE file is Setup.dll:

UPDATE: if we catch the process of unpacking in correct moment, we can dump the DLL
before it is destroyed. The resulting payload is: 7899d6090efae964024e11f6586a69ce

As the name suggest, the role of the payload is to setup everything for the next stage. First, it
generates a unique key that will be used for further encryption. This key must be also known
to attackers. That’s why it is encrypted by ECC and displayed to the victim as a personal

https://blog.malwarebytes.org/wp-content/uploads/2016/03/petya_payload_mem2.png
https://blog.malwarebytes.org/wp-content/uploads/2016/03/setup_dll.png
https://virustotal.com/en/file/542a38bf52afa6a4a008089a6fbf22c9d68ef5d6c634dd2c0773d859a8ae2bbf/analysis/


9/19

identifier, that must be send to attackers via personalized page.

Random values are retrieved by Windows Crypto API function: CryptGenRandom. Below, it
gets 128 random bytes:

Making of onion addresses:

Retrieving parameters of the disk using DeviceIoControl

https://msdn.microsoft.com/pl-pl/library/windows/desktop/aa379942%28v=vs.85%29.aspx
https://blog.malwarebytes.org/wp-content/uploads/2016/03/gen_random.png
https://blog.malwarebytes.org/wp-content/uploads/2016/03/generated_random.png
https://msdn.microsoft.com/pl-pl/library/windows/desktop/aa363216%28v=vs.85%29.aspx


10/19

Read/write to the disk:

After overwriting the beginning of the disk, it intentionally crashes the system, using an
undocumented function NtRaiseHardError:

https://blog.malwarebytes.org/wp-content/uploads/2016/03/device_io_control.png
https://blog.malwarebytes.org/wp-content/uploads/2016/03/physical_drive_create2.png
http://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FError%2FNtRaiseHardError.html


11/19

At this point, first stage of changes on the disk have been already made. Below you can see
the MBR overwritten by the Petya’s boot loader:

Next few sectors contains backup of original data XORed with ‘7’. After that we can find the
copied Petya code (starting at 0x4400 – sector 34).

https://blog.malwarebytes.org/wp-content/uploads/2016/03/raise_error.png
https://blog.malwarebytes.org/wp-content/uploads/2016/03/infected.png
https://www.virustotal.com/en/file/494dc5755e5b70ccead8074d00cafdb2d16a0f9cf4987446e0f6db209913d816/analysis/1459042011/


12/19

We can also see the strings that are displayed in the ransom note, copied to the the disk:

Stage 2

Stage 2 is inside the code written to the disk’s beginning. This code uses 16 bit architecture.

Execution starts with a boot loader, that loads into memory the tiny malicious kernel. Below
we can see execution of the loading function. Kernel starts at sector 34 and it is 32 sectors
long (including saved data):

Beginning of the kernel:

Checking if the data is already encrypted is performed using one byte flag that is saved at
the beginning of sector 54. If this flag is unset, program proceeds to the fake CHKDSK scan.
Otherwise, it displays the main red screen.

https://blog.malwarebytes.org/wp-content/uploads/2016/03/petya_string.png
https://blog.malwarebytes.org/wp-content/uploads/2016/03/copy_sectors.png
https://blog.malwarebytes.org/wp-content/uploads/2016/03/jump_next-1.png


13/19

The fake CHKDSK encrypts MFT using Salsa20 algorithm. The used key is 32 byte long,
read from the address 0x6C01. After that, the key gets erased.

Salsa20 is used in several places in Petya’s code – for encryption, decryption and key
verification. See the diagram below:

https://blog.malwarebytes.org/wp-content/uploads/2016/03/to_fake_chkdsk-1.png
https://github.com/alexwebr/salsa20
https://github.com/alexwebr/salsa20
https://blog.malwarebytes.org/wp-content/uploads/2016/04/flow_to_salsa.png


14/19

Inside the same function that displays the red screen, the Key checking routine is called.
First, user is prompted to supply the key. The maximal input length is 73 bytes, the minimal is
16 bytes.

Debugging

Of course, we cannot debug this stage of Petya via typical userland debuggers that are the
casual tools in analyzing malware. We need to go to the low level. The simplest way (in my
opinion) is to use Bochs internal debugger. We need to make a full dump of the infected disk.
Then, we can load it under Bochs.

I used the following Bochs configuration (‘infected.dsk’ is my disk dump): bochsrc.txt

This is how it looks running under Bochs:

https://blog.malwarebytes.org/wp-content/uploads/2016/04/check_key.png
https://en.wikipedia.org/wiki/User_space
http://bochs.sourceforge.net/doc/docbook/user/internal-debugger.html
https://gist.github.com/hasherezade/5c283e80785395fcb4ae


15/19

Key verification

Key verification is performed in the following steps:

1. Input from the user is read.
Accepted
charset: 123456789abcdefghijkmnopqrstuvwxABCDEFGHJKLMNPQRSTUVWX
– if the character outside of this charset occurred, it is skipped.
Only first 16 bytes are stored

2. The supplied key is encoded by a custom algorithm. Encoded key is 32 bytes long.
3. Data from sector 55 (512 bytes) is read into memory  // it will be denoted as

verification buffer
 4. The value stored at physical address 0x6c21 (just before the Tor address) is read into

memory. It is an 8 byte long array, unique for a specific infection. // it will be denoted as
nonce

5. The verification buffer is encrypted by 256 bit Salsa20 with encoded key and the
nonce

6. If, as the result of applied procedure, verification buffer is fully filled with ‘7’ – it means
the supplied key is correct.

Example: encoded key versus supplied key:

The algorithm for encoding the supplied key is very simple:

https://github.com/alexwebr/salsa20
https://blog.malwarebytes.org/wp-content/uploads/2016/03/processed_password.png


16/19

 
This file contains bidirectional Unicode text that may be interpreted or compiled differently
than what appears below. To review, open the file in an editor that reveals hidden Unicode
characters.
Learn more about bidirectional Unicode characters

Show hidden characters

bool encode(char* key, BYTE *encoded)

{

if (!key || !encoded) {

printf("Invalid buffer\n");

return false;

}

size_t len = strlen(key);

if (len < 16) {

printf("Invalid key\n");

return false;

}

if (len > 16) len = 16;

int i, j;

i = j = 0;

for (i = 0, j = 0; i < len; i++, j += 2) {

char k = key[i];

encoded[j] = k + 'z';

encoded[j+1] = k * 2;

}

encoded[j] = 0;

encoded[j+1] = 0;

https://github.co/hiddenchars
http://10.10.0.46/%7B%7B%20revealButtonHref%20%7D%7D


17/19

return true;

}

view raw
 
petya_encoder.cpp
 
hosted with ❤ by GitHub
Valid key is important for the process of decryption. If we supply a bogus key and try to
pass it as valid by modifying jump conditions, Petya will recover the original MBR but other
data will not be decrypted properly and the operating system will not run.

When the key passed the check, Petya shows the message “Decrypting sectors” with a
progress.

After it finishes, it asks to reboot the computer. Below is Petya’s last screen, showing that
user finally got rid of this ransomware:

https://gist.github.com/hasherezade/785f7da52dfd91fe9e59ae283df2e898/raw/2bd16e3ddee223d3f0706306af2bb2678f98b2c6/petya_encoder.cpp
https://gist.github.com/hasherezade/785f7da52dfd91fe9e59ae283df2e898#file-petya_encoder-cpp
https://github.com/
https://blog.malwarebytes.org/wp-content/uploads/2016/03/decrypting_petya.png


18/19

Conclusion

In terms of architecture, Petya is very advanced and atypical. Good quality FUD, well
obfuscated dropper – and the heart of the ransomware – a little kernel – depicts that authors
are highly skilled. However, the chosen low-level architecture enforced some limitations, i.e.:
small size of code and inability to use API calls. It makes cryptography difficult. That’s why
the key was generated by the higher layer – the windows executable. This solution works
well, but introduces a weakness that allowed to restore the key (if we manage to catch Petya
at Stage 1, before the key is erased). Moreover, authors tried to use a ready made Salsa20
implementation and make slight changes in order to adopt it to 16-bit architecture. But they
didn’t realized, that changing size of variables triggers serious vulnerabilities (detailed
description you can find in CheckPoint’s article).

Most of the ransomware authors take care of the user experience, so that even a non
technical person will have easy way to make a payment. In this case, user experience is very
bad. First – denying access to the full system is not only harmful to a user, but also for the
ransomware distributor, because it makes much harder for the victim to pay the ransom.
Second – the individual identificator is very long and it cannot be copied from the screen.
Typing it without mistake is almost impossible.

Overall, authors of Petya ransomware wrote a good quality code, that, however – missed the
goals. Ransomware running in userland can be equally or more dangerous.

Appendix

About Petya by other vendors:

Read also:

https://blog.malwarebytes.org/wp-content/uploads/2016/03/petya_last-1.png
https://github.com/alexwebr/salsa20
http://blog.checkpoint.com/2016/04/11/decrypting-the-petya-ransomware/


19/19

http://www.invoke-ir.com/2015/05/ontheforensictrail-part2.html – Master Boot Record
http://sysforensics.org/2012/06/mbr-malware-analysis/ – MBR malware analysis
https://socprime.com/en/blog/dismantling-killdisk-reverse-of-the-blackenergy-
destructive-component/ – Dismantling KillDisk: reverse of the BlackEnergy destructive
component (another malware attacking hard disk)

This was a guest post written by Hasherezade, an independent researcher and programmer
with a strong interest in InfoSec. She loves going in details about malware and sharing threat
information with the community. Check her out on Twitter @hasherezade and her personal
blog: https://hshrzd.wordpress.com.

http://www.invoke-ir.com/2015/05/ontheforensictrail-part2.html
http://sysforensics.org/2012/06/mbr-malware-analysis/
https://socprime.com/en/blog/dismantling-killdisk-reverse-of-the-blackenergy-destructive-component/
https://twitter.com/hasherezade
https://hshrzd.wordpress.com/

