Attack on Zygote: a new twist in the evolution of mobile
threats

SL securelist.com/attack-on-zygote-a-new-twist-in-the-evolution-of-mobile-threats/74032/

Authors

Nikita Buchka

* Expert MikhailKuzin

The story of the small Trojan that could!

1/21

https://securelist.com/attack-on-zygote-a-new-twist-in-the-evolution-of-mobile-threats/74032/
https://securelist.com/author/nikitabuchka/
https://securelist.com/author/mikhailk/

The main danger posed by apps that gain root access to a mobile device without the user’s
knowledge is that they can provide access to far more advanced and dangerous malware
with highly innovative architecture. We feared that Trojans obtaining unauthorized superuser
privileges to install legitimate apps and display advertising would eventually start installing
malware. And our worst fears have been realized: rooting malware has begun spreading the
most sophisticated mobile Trojans we have ever seen.

Rooting malware

In our previous article we wrote about the increasing popularity of malware for Android that
gains root access to a device and uses it to install apps and display aggressive advertising.
Once this type of malicious program penetrates a device, it often becomes virtually
impossible to use it due to the sheer number of annoying ads and installed apps.

Since the first article (August 2015), things have changed for the worse — the number of
malware families of this type has increased from four to 11 and they are spreading more
actively and becoming much better at “rooting”. According to our estimates, Trojans with
superuser privileges attacked about 10% of Android-based mobile devices in the second half
of 2015. There were also cases of these programs being pre-installed on new mobile devices
coming from China.

2/21

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2016/03/07194251/zygote.jpg
https://securelist.com/blog/mobile/71981/taking-root/

However, it's worth noting that Android-based devices running versions higher than 4.4.4

have much fewer vulnerabilities that can be exploited to gain root access. So basically, the
malware targets earlier versions of the OS that are still installed on the majority of devices.
The chart below shows the distribution of our product users by Android version. As can be
seen from the chart, about 60% use a device on which these Trojans can gain root access.

Android 4.4.2, 25.85%

Android 5.1.1, 7.36%

Android 4.2.2, 16.04%
Android 5.0.2, 7.72%

Android 4.4.4, 9.22%

Versions of Android OS used by users of our products

The owners of the Trojans described above, such as Leech, Ztorg, Gorpo (as well as the
new malware family Trojan.AndroidOS.lop) are working together. Devices infected by these
malicious programs usually form a kind of “advertising botnet” via which advertising Trojans
distribute each other as well as the advertised apps. Within a few minutes of installing one of
these Trojans, all other active malware on the “network” is enabled on the victim’s device.
Cybercriminals are cashing in on advertising and installing legitimate applications.

In 2015, this “advertising botnet” was used to distribute malware posing a direct threat to the
user. This is how one of the most sophisticated mobile Trojans we have ever analyzed was
spread.

Unique Trojan

The “advertising botnet” mentioned above was used to distribute a unique Trojan with the
following features:

3/21

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2016/03/07194332/zygote_en_1.png

Modular functionality with active use of superuser privileges

Main part of malicious functionality exists in device RAM only.

o Trojan modifies Zygote system process in the memory to achieve persistence.
Industrial approaches used in its development, suggesting its authors are highly
qualified.

The Trojan is installed in the folder containing the system applications, under names that
system applications are likely to have (e.g. AndroidGuardianship.apk,
GoogleServerinfo.apk, USBUsagelnfo.apk etc.).

Before starting work, the malicious program collects the following information:

e Name of the device

o Version of the operating system

o Size of the SD card

 Information about device memory (from the file /[proc/mem)
o IMEI

e IMSI

o List of applications installed

The collected information is sent to the cybercriminals’ server whose address the Trojan
receives from a list written in the code:

e bridgeph2.zgxuanhao.com:8088
e bridgeph2.zgxuanhao.com:8088
e bridgeph3.zgxuanhao.com:8088
¢ bridgeph3.zgxuanhao.com:8088
e bridgeph4.zgxuanhao.com:8088
e bridgeph2.viewvogue.com:8088
¢ bridgeph3.viewvogue.com:8088
¢ bridgeph3.viewvogue.com:8088
e bridgeph4.viewvogue.com:8088

Or, if the above servers are unavailable, from a list of reserve command servers also written
in the code:

 bridgecr1.tailebaby.com:8088
 bridgecr2.tailebaby.com:8088
 bridgecr3.tailebaby.com:8088
¢ bridgecr4.tailebaby.com:8088
¢ bridgecr1.hanltlaw.com:8088
¢ bridgecr2.hanltlaw.com:8088
 bridgecr3.hanltlaw.com:8088
 bridgecr4.hanltlaw.com:8088

4/21

In reply, an encrypted configuration file arrives and is stored as
Isystem/app/com.sms.server.socialgraphop.db. The configuration is regularly updated
and contains the following fields:

e mSericode — malware identifier

o mDevicekey — the device identifier generated on the server (stored in
Isystem/app/OPBKEY_< mDevicekey >);

o mServerdevicekey — the current server identifier

e mCD - information used by cybercriminals to adjust the behavior of the modules;

o mHeartbeat — execution interval for the “heartbeatRequest” interface

o minterval — interval at which requests are sent to the command server

o mStartinterval — time after which the uploaded DEX files (modules) are run

e mServerDomains — list of main domains

e mCrashDomains — list of reserve domains

o mModuleUpdate — links required to download the DEX files (modules).

If the mModuleUpdate field is not filled, the DEX files are downloaded and saved. Then
these files are downloaded in the context of the malicious program using
DexClassLoader.loadClass(). After that, the modules are removed from the disk, i.e. they
only remain in device memory, which seriously hampers their detection and removal by
antivirus programs.

The downloaded modules should have the following interface methods for proper execution:

 init(Context context) — used to initialize the modules

o exit(Context context) — used to complete the work of the modules

» boardcastOnReceive(Context context, Intent intent) — used to redirect broadcast
messages to the module;

* heartbeatRequest(Context context) — used to initiate the module request to the
command server. It is needed in order to obtain the data module required by the server;

» heartbeatResponce(Context context, HashMap serverResponse) — used to deliver
the command server response to the module.

Depending on the version, the following set of interfaces may be used:

« init(Context context) — used to initialize the modules
o exec() — used to execute the payload
» exit(Context context) — used to complete the work of the modules

This sort of mechanism allows the app downloader to execute modules implementing
different functionality, as well as coordinating and synchronizing them.

LE 11 L1

The apps and the loaded modules use the “android bin”, “conbb”, “configopb”, “feedback”
and “systemcore” files stored in the folder /Isystem/bin to perform various actions on the
system using superuser privileges. It goes without saying that a clean system does contain

5/21

these files.

Considering the aforementioned modular architecture and privileged access to the device,
the malware can create literally anything. The capabilities of the uploaded modules are
limited only by the imagination and skills of the virus writers. These malicious programs (the
app loader and the modules that it downloads) belong to different types of Trojans, but all of
them were all included in our antivirus databases under the name Triada.

At the time of analysis the app downloader (detected by us as
Backdoor.AndroidOS.Triada) downloaded and activated the following modules:

o OPBUpdate_3000/Calendar_1000 — two modules with duplicate functionality capable
of downloading, installing and running an application (detected as Trojan-
Downloader.AndroidOS.Triada.a).

» Registered_1000 — module capable of sending an SMS upon the request of the
command server. Detected as Trojan-SMS.AndroidOS.Triada.a.

« |dleinfo_1000 — module that targets applications that use SMS to make in-app
purchases (intercepts outgoing text messages). Detected as Trojan-
Banker.AndroidOS.Triada.a.

Use of the Zygote process

A distinctive feature of the malicious application is the use of the Zygote process to
implement its code in the context of all the applications on the device. The Zygote process is
the parent process for all Android applications. It contains system libraries and frameworks
used by almost all applications. This process is a template for each new application, which
means that once the Trojan enters the process, it becomes part of the template and will end
up in each application run on the device. This is the first time we have come across this
technique in the wild; Zygote was only previously used in proof-of-concepts.

The chart below shows the architecture of the malicious program.

6/21

com.android.phone Send SMS -

Other apps

com.android.settings
com.android.mms

Filtered apps

Do nothing

inject()

Intents

{
I
I
|

Module:
Trojan-Banker

Module:
Updates

1

|

Enable mobile I

networking I

{ I

Enable mobile | I

networking s | | |

| | |

| | Check incoming SMS via | I
dispatchPDUs hook I |

| I

' £

| | |

| | |

™~

Backdoor.AndroidOS.Triada

Let us take a closer look at how the Zygote process is infected.

Preparatory stage and testing

Check libsmsiap

Replace outgoing SMS
via custom binders

CeC
communication

Enable mobile
networking

Intents

—_———

Module:
Trojan-SMS

cnC

All the magic starts in the crackZygoteProcess() function from the Trojan-Banker module.

Its code is displayed in the screenshot below.

7/21

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2016/03/07194414/zygote_en_2.png

public static boolean crackiygoteProcess() |
boolean bool = false;
if(0PFile.fileExists("/system/lib/libconfigpppm.so”)) {
int failBesult = ConfigPPPM.configPPP(String.wvalueQf(Idleinfc 1000.getDynamicPath{)) + "pppiii.d"):
CLLTool.log({failResult);
if(£ailResult < 0) {
IDCSMData.3etPPPFailBesult ("configppp=" + failResult);
IDCSMData.addHookFailNumber () ;

}
else if{3ystem.getProperty("pp.pR.pp") '= mll) |
P5Infcolode palInfoNode = IDThreadCrackiygote.parseProcessInfo("zygote");
if {psInfcolode '= null) {
new Threzd() {
public veoid runi{) {
com. opb.module.idleinfo 1000.IDThreadCrackZygotesl.sleep(2000);
P5Infolode psInfoNode = IDThreadCrackiygote.parseProcessInfo("com.android.phone");
if{palnfolode !'= null) |
IDCSMData.makeRootCmd ("Eill " + psInfoNode.mPID);

}
}
}.atart{):
IDCSMData.setPPPFailBResult ("configppi=" + IDCSMData.makeRootCmd{"configpppi " + palnfcoNode.mPID)):
IDThreadCrackIvgote.processKillSafelpk()
bool = true;

}

return kool;

First, the Trojan loads the shared library libconfigpppm.so and invokes the configPPP()
function exported by this library (the first highlighted string on the screenshot). Second, if
configPPP() succeeds in calling System.getProperty() from Android API with the unusual
argument ‘pp.pp-pp’ (it will be explained later why this action is performed) and the returned
value is not null, the Trojan runs the ELF-executable configpppi with the PID of the zygote
process as an argument.

Let’'s go through the process in order. The first thing the Trojan does inside the configPPP()
function from libconfigpppm.so is to obtain the load address (in the address space of its
process) of the file that implements the ActivityThread.main() function from Android API.
Next, using the load address and /proc/self/maps, the Trojan discovers the name and path to
the file on the disk. In most cases, it will be /system/framework/framework.odex.

The Trojan reads this file from disk and compares it with the file that is already loaded in the
address space. The comparison is performed as follows:

1. The file is divided into 16 blocks;

2. The first 8 bytes of each block are read;

3. These 8-byte sequences are compared with the corresponding sequences from the file
that loaded in memory;

If the comparison fails, configPPP aborts its execution and returns a 103 error code. If the
comparison succeeds, the Trojan starts patching framework.odex in memory.

8/21

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2016/03/07194410/zygote_en_3.png

Then, the malware obtains the Class structure of ActivityThread (which is defined in
framework.odex) by using dexFindClass and dexGetClassData functions. The authors of
the malware copied these functions from Dalvik Virtual Machine. The structure contains
various information about a dex class and is defined in AOSP. Using the structure, Triada
iterates through a list of methods implemented in this class looking for a method named
“‘main”. After the method has been found, the Trojan obtains its bytecode with the help of the
dexGetCode function (also copied from open sources). When the bytecode is obtained, it is
compared with the corresponding bytecode from the file on the disk, thereby checking if the
framework has already been patched. If the method has already been patched, the malware
aborts its execution and returns a 103 error code.

After that, the Trojan starts looking for the first string in the DEX strings table that are
between 32 and 64 symbols long. After a string has been found, the Trojan replaces it with
“Isystem/lib/libconfigpppl.so” and saves its ID.

Next, Triada accesses the DEX methods table and tries to obtain a method with one of the
following names — “loop*, “attach” or “setArgV0*“. It takes the first one that occurs in the
table, or, if there are no methods with these names, the penultimate method from the DEX
methods table, and replaces it with a standard System.load() method (one that loads shared
libraries to process address space) and saves its ID. The pseudocode that performs this
manipulation is shown below.

9/21

method_to_replace_id = -1;
for { k = B; ; ++k)
{
cnt_methods = Framewurk_dexFile_5truct—}pHeader—}methudIdSSize;
if { k >= cnt_methods)
break;
vt = {(Method ==){{char *}Framewurk_dexFile_Struct—}pFieldId5 + 4 % k);
U7l = {int)julss;
cur_method_tmp = =ulb;
cur_method = cur_method_tmp;
if { cur_method_tmp)
{
method_name = cur_method_tmp->name;
if | !stremp{cur_method_tmp->name, "loop")
|| *strcmp{method _name, "attach"}
|| *strcmp{method name, "setArgld™)
|| cnt_methods - 1 ==k }

method_to_replace = {int}cur_methud;
var_BC = v7d;
method_to_replace_id = k;

break;
b

b
b
if { method_to_replace_id < 8)
{

err_code = -518;

goto EXIT;
b

After these actions, the preparatory stage is complete, and the Trojan performs the actual
patching. It modifies the memory of the process, adding the following instructions to the
bytecode of the “main” method of the ActivityThread class:

1A 00 [strID, 2 bytes] //const-string v0, “/system/lib/libconfigpppl.so”
71 10 [methiID, 2 bytes] 00 00 //invoke-static {v0}, Ljava/lang/System;-
>load(Ljava/lang/String;)V

OE 00 //return-void

where strID is thesaved ID of the replaced string, and methlD is the saved ID of the
replaced method.

After these modifications, when ActivityThread.main() is called, it will automatically load the

shared library “Isystemllib/libconfigpppl.so” to the context of the caller process. But

because framework.odex is only patched in the context of the Trojan process, the library will
only be uploaded in the Trojan process. This seemingly meaningless action is performed in

order to test the ability of the malicious program to modify the Zygote process. If the steps
described above do not cause errors in the context of the application, they will not cause
errors in the context of the system process. Such a complex operation as changing the

10/21

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2016/03/07194406/zygote_en_4.png

Zygote address space has been approached very carefully by the attackers, since the
slightest error in this process can result in immediate system failure. That is why the “test
run” is performed to check the efficiency of the methods on the user’s device.

At the end configPPP() writes the following data to “/data/configppp/cpppimpt.db®:

 |D of replaced string (4 bytes);

o Content of replaced string (64 bytes);

 |D of replaced method (4 bytes);

» Pointer to the Method structure for replaced method (4 bytes);

o Content of the Method structure for ActivityThread.main() (52 bytes);

o Load address of framework.odex (4 bytes);

o List of structures that contain (previously used for comparison, 192 bytes):

1. Pointer to the next block of framework.odex;
2. First 8 bytes of the block:

o Size of framework.odex in memory (before patching) (4 bytes);

o Pointer to the DexFile structure for framework.odex (4 bytes);

o Content of the DexFile structure for framework.odex (44 bytes);

o Pointer to the Method structure for System.load() (4 bytes);

o Size of ActivityThread.main() bytecode before patching (4 bytes);

o Bytecode of ActivityThread.main() before patching (variable);

Finally, the Trojan calls the patched ActivityThread.main(), thus loading
Isysteml/lib/libconfigpppl.so in its address space. We will describe the purpose of this
library after explaining the functionality of the configpppi ELF-executable that performs the
actual modification of Zygote’s address space.

Modification of the Zygote

In fact, configpppi also patches ActivityThread.main() from framework.odex, but unlike
libconfigpppm.so, it receives the PID of a process running on the system as an argument
and performs patching in the context of this process. In this case, the Trojan patches the
Zygote process. It uses information obtained at the previous stage (in libconfigpppm.so) and
stored in /data/configppp/cpppimpt.db to modify the Zygote process via ptrace system-
calls.

The Zygote process is a daemon whose purpose is to launch Android applications. It
receives requests to launch an application through /dev/socket/zygote. Every launch
request triggers a fork() call. When fork() occurs the system creates a clone of the process
— a child process that is a full copy of a parent. Zygote contains all the necessary system
libraries and frameworks, so every new Android application will receive everything it needs to
execute. This means every application is a child of the Zygote process and after patching,
every new application will receive framework.odex modified by the Trojan (with

11/21

libconfigpppl.so injected). In other words, libconfigpppl.so ends up in all new apps and
can modify how they work. This opens up a wide range of opportunities for the
cybercriminals.

Substitution of standard Android Framework features

When the shared library /systeml/lib/libconfigpppl.so is loaded inside the Zygote by
System.load(), the system invokes its JNI_OnLoad() function. First, the Trojan restores the
string and method replaced earlier by /systeml/lib/libconfigpppm.so or configpppi, using
the information from /data/configppp/cpppimpt.db. Second, Triada loads the DEX file
configpppl.jar. This is done with the help of a standard Android API via
dalvik.system.DexClassLoader.

ul al-»Functions;
uz2 al;
ui1B = _stack_chk_gquard;

u3 = ul-»FindClass{&ai->functions, "android/os/Process");
ulh = u3;
v = yi->GetStaticMethodID(&v2->functions, w3, “myuid™”, "()I");

mylid = vi->CallStaticIntMethod{&u?->Functions, vl, vG);
sprintf{&s, “mkdir fdata/configppp/u_%d", mylid);
system{&s);

sprintf(&s, "cat fdata/configppp/configpppl.jar > /data/configppp/u_%d/configpppl.jar™, mylid);

system{&s);
sprintf(&s, "/data/configppps/u_%d/configpppl.jar™, myUid);
sprintf{&ve, “/data/configppp/u_%d/", mylid);
result = invoke_dex_method(v2?, {int)&s, {(int)&w?, {(int)"com.android.PPPHMain™, (int)"pppHain™);
if (v1@ *= _stack_chk_guard)
_stack_chk_fail{result);
return result;

To ensure that DEX is successfully loaded, the Trojan calls its method pppMain from the
PPPMain class. This method only outputs to logcat string “PPP main started”.

public static void pppMain() |
Log.v("feng", "PPP main started");:

1

The next stage is to prepare hooks for some methods from Android Framework
(framework.odex). The malware checks if everything necessary for hook methods exist in
configpppl.jar (it uses the internal checkPackageMethodEXxits() method for this). The
Trojan then prepares hooks for the following methods:

. java.lang.System.getProperty()

. android.app.Instrumentation.newApplication()

. com.android.internal.telephony.SMSDispatcher.dispatchPdus()

. android.app.ActivityManager.getRunningServices()

. android.app.ActivityManager.getRunningAppProcesses()

. android.app.ApplicationPackageManager.getinstalledPackages()

. android.app.ApplicationPackageManager.getinstalledApplications()

~N o ok WN -

12/21

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2016/03/07194402/zygote_en_5.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2016/03/07194400/zygote_en_6.png

The hooks are placed using the standard RegisterNatives() function. This function is
designed to perform binding Java methods with their native implementation (i.e. written with
C/C++). Thus, the Trojan substitutes standard methods from Android Framework with
methods implemented in libconfigpppl.so.

Verifying the success of a Zygote modification

The function which substitutes the original getProperty() first checks its argument. If the
argument is the “pp.pp.pp” string (which was mentioned earlier), then the function
immediately returns “true”. Otherwise, it calls the original getProperty() with its passed
argument. Calling the hooked getProperty() with “pp.pp.pp” as an argument is used to
check whether or not hooking of Android Framework functions was successful. If the hooked
getProperty() returned “true”, then the Trojan will start configpppi ELF with the PID of the
Zygote process as an argument.

After that, the the Trojan “kills” processes of the applications: “com.android.phone”,
‘com.android.settings”, “com.android.mms”. These are the standard “Phone”, “Settings” and
“‘Messaging” — applications that are the Trojan’s primary targets. The system starts these
apps automatically the next time the device is unblocked. After they start they will contain

framework.odex with all the hooks placed by libconfigpppl.so.

Modification of outgoing text messages

The function which substitutes newApplication(), first calls the original function, and then
invokes two functions from configpppl.jar: onModuleCreate() and onModulelnit().

The function onModuleCreate() checks in the context of the application it is running and then
sets the global variable mMainAppType according to the results of checking:

e If function is running within com.android.phone, then mMainAppType set to 1;

e If function is running within com.android.settings or com.android.mms, then
mMainAppType set to 2;

e If function is running within one of these apps:
com.android.system.google.server.info,
com.android.system.guardianship.info.server, com.android.sys.op,
com.android.system.op., com.android.system.kylin., com.android.kylines,
com.android.email, com.android.contacts, android.process.media,
com.android.launcher, com.android.browser, then mMainAppType set to -1;

o If function is running within any other application, then mMainAppType set to 0;

Depending on the value of mMainAppType, the function onModulelnit() calls one of the
initialization routines:

13/21

public static void onModuleInit(Ckiject mlbject) |
if (FPPCore.mMaindppType == 1) |
PFIPhcnelpp.onModuleInit (mObject)

1
else if (FPPCore.mMaindppType == 2} |
PFISetipp.onModuleInit (mlkject)

1

else if (FPPCore.mMainippType == 0) |
PINcrmalApp.onModuleInit (mbbject) ;

1

Thus, the Trojan tracks its host application and changes its behavior accordingly. For
example, if mMMainAppType is set to -1 (i.e. the host application is com.android.email,
com.android.contacts etc.), the Trojan does nothing.

If the host application is com.android.phone, Triada registers broadcast receivers for the
intents with actions com.ops.sms.core.broadcast.request.status and
com.ops.sms.core.broadcast.back.open.gprs.network. It first sets the global variable
mLastSmsShieldStatusTime to the current date and time, then turns on mobile network data
(GPRS Internet).

If the host application is com.android.settings or com.android.mms, Triada registers
broadcast receivers for the intents with the following actions:

e com.ops.sms.core.broadcast.request.status;
e com.ops.sms.core.broadcast.back.open.gprs.network;
¢ com.ops.sms.core.broadcast.back.send.sms.address.

The first two are the same as in the previous case, and the third sends an SMS, which is
passed off as extra intent data.

If the host application is any other app (apart from apps that trigger mMainAppType = -1),
then Triada first checks whether or not the application uses the shared library libsmsiap.so:

@Suppresslint {value={"HewApi”}) private static boolean checkIsMMPackage {Cbject mObject) |
return new File(String.valueQf (PPPCore.getMainAppContext () .getApplicationInfo().nativelibraryDir) + File.separator 4+ "libsmsiap.so").exists():

}

public static void onModulelInit(Ckject mObject) {
if (PINormalApp.checkIsMMPackage (mObject)) {
PISmaCore.invokeMMMain() ;
]
else |
PISmaCore.invokeOtherMain() ;
}
}

Depending on the result, it calls one of the following functions: PISmsCore.invokeMMMain()
or PISmsCore.invokeOtherMain().

Both functions invoke the PISmsCore.initinstance() method which performs the following
actions:

14/21

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2016/03/07194356/zygote_en_7.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2016/03/07194352/zygote_en_8.png

1. Initialization of the Trojan’s global variables with various information about the infected
device (IMEI, IMSI etc.);

2. Substitution of the system binders “isms” and “isms2”, which are used by the parent
application along with its own ones;

private static void replaceService (Ccntext mContext) |
PITcol.replaceService ("isms", new PIIsmaBinder (PITococl.getServiceBinder("isms")));

IBinder iBinder0 = PIToocl.get3erviceBinder("isms2");
if{iBinder0 '= muall) |
PITool.replaceService ("izms2", new PIIsmsBinder {iBinder0)):

public static woid replaceService(String name, IBinder newBinder) |
Field localCacheField = Claszs.forName ("android.os.ServiceManager") .getDeclaredField ("=Cache") ;
localCacheField. sethococessible (true) -
localCacheField.get ("null") .put (name, newBinder);

3. Creation of multiple directories /sdcard/Android/com/register/, used for write log and
configuration files;

4. Registration of broadcast receivers for intents with the actions
com.ops.sms.core.broadcast.responce.shield.status and
com.ops.sms.core.broadcast.responce.sms.send.status, which simply set the
corresponding variables to record the time of an event;

5. If a function is invoked from PISmsCore.invokeMMMain(), then a new thread is
created. This thread enters an endless loop and turns on mobile network data, and
won't let the user turn it off.

The most interesting action among the above is the substitution of the system binders “isms”
and “isms2”.

Binder is an Android-specific inter-process communication mechanism, and remote method
invocation system. All communication between client and server applications within Binder
pass through a special Linux device driver — /dev/binder. The scheme of inter-process
communication via the Binder mechanism is presented below.

15/21

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2016/03/07194348/zygote_en_9.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2016/03/07194344/zygote_en_10.png

Binder

7] e

For example, when an application wants to send an SMS it calls the sendTextMessage (or

Client _ Service
Driver
>
-
-t
>
-

| semmsssssssssssssssssssssssstssssssrsesseeges sl ss e
UL SRR ———— P T ———

o o o]

sendMultipartTextMessage) function, which in fact leads to the transact() method of an “isms”

(or “isms2”) binder object being called.

The transact() method is redefined in the malicious “isms” binder realization, replacing the
original. So, when the parent application of the Trojan sends an SMS it leads to the call of

the malicious transact() method.

In this method, the Trojan obtains SMS data (destination number, message text, service
center number) from raw PDU. Then, if a network connection is available, it sends this data

to a random C&C server from the following list:

e bridgeph2.zgxuanhao.com:8088
» bridgeph3.zgxuanhao.com:8088
e bridgeph3.zgxuanhao.com:8088
¢ bridgeph4.zgxuanhao.com:8088
e bridgeph2.viewvogue.com:8088
 bridgeph3.viewvogue.com:8088
¢ bridgeph3.viewvogue.com:8088
¢ bridgeph4.viewvogue.com:8088

The C&C server should respond with some data that, among other things, contains a new
SMS destination address (number) and new SMS text.

16/21

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2016/03/07194340/zygote_en_11.png

If a network connection is not available, then the Trojan tries to find the appropriate data in
the local configuration files that are stored in the /sdcard/Android/com/register/localuseinfo/
directory in encrypted form.

The Trojan then replaces the SMS destination address and the SMS text of the original
message (obtained from C&C or local configuration files), and tries to send it in three
different ways (simultaneously):

1. Via the standard Android API function sendTextMessage. It will lead to the same
malicious transact() method of the Trojan “isms” binder realization;

2. By sending an intent with the action
‘com.ops.sms.core.broadcast.back.send.sms.address”. It will be received and
processed by the same Trojan module but inside the “Messaging” or “Settings”
application;

3. By passing the new SMS destination address and new SMS text to the original “isms’
binder transact() method.

When the Trojan sends an SMS in one of these ways, it saves the new SMS destination
address and new SMS text in a special variable. And, before sending the new SMS, it
checks if it has not already been sent. This helps to prevent endless recursive calls of the
transact() method, meaning only one SMS will be sent per originally sent message (by the
parent application).

Besides the PISmsCore.initinstance() function, PISmsCore.invokeMMMain() calls another
function — PIMMCrack.initinstance(). This method tries to determine which version of
mm.sms.purchasesdk the host application is using (the Trojan knows for sure that the host
application is using this SDK, because it has checked for libsmsiap.so, which is part of this
SDK). mm.sms.purchasesdk is the SDK of Chinese origin — it is used by app developers for
enabling In-App purchasing via SMS.

public static int getHightVersion() {
PISmsCore.gethppllassloader () .loadClass ("mm. sms . purchasesde . f.c") .getMethod ("o") . invoke (null}) ;
return 0;

Thus, the mechanism described in this chapter allows the Trojan to modify outgoing SMS
messages that are sent by other applications. We presume that the Trojan authors use this
opportunity to secretly steal users’ money. For example, when a user buys something in
some Android game shop, and if this game uses SDK for in-app purchases via SMS (such
as mm.sms.purchasesdk), the Trojan’s authors are likely to modify the outgoing SMS so as
to receive the user’s money instead of the game developers. The user doesn’t notice that his
money has been stolen; instead he presumes he hasn’t received the appropriate content and
will then complain to the game developers.

17/21

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2016/03/07194336/zygote_en_12.png

Filtration of incoming text messages

The original dispatchPdus() is used (as shown in the diagram below) to dispatch PDUs
(Protocol Data Unit, low-level data entity used in many communication protocols) of incoming
SMS messages to the corresponding broadcast intent. Then, all applications that subscribed
for the intent are able to receive and process, according to their needs, the text message that
is contained in the form of PDUs inside of this intent.

The function which substitutes dispatchPdus() invokes the moduleDispatchPdus() method
from configpppl.jar. It checks the host application and if the application is not
com.android.phone, it informs and broadcasts to all apps in the system intent with the
action android.provider.Telephony.SMS_RECEIVED (along with the received PDUSs). This
standard intent informs all other applications (e.g. “Messaging” or “Hangouts” of the incoming
SMS).

If the host for the malware is com.android.phone, then Triada checks the originating
address and message body of the incoming SMS. The information that the Trojan needs to
check is contained within two directories: /sdcard/Android/com/register/infowaitreceive/
and /sdcard/Android/com/register/historylnfo/. The names of the files that are stored in
these directories contain postfix, which signifies the date and time of the last response from
the C&C. If these files were updated earlier than the last response was received, the Trojan
deletes these files and aborts the checking of the incoming SMS. Otherwise, the malware
decrypts all the files from the directories mentioned above and extracts phone numbers and
keywords from them to perform filtering. If the SMS was received from one of these numbers
or the message contains at least one keyword, the Trojan broadcasts an intent with the
action android.provider. Telephony.SMS_RECEIVEDcom.android.sms.core along with the
message. This is an intent with a custom action and only those applications that explicitly
subscribe to this intent, will receive it. There are no such applications on “clean” Android
devices. In addition, this method could be used to organize “exclusive” message distribution
for Triada modules. If some of the new modules subscribe to the intent with the action
android.provider. Telephony. SMS_RECEIVEDcom.android.sms.core, they will receive the
filtered message exclusively, without any other applications on the system knowing about it.

Concealing Trojan modules from the list of running services

This function is used to obtain a list of all running services. The Trojan substitutes the
function to hide its modules from this list. The following modules will be excluded from the list
received from the original getRunningServices():

e com.android.system.google.server.info

o com.android.system.guardianship.info.server
e com.android.sys.op

e com.android.system.op.

e com.android.system.kylin.

18/21

e com.android.kylines.

Concealing Trojan modules from the list of running applications

This function is used to obtain a list of all running applications. The Trojan substitutes the
function to hide its modules from this list. The following modules will be excluded from the list
received from the original getRunningAppProcesses():

« com.android.system.google.server.info

o com.android.system.guardianship.info.server
e com.android.sys.op

e com.android.system.op.

e com.android.system.kylin.

e com.android.kylines.

Concealing Trojan modules from the list of installed packages

This function is used to obtain a list of all installed packages for applications. The Trojan
substitutes the function to hide its modules from this list. The following modules will be
excluded from the list received from the original getinstalledPackages():

e com.android.system.google.server.info

o com.android.system.guardianship.info.server
e com.android.sys.op

e com.android.system.op.

e com.android.system.kylin.

e com.android.kylines.

Concealing Trojan modules from the list of installed applications

This function is used to obtain a list of all installed packages for applications. The Trojan
substitutes the function to hide its modules from this list. The following modules will be
excluded from the list received from the original getinstalledPackages():

e com.android.system.google.server.info

e com.android.system.guardianship.info.server
e com.android.sys.op

e com.android.system.op.

e com.android.system.kylin.

e com.android.kylines.

Conclusion

19/21

Applications that gain root access to a mobile device without the user’s knowledge can
provide access to much more advanced and dangerous malware, in particular, to Triada, the
most sophisticated mobile Trojans we know. Once Triada is on a device, it penetrates almost
all the running processes, and continues to exist in the memory only. In addition, all
separately running Trojan processes are hidden from the user and other applications. As a
result, it is extremely difficult for both the user and antivirus solutions to detect and remove
the Trojan.

The main function of the Trojan is to redirect financial SMS transactions when the user
makes online payments to buy additional content in legitimate apps. The money goes to the
attackers rather than to the software developer. Depending on whether or not the user gets
the content he pays for, the Trojan either steals the money from the user (if the user does not
receive the content) or from the legitimate software developers (if the user receives the
content).

Triada has clearly been designed by cybercriminals who know the targeted mobile platform
very well. The range of techniques used by the Trojan is not found in any other known mobile
malware. The methods of concealing and achieving persistence used by Triada can
effectively avoid detection and removal of all malware components after installation on the
infected device; the modular architecture allows attackers to extend and alter the
functionality so they are limited only by the capabilities of the operating system and
applications installed on the device. Since the malware penetrates all applications installed
on the system, the cybercriminals can potentially modify their logic to implement new attack
vectors against users and maximize their profits.

Triada is as complex as any malware for Windows, which marks a kind of Rubicon in the
evolution of threats targeting Android. Whereas previously, the majority of Trojans for the
platform were relatively primitive, new threats with a high level of technical complexity have
now come to the fore.

e Google Android

o Malware Statistics

e Malware Technologies
e Rooting Trojan

e Trojan Banker

Authors

 Expert Nikita Buchka

20/21

https://securelist.com/tag/google-android/
https://securelist.com/tag/malware-statistics/
https://securelist.com/tag/malware-technologies/
https://securelist.com/tag/rooting-trojan/
https://securelist.com/tag/trojan-banker/
https://securelist.com/author/nikitabuchka/

. Expert Mikhail Kuzin

Attack on Zygote: a new twist in the evolution of mobile threats

Your email address will not be published. Required fields are marked *

21/21

https://securelist.com/author/mikhailk/

