VB2015 paper: It's A File Infector... It’'s Ransomware... It's

Virlock

@ virusbulletin.com/virusbulletin/2016/12/vb2015-paper-its-file-infector-its-ransomware-its-virlock/

Vlad Craciun, Andrei Nacu & Mihail Andronic

Bitdefender, Romania

Copyright © 2015 Virus Bulletin

Table of contents

Abstract

Introduction

1. Ransomware and file infector evolution

1.1 Old file infectors, behaviour and purpose

Purpose:

Behaviour:

1.2 Old screen-lockers: behaviour and purpose

Purpose:

Behaviour:

2. Analysing_ Virlock, Refining Behaviour, Combining Purpose
2.1 Analysing_Virlock — refining_behaviour

2.1.1 Not embedding_ malware code, but embedding_a clean file

2.1.2 Anti-analysing_techniques

2.1.2.1 Code obfuscation

2.1.2.2 Anti-debugger

Multi-staged unpack

Staged unpack

Checking for the presence of a debugger
Rooting_inside the execution environment
2.1.2.3 Anti-emulation

Randomly chosen API calls

Increasing_the number of executed instructions
2.1.3 Cheating_users

2.1.4 Polymorphic engine

2.2 Analysing_Virlock — Combining_purpose
2.2.1 File infector and screen-locker

3. Getting_to the Core of Virlock

3.1 Revealing_ the core, inside different malware versions

1/29

https://www.virusbulletin.com/virusbulletin/2016/12/vb2015-paper-its-file-infector-its-ransomware-its-virlock/

3.2 Searching for a match
3.3 Cleaning_infected files
4. Statistics

5. Conclusions
Acknowledgements

Abstract

Win32.Virlock, with all its variations, is both a new kind of file infector and a piece of
ransomware (screen-locker) at the same time. In this paper, we aim to cover the techniques
used by this virus and discuss methods that can be used to detect and disinfect systems
affected by it.

Virlock uses several techniques, including code obfuscation, staged unpacking, random API
calls and large/redundant areas of decrypted code, to make it difficult to analyse. It also
protects its code by decrypting only the sequences that are going to be executed. After a
sequence of code is executed, Virlock encrypts it again. By staggering the
decryption/encryption process, it ensures that a memory dump at a certain point will not
reveal its features but only the piece of code that is being executed at that time.

There is also a moment in its first execution when it shifts its shape by changing certain
instructions and encryption keys so that new generations will look different. Each new
infection is different from any other, mostly because of the timestamps that play an important
role in computing the encryption keys. Having these protection methods will also make any
clean-up attempt quite a challenge. The disinfection process for this virus involves searching
inside malware code for specific instruction arrangements.

We will present some ideas that could help in detecting and disinfecting a Virlock-infected
system.

Introduction

Malware has grown significantly in the last decade, both in prevalence and complexity. It has
developed from innocent bad jokes and simple trojans to advanced polymorphic file
infectors, rootkits and ransomware. While security companies have studied all the types of
malware and built specific categories for them, it can be difficult, today, to categorize a
malicious application as a trojan, a piece of spyware, or even a file infector, as they tend to
be more complex and to embed several different kinds of behaviour at once.

Security vendors have been forced to develop different kinds of engines to reach faster
conclusions in malware analysis, be it static or dynamic, but security products by definition
are usually a step behind the malware creators, even if we try to minimize that time-interval.
The security industry had tried to figure out better solutions and better engines to prevent

2/29

malware execution in advance by using artificial intelligence, but no matter how hard we try,
or how much time we invest in research, there is always something new which doesn’t get
caught. There are many cases in which we reach the conclusion that an engine is not doing
the best to protect against a new piece of malware, or that making a small improvement will
slow down the entire product. In some cases we reach the conclusion that a particular
detection method is simply not adequate for a specific piece of malware.

1. Ransomware and file infector evolution

1.1 Old file infectors, behaviour and purpose

Known categories: appenders, prependers, EPO, polymorphic, interleaved.

Purpose:

The first file infectors were just bad jokes or proofs of concept. The earlier ones interleaved
malicious code with original application code or prepended malware code to a clean
application. By prepending the malicous code to a clean application, the authors increased
the time needed for analysis, and also gained time for their malware to spread while users
were searching for solutions. This is also a safe way to expose users’ computers to hackers;

file infectors act like agents, collecting confidential user data, or continuously delivering other

kinds of malware to the infected system.

Behaviour:

Malicious code is executed first, infecting the system or ensuring it is running within another
process or thread and eventually deploying any missing files, then it executes the original
application. When a portion of the clean application is executed, the malware will also be
executed at some point, this being triggered by a patched API import or by malicious code
insertion. After the malicious code has finished running, the clean application’s code
continues to be executed from where it was left off.

3/29

AL

LegalCopyright

Body of the fileinfector (appended to the end of the clean application)
Figure 1: Example of a common file infector (appended code to clean application).

1.2 Old screen-lockers: behaviour and purpose

Purpose:

An easy way to get money from users by blocking access to their working environment.
(Childish play for grownups!!!)

Behaviour:

This kind of malware creates an additional desktop and switches to the new environment,
just as if another user had logged on. Some of them may encrypt user files, but most of them
don’t. The ones that do encrypt user files, like some CryptoLockers, do not lock the user’s
screen, because the damage is already at a stage where the user might wonder where the
backup is, or whether a decryption tool is worth paying for.

4/29

https://www.virusbulletin.com/files/7814/5201/3430/Virlock-1.jpg

KOMIIBHOTEP 3AB/IOKHPOBAH!

Baw koMmneioTep 3abNokMpoBad 58 NpocMoTp, KOMWpoRaHWe W
THPaMWUPOBAHWE BUASOMATEPHANDE COAEPMALLMXY ANEMEHTEH Neodnnim
W HACHNKMA HAO neTeMK. [NA cHATKMA BnokpoB Bam Heobxonumo

onnNaruTe wWrpad & paamepe 500 pybneid Ha HoMep BunaiH
8-909-161-36-63. B cnyyae onnaTkl ¢yMMbI paBHOR WTpadgy nvbo
NpeBbLILAKWEA @8 Ha DUCKANBHOM YeKke TepMUHana GyaeT Hanedyarad
kof pazbnokMpoBrM. Ero HYMHO BEECTH B NOMNE B HAKHER YACTH OKHA M
Hawark kHonky “Pazbnokmpoeatk”. MNocne cHATHA GnokMpoBkk Bl
[OOIMHHBl YO&ENWTE BCE MATepHANLl COAepMAaLHe 3MeMEHThI HACHITHA W
negodgunan. Ecnm B Tededwe 12 vacoe wTpadg He DyneT onnadveH, BCe

A&HHLIe Ha Bawem nepcoHanbHOM KoMNbloTepe GynyT GeasoaBpaTHo
yaaneHsl, a genc Gyaer nepegado B oy AnA pasbuparenscTea no
cTaThe 242 4.1 YK Pd.

MNepeaarpyaka MW BeIKMOYEHWE KOMNLIOTERa NPMESIET K
HE3aAMEONHTENEHOMY YaaneHnn BCEX AadHbIx, BENIOYan Ko
ONEPALWMOHHOA cHCTeMbl i BIOS, ¢ HeBOIMOMHOCTLIO fankHe W ero
BOCCTAHOBMNEHWA,

—

2: Ransomware blocking user screen and requesting payment.

5/29

[7cdBe2fcSfe2dcI51124417cc1d2 Jafa

set Fewscoripr. createobject("scripting. Filesystemobject™)

o EFFOr FESUME NEXT

%:ID while f.deletefile("C:sampleshFodseFocife2dcs 512441 7ccld23ata. bender, exe™)

oop

do while true msgbox “vour files are encrypted with RSA-1024 algorithm.

To recovery your files you need to buy our decryptor.

'_|I'n buy decrypting tool contact us at: cipherdd0l@yahoo. com™, 4144, " ATTENTION !
| Toop

£ ! READ_ME_! - Motepad

vour Tiles are encrypted with RSA-1024 algorithm,
To recovery your files you need to buy our decryptor.
To buy decrypting tool contact us at: <ipherd0008yahoo. com

mmm BEEGIMN =mem

ADTDGLEED

0L 02 Q00001 6800000044 000000BEEEAFSE20DEBE
T T2 2E2AGDEATAIF 2 2BEFGS FFTFFIAAACFG
BEFFE2990209C14 DEAFBEOAGC 7BBIBITE49ATEFTT
ZFBDZ2ETALA0FG0CEDFAFT23BDAILI0ECEDADEFS
3ES3S1CIBACBBERMELELLCODIAS 3464 A0AF AFBF
18674 034 10805BADL03DFOET 2EGF2 SFCACBIEDES
1550023 11EA334 381 0EBAS92 LECR0E4FOESBT 2340
mmm END ===

" ATTENTION ! £ 2 notepad

Figure 3: RSA1024 CryptoLocker displaying message to user.
Let us mention some of the well known pieces of ransomware among both families:
ACCDFISA, PornoBlocker, Rannoh, IcePol, CryptoWall, CoinVault.

In the following chapters we will uncover the main features and components of Virlock;
however we are not going to focus on the infection process. This type of malware has the
vaccine within itself, but only applies it for each infected file at runtime. We will focus mainly
on its design and its abilities to sneak past some security solutions.

2. Analysing Virlock, Refining Behaviour, Combining Purpose

Virlock combines the technology of file infection with the screen-locking features of regular
screen-lockers. The authors embed both infection and disinfection tools, throwing away the
management system to bind infected users to some private decryption keys. Their remaining
concern is about users who are willing to pay their fee rated in bitcoins.

The screen-locking picture is very similar to that of those pieces of ransomware that pretend
to be some higher authority with full rights to request certain amounts of money from home-
users — for example as fines (see Figure 4). Most texts appearing on the locked screen are

6/29

trying to scare the users, for example threatening them with prison for up to five years or
more if they do not pay the money.

This computer contains pirated software and has been blocked by ICE-Homeland Security Investigations.

Willful copyright infringement is a federal crime that carries penalties of up to five years in
federal prison, a $250.000 fine, forfeiture and restitution (17 U.5.C s.506. 18 U.S.C 5.2319)

As a first-time offender you are required by law to pay a fine of 500 USD

If the fine is not paid within three days, a warrant will be issued for your arrest,

which will be forwarded to your local authorities. You will be charged, fined, convicted for up to 5 vears.
How to pay a fine? There are two ways to pay a fine:

1.¥You can pay the fine online through BitCoin. BitCoin is available nationwide.

Click the tabs below to find the nearest vendor. Vour computer will be unlocked after the payment is made.
2.(0ffline Option) You can come to your local courthouse and pay the fine at the "Cashiers' window.

A special restoration software will be sent to you by mail within a week after the payment is made.

Teo regain access now transfer BitCoins to the following address (click to copy)

1NdRBtEKRBoQioiy APhpuksgUet6XtEAW

After the payment is finalized enter Transfer ID below,

Amount: Transfer ID:

BTC 1.773 [FAY FINE

MNote: AllTiES on thds compimer v been encrypted with a strong syaimetric algorivhim amd a $096-Li key. Files will be inaccessible until the Tine is pad.

AP 10 Temove this message will result in imeversible damage 1o your files, hardware and Windows installation, View enciyptad files
Payment BitCoin Information BitCoin Exchanges BitCotn ATMs Internet Browser Motepad

dand and other law enforcement agencies

tar

Figure 4: Virlock screen lock.

2.1 Analysing Virlock — refining behaviour

Virlock is changing the way in which the infection process takes place:

« It has an ingenious polymorphic engine (most file infectors don’t come with such an
engine), making the detection process more difficult with each infected system.

o It doesn’t just insert a piece of code into the clean application as most file infectors do,
but the entire clean application becomes a small piece of the malware itself (similar to
Morto/Sality/ACCDFISA).

|t uses techniques to cheat users at first glance (seen in a few other pieces of
malware), to bypass users’ doubts that an infected file is really malicious.

It has a lot of features (not new, but different) that make the reverse-engineering
process more difficult, overload the analysts and annoy them.

« It has screen-locking (borrowed from screen-lockers) to increase the time taken to get
to an infected sample — most home-users prefer to reinstall their operating system
rather than trying to remove the malware.

7/29

e |t uses multi-threading and rooting into the environment to get full control over the
infected systems without the need for drivers, and to execute different paths inside the
same application, but from different points of view (running
processes/services/threads).

2.1.1 Not embedding malware code, but embedding a clean file

The infection process is somewhat different from the infection process of other known file
infectors. However, there are small similarities between Virlock and both the Sality file
infector and the ACCDFISA ransomware:

» Virlock and Sality: both replace the clean application with the malware which contains
the original application packed or modified.

 Virlock and ACCDFISA: ACCDFISA uses the RAR archiver to make all the infections
self-extractable — this is very similar to Virlock’s behaviour but with the small difference
that Virlock uses its own techniques to accomplish the same behaviour.

2.1.2 Anti-analysing techniques

At the moment we know about five different Virlock versions. They’re not too different but
they do differ in such a way that some simple checks will not catch them all.

2.1.2.1 Code obfuscation

One of the main techniques used to harden the reverse engineering and analysis process is
obfuscation.

Obfuscation is present in all five versions and is similar between some and different between
others. However, while obfuscation may contribute to detection, it is not a key-point in doing
that.

Figure 5 shows some screenshots of obfuscated code from four different versions.

8/29

https://www.virusbulletin.com/files/6214/5201/3569/Virlock-5.jpg

If we are going to trace the entropy of those pieces of code, or count the number of some
target instructions which repeat excessively, we can create some checkpoint conditions that
Virlock infections will not pass. Code can be obfuscated in lots of configurations, but some of
them are built based on some basic principles. It is not too difficult to observe the criteria with
which an obfuscation engine was built.

We could also de-obfuscate some instruction blocks by following the true aim of an
obfuscated piece of code. However, de-obfuscation becomes irrelevant when one can look at
the execution traces. They are still a plus when building documents to reveal the true
meaning of some code.

Obfuscation also contributes to making the static analysis procedure more difficult.

2.1.2.2 Anti-debugger

There are lots of anti-debugger techniques, and usually, malware creators combine those
features with techniques to detect virtual machines, emulators or supervisor tools like PIN
from Intel (which allows one to instrument an executed application), or API loggers which

inject tracing modules or pieces of code into a target process.

Virlock does not combine all of these, but it uses the strongest of them all, in order to bring
the analyst to a point where he/she could easily give up.

Multi-staged unpack

This is a known technique for making the reverse engineering procedures harder, for both
static and dynamic analysis. If a piece of code is unpacked piece by piece, one at a time,
while it is executed, then performing a static analysis could be very difficult. Following the
modifications inside a debugger might also be tricky, as some debuggers simply refuse to
disassemble the code at the point where they think that there is no code in the first place. If
we add to that the fact that code might re-encrypt the previously executed code, then things
get really interesting.

9/29

I exacute execuls
caoda code

exxecuts
coda
execule axecule
code code

Figure 6: Short example of execution flow, following the chunk encryption/decryption
template.

Staged unpack

Staged unpack is a feature which minimizes the ‘area’ of ‘plain-text’ code at any time. There
is a piece of code, more like a template, which repeats itself along the execution of the
malware, and at each step:

|t hashes the buffer to be unpacked

It decrypts the next piece of code, only if the hashes match

It executes the code inside the decrypted chunk (possible more function-templates)
It rehashes the unpacked code and alters the hash, inside the code

It re-encrypts the previously decrypted code.

The template follows the data structure of a linear linked list, where each node is itself a
linear linked list of many possible function calls. We are seeing linked lists inside linked lists
mainly because each function call inside such a code-chunk calls another unpack-execute-
repack template.

Figure 7 shows the code template for the mentioned trick inside a particular infection, which
starts by checking the integrity of the packed chunk-code at 40193F, decrypts the buffer at
4019C0, jumps to unpacked code at 401A7E, and finally rebuilds the HASH for the unpacked
code which it overwrites at the beginning of the code template and re-encrypts the entire
code starting at 401A7E.

10/29

https://www.virusbulletin.com/files/8914/5201/3588/Virlock-6.jpg

(RxdBL 926], Bwd2hibec

f DECRYPT MEXT CHUINK
%, LI.-.M|'1"?¢-I.|II

IUMP TO DECRYFTED-CHUNK

igure 7: Template-cod ftaged unpack (yellow square -> unpacked code).

If someone is trying to make some process-dumps to have a look at the code inside the
malware while it's executing, they might be surprised to find that the malware is almost fully
packed, just as it was in the first place. The surprise gets bigger, as one is thinking that the
malware might have some running threads which did not get dumped at the time of the
process dump and while trying to grab all the memory pieces, one will obtain nothing more
than the first process dump.

Checking for the presence of a debugger

Every infected sample checks for the presence of a debugger at some point. There is a
standard way to do that, which is by querying a flag inside PEB, called isDebuggerPresent at
[fs:[30h]+2], bit O (see Figure 8).

BE49592F8 |] 985531 F8 {15} mow edx,. BxF2315598
AA4959FD |3186 X0 [ezil. eax
BB4952FF ICH B4 a add esi, Bx4
AR495A02 |EB B- Jmp
81F2 1 (TR 0 KO edx, BxF7984cal

8495 ; mow ebx, Bxfd7?6 d
AB495ABF |81F AFD d »op Axfd6a782a
BR495A15 |[81F3 iy - —
B8495A18 |64 A1l IBBBEBOBA di mow
B84?5A21 |8n48 B2 I mow
pa495n24 |3C A1 {= cmp
842526 |75 B85 Jjnz
BB8475028 |E8 2CBEFG&FF g,.d: call

195A2D |C7B5 EBS84980 |GRT
BB425A37 |BF31 el

8: Anti-debugger checking inside PEB.

In our example, if it's being debugged, the code jumps to 0x495A2D . If we are taking a
closer look we can see in Figure 9 that the code is being executed in those conditions.

11/29

https://www.virusbulletin.com/files/5814/5201/3609/Virlock-7.jpg

BB481B85% loc_48@1885:
BB461885 . rdtsc
BB4@1 887 xO1
0461889 2 5 X0
BAR4@1 888 B AdR48088 Mo

BB4a1 898 3 Rt div
BB481892 2 inc
BB481893 ? BEB200806 ur add
BB481899 |33C ; XOr e
BB4B189B loc_4B189B:
BB4B189B H . hsuwap
AR4BA1 89D : 0

AR4A189E

88481 8n8

BB4818R2

BB461 B8R4

BB4E1 876

BBR4E1 808

BB4E1807

Aa4@igaB |7

BB4a18aD 33D F3ip449%98

BB4A1884 |75 CF

BB4018BE |52

BB481BH? |FFi5 FF&4490068

BB4B18BD |EB Ck

9: Code executed when debugger is found.

D2

Eventually we find a piece of code looping on itself and calling Sleep.

Most of the time, we can trick the application by changing the condition flags; and thus the
condition itself or the value being compared. However, the time spent getting one’s hands on
that piece of code is sometimes too much to continue with the dynamic analysis that way.

Rooting inside the execution environment

We mentioned earlier that the malware does not use all known methods to harden the
analysis procedure, but it uses the strongest of all methods gathered together to at least
discourage analysts or to create problems for automated tools.

The technique described in this section does not refer to a behaviour that rootkits are using,
but rather to a behaviour which spreads the infection inside the infected system, making self-
copies and additional processes or services, each of them with a couple of threads. If the
malware gets to execute inside such a configuration, then the synchronization policies
between processes and threads will enable it to do its main job, otherwise one will not get
anything useful from it.

At the beginning of the execution, an infected sample will first create two copies (of the
original infection core — morphed) inside hidden folders with random names but constant
length (eight characters), one located in %AllUsersProfile% and one inside %UserProfile%:

[Y%oUserProfile%\[a-zA-Z]{8}\[a-zA-Z]{8}.exe]
[%AllUsersProfile%\[a-zA-Z]{8}\[a-zA-Z]{8}.exe]

The copy located in the %UserProfile% folder is executed first using CreateProcess and it is
also set as a starting point inside the startup key:

12/29

[HKCU\Software\Microsoft\Windows\CurrentVersion\Run].

Second and (in some cases) third copies are written in the %AllUserProfile% folder inside
different subfolders. One of them is executed like the first copy in order to work together with
it (one of the copies ensures that the other is not killed, and if that happens then it just
recreates it), and the other is created as a service to supervise some tasks and gain
privileged access to operating system components.

It is important at that point to note that the malware copies are not only different from the first
one (using a polymorphic packer), but also have some key-flags changed. The changing of
flags will enable, for example, one of the copies to execute a slightly different path inside the
malware just like a switch-case block. For example, the malware self-disinfects the file inside
it, only if a certain flag located at a hard-coded address says that this can be done.

A series of batch-files and VBS scripts are written on the disk temporarily to help the
malware infect files by first making a backup and then overwriting the target file. Scripts are
also used to change security policies inside the registry, in order to hide the malware or to
disable default security features.

The following is a list of commands altering registry entries:

reg add HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\Advanced /f /v
HideFileExt /t REG_DWORD /d 1

reg add HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\Advanced /f /v Hidden
/t REG_DWORD /d 2

reg add HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System /v
EnableLUA /d 0 /t REG_DWORD /f

Straight after the installation, the malware tries to brute-force the user logon account
password with at least a few thousand common password templates, and straight after that
creates a new user with a random name and full administrator rights.

]. l Administrator

Microsoft® ’
Windows | oqwsy58r2kwOnvf5

To begin, click your user name

10: New account created by Virlock after successfully brute-forcing the administrator
password.

13/29

The following are just a few examples of passwords that had been tried by the malware:

password, [emalil protected], 1234, Password1, 123456, admin, 12345, PasswOrd,

, Pa$$wOrd, IQAZ2wsx, test, sunshine, , ,
123456789, 12345678, abc123, qwerty, letmein, changeme, master, Password!, passwOrd,
1q2w3e4r, Password01, password1, hunter, gazwsx, welcome, Welcome123, secret,
orig_Administrator, princess, dragon, pussy, baseball, football, monkey, 696969,
operator123, NOth1n9, , 1g2w3e4r5t6y7u8i, abcd12345, 7654321,
Administrator, q1w2e3r4, q1w2e3r4t5.

A process created with the following command line will discard any possible API-tracer or
debugger following the process execution. However, we can still trick such behaviours by
altering the code at the entry-point and forcing a debugger to enter first, modifying the
parameters for CreateProcess, or using some advanced environment emulators:

CreateProcessW("%TEMP%\AccMwMEs .bat", " "%TEMP%\AccMwMEs.bat"
"C:\samples\virlock.exe" ", ...)

[AccMwMEs .bat]

echo WScript.Sleep(50)>%TEMP%/file.vbs

cscript %TEMP%/file.vbs

del /F /Q file.js

del /F /Q %1

del /F /Q %0

When an infected sample gets to execute on a clean system, we say that the sample is the
original one which is the primary cause of the infection. This sample is almost like any other
fresh infected sample, which was not executed after the infection. There are some flags
hard-coded into the malware so that it knows, at runtime, whether the sample being
executed is a fresh infection that has not been executed before, or a drop made by malware
targeted as a service or a malicious process running on the user’s system. Figures 11 and 12
illustrate that behaviour.

Hard-coded Meaning

value

0 Installed malware process, usually two synchronized processes

1 Original sample, installs malware components

2 Intermediate actions (while rooting into environment), brute-force user
account password

3 Multithreading and synchronization (screen-locking, online payment)

4 Sample is running as service

Table 1: Associations between hard-coded values and their meaning.

14/29

https://www.virusbulletin.com/cdn-cgi/l/email-protection
https://www.virusbulletin.com/cdn-cgi/l/email-protection
https://www.virusbulletin.com/cdn-cgi/l/email-protection
https://www.virusbulletin.com/cdn-cgi/l/email-protection
https://www.virusbulletin.com/cdn-cgi/l/email-protection

S]SEI5 b .o BR1E4 mow 2 ks - Huc

AB4@a157y |CYB5 BC1B4888 mou rd [Bx4818bc], Bx481988

AA4A1583 |FF315 DE184808 push +d [BAx4818d81

AR4A1589 |8FAS CA1B40A0 pop word [Bx4@818cA]

AR4A158F |E8 CRADBBAA call

AR4B1594 |ER &FAIBBBE '] call] e
AB48159% |833D CE184888 clp [Bx4818c8]1,. Bx1 Sample s crlglr‘lal one
48158 |75 3G Jnz

AR4A15A2 (Al DO184060 i nou eax, [Bx4@18d81

AR4A15A7 |A3IAS D41848P88 add eax, [Bx4Ai8d41

AR4815AD |8D2D AA144600 i= @ lea edi. [Bx4814881]

AR4A15B3 |@33D CC1l84080 add edi, [Bx4818cc]

A84A158% |A33D C4184808 add edi, [Bx4818c4]

AR4A1SEF |83C7 @8 add edi,. B=8

AR4A15C2 |8BiD EA1B4888 i mow ebx. [Ax4A18eB1

AR4A15CE |A2 BRE1G4080 1 mow [Bx4818h81, eax

AR4A15CD |893D BC18408A g nou [Ax4818bc 1, edi

A8481503 |891D CH1848688 [mow [Bx4818cB]. ebx

AR4A15D9 |ER 7EARBORG call

AB4A15DE loc_4815DE:

BA4@15DE |ER SnB:cBBBE call

BB4A15FE3 |833D CB184PBA chp dvord [Bx4818c81, Bx@ Sample is one of the 2 processes
B84815ER |74 @9 to J= g : :
AR4A1SEC 833D C8184000 a=Ut@ chp duord [Bx4@18c8]. B8x4 Sample is running as Service
AB4A15F3 |75 8B ud Jnz

AR4A15F% loc_4815F5:

BR4P15FS |Al F4184060 irte nou eax, [Bx4@18F41
AE4A15FA |3185 DC184868 14mTE Xor [Bx4818dc 1. eax

dword [Bx4818c81,. Bx4

call initialization for case 0-3
loc_4829BE:

cnp dword [Bx4818c81, Bx2

Jnz

call

call
call 2 -user password brute force
call

call

Jmp
loc_4B29E5:
cmp dword [Bx4818c8]1, Bxl
Jjnz
call

o
Ca . A
— LR
call installs the malware
qall

Jmp
loc_4B82AB8E:

cmp dword [Bx4818c81. BxA

Jnz

call

call 0 - installed process
call . :

i infects / supervise

Jmp
loc_482A28:

cmp dword [Ax4818cB81. Bx3

nz

call
call :>. 3 - creates threads
lungBZHED: process keep-alive
cﬂﬁ dword [Bx4818c81,. Bx4
jnz
moy dword [Bx4876875]1,. Bx4892bi1
mow eax, Bx45518b

mow [Bx4B898711,. eax .
lea eax, [Bx487871] Service
puszh eax

call [
loc_4B82A67:

push Bx@

call [1
dword [Ox4B8273B]1,. Bxdfd?749

Figure 12: Last context switching actions.

2.1.2.3 Anti-emulation

Most malware creators integrate into their applications techniques to escape emulation
and/or virtual machines. There are a number of known methods to accomplish that, we won’t
discuss all of them, but mainly those used by Virlock.

Among all the techniques which can cause emulators not to work, there are time constraints
and unimplemented emulated API calls. Some emulators which are at the beginning, might
have problems overcoming both of these, others might give up over time constraints (mainly
because authors consider this a performance hit), and other advanced emulators could solve
all of these in more efficient ways. However, most emulators are somewhere in the middle
most of the time. We have to consider the possibility that from time to time malware creators
reverse our engines and create malware which might target some of these security engines.
If that is the case, then no matter how strongly an emulator is built, it might become useless
if it's being targeted by malware.

Randomly chosen API calls

In an attempt to morph itself, Virlock rebuilds itself inside each infection, decorating the core
of functionalities with things like random API calls from randomly chosen modules. The
malware uses some tables, meaning that it does not choose from a huge set of possibilities
but from a finite set. It chooses a random number of libraries which the future infection will
import, and from those libraries, some random APIs inside each of them are chosen as
imports.

If emulators are only emulating a certain set of APls, then that might impede their ability to
continue at the point of an unknown API call, or an API call not implemented accordingly
(Figure 13).

d I

Figure 13: Consecutive blocks of random API calls, trying to escape emulators from the
beginning.

Increasing the number of executed instructions

Most malware, be it packed or unpacked, does not require more than a few million
instructions to be executed. At that point there are optimizations such as binary translation,
which tries to improve performance over emulated loops like decryption blocks which get to

16/29

https://www.virusbulletin.com/files/7014/5201/3737/Virlock-13.jpg

be executed by the real processor and not by the emulator. Binary translation is sometimes
combined with file-read operations — the best emulators will try to reduce the number of read
operations and at the same time the maximum number of instructions allowed to be
executed.

All versions of Virlock have a first stage decryption. Without it, any further code execution is
basically impossible. There is currently no version that executes fewer than 60M instructions
for that purpose, and the number of instructions increases for bigger files and larger
obfuscated loops, to hundreds of millions of instructions. Some infections also spread the
obfuscated loops over a large area of the infected file, thus passing to emulators the pain of
consecutive file reads, which also is a hit for performance.
There are many cases where the binary translation for loops is almost impossible if we are
not first going to de-obfuscate the code being executed by the loop. Figure 14 shows such a
case where just three calls to load more than 180 APIs from different modules is taking at
least 500k instructions.
BA45AE?1 BB 4CHBAAGE 3L now s, c 'l
BA4LAETS A3 C5B64508 1 -' mow B4t P BAX
BB45AEVE |EB BF Jmp
BE45AE7 loc_45AE7D:

ER 65860000 I :all Search for ModuleHandle

Ef 85040000 a 3 Search one &P)
ER nEBZBBBA B 3) GetProcAddress for API Flgure

8330 DPBR6A58E8
a0 kR

93 |7 L
BB45AE?S FAA14588 piE m dword [Bx45a1781. Bxhaf8TF
BB45AE?F |AF31 gl -

BE45AEAL 3185 EFA14588 iE x0T [Bx45alefl, eax

14: Loading some APIs (calling is based on templates discussed in 2.1.2.2).

2.1.3 Cheating users

Very rarely seen in other pieces of malware of this kind (which embed the clean file into a
totally different file), Virlock tries to cheat users into thinking that an infected file is actually
what its icon claims it to be. There is a stage in the infection process where the malware
searches inside the registry for the application associated with an extension type, in order to
get to the file containing the icon of the associated application. This is a primary step for
grabbing the icon and embedding it into the final infected file as an icon-resource. At a first
glance, there is no difference between the original file and the infected one.

Straight after the infection, the malware will set a registry setting to hide extensions for
known filenames. That way users will see their original files with their relevant icons and no
EXE extension, so no one will ever doubt the actions of the file.

17/29

:n Folder Options

General | iew | File Topes | Offline Files

Folder wigws

o “'ou can apply the view [such az Detailz ar Tiles] that
you are wzing for thiz folder to all folders.

[Apply to All Folders l [Reset all Folders

Advanced settings:

Dizplay the full path in the address bar
[] Dizplay the full path in the title bar

[] Do not cache thumbnails
) Hidden files and folders er Account Pictures\Default Pictures w a0

(%) Do not show hidden files and folders o
() Show hidden files and folders astronaut,bmp.exe
Hide extenzions for known file types ’
Hide protected operating system files [Recommended)
[] Launch folder windows in a separate process
Femember each folder's view settings
[] Restare previous folder windows at logon
[] Show Contral Panel in by Computer

beach.brp.exe

T';i. car.bmp.exe

[Restare Defaults]

1] 4][Cancel H Apply] ; ,.J chess . bmp, exe

e |

o My Computer | *
dirt bike.brp.exe |3 " dog.bmp.exe

W My Network Flaces

Details drip.bmp.exe : duck.brmp.exe

P

9,95 ME f My Computer]

inﬁs\all uzerssapplication datasmicrosoftsuser account picturessdefault picturesskick
Figure 15: Infected files with extensions revealed.

2.1.4 Polymorphic engine

The thing that makes Virlock so special is that it has a polymorphic engine which mutates its
shape in future infections. In this section we reveal the techniques used by the malware to
accomplish this task.

Straight after the API-loading process, the malware allocates two buffers (one of them big
enough to hold the core of the malware) to prepare the morphing process for the infections to
come. The core of the malware is somewhere inside the infected application, but only visible
after a few stages of successive decryption procedures. Figure 16 shows the schematics of
the core, which resides packed, layered inside any infected file.

18/29

Original infected file

Decoration code (created by morph-engine)

Malware Core Code,

usually the same for
different families

Decoration code (created by morph-engine)

Virlock core with embedded clean application.

A polymorphic engine is located in our example at 0x45E636 and it is called several times
during the installation of the malware into the newly infected system. Each new malware
copy will also have modified the flags discussed previously, accordingly.

push Bx8a

puszh [Ax4528181

call L 1 ; ; ;
st B SetFileAttributesi<dropped file> HIDDEN)
push Bxa

puszh @xa

push Bxa

puszh @xa

push [Ax4578181

push A . .

call MorphicEngine

puszh @xi@

lea eax, [Bx4573111]

puszh eax

call L 1

puszh @44

lea eax, [Bx4573211]

puszh eax

call L 1

puszh @7

pui¥ : [Bx45§818]

R . . ” o
s R SetFileAttributes(<dropped file> HIDDEN)
puszh Bx459321

push Bxa

puszh @xa

push Bxa

puszh @xa

push Bxa

puszh @xa

push Bxa

puszh [Ax4528181

call L 1 =i =
s By e CreateProcess{<installed process>)

= ret
Code calling the polymorphic engine.

19/29

The process of shape-changing is accomplished in two steps, for each of the two dropped
files which are going to do the real infection. Figure 18 shows the preparation for the
reshaping of a self-copy.

aa459a7? |FF15 S1B74588

a8459a7Dh |6A B8

BAB45?A7F |6A B8

AR459A81 |6A BA

AB459A83 |6A BB

B8459A85 |eA B8

B845?2a87 |FF35 189845688 iE puLs [i [Bx4598181

@B459RSF |ES n24B6@ER "

3459 AZ24BADPE oK H H

88459094 |en 18 i Bx18 Fill Murphlng TABLES
AB45%2A96 |8DAS 119345688 oE > a eax, [Ax4593111]

Ba459A9C |58] eax

BAB452A9D |FF15 11B74588) [

BB459AR3 |bA 44 ,J'D Bx44

BAB45%2AA5 |8DA5S 219345688 ' 11 eax,

BB459ARB |58 eax

FF15 11B745688 3 1 [
6A A7 J 5 Bx7?
FF35 189845088 lwor
BB459aBA |FF15 S1B74588

aB452aCcaA 11934588

Ba459AaCS 6B 21934588

BaB45%ACA

BB459ACC

BB452ACE

BBa459aD8

BB459aAD2

Ba459aD4

BB459ab6 |6A 8

AA459AD8 |FF35 18984588

A8459ADE |FF15 61B74508

AB457AE4 |B8 BlP8BBBA

BH459AE? |G3

Figure 18: Preparing the reshape of a self-copy.

The first stage consists of preparing random file names, some random seeds, and the buffers
involved in the morphing procedure (see Table 2).

Buffer alias Buffer size Buffer ptr ~ Description

TAB1 0x200 0x970000 Randomization table 1

TAB2 0x2300000 0x1100000 Working buffer for reshaping procedure
TAB3 0x10000 0x9A0000 Intermediate table 1

TAB4 0x10000 OxAA0000 Intermediate table 2

TABS 0x200 0x980000 Randomization table 2

Table 2: Buffers involved in the morphing procedure.

We also see at this step the creation of two different MZPE file headers, originally packed
inside the malware (see Figure 19). Their purpose is to fulfil the creation of the processes
which will actually carry out the infection.

20/29

Figure 19: Preparing headers for the files to be constructed.

In the beginning of the second stage, the malware creates a custom import table, also based
on time seeds (see Figure 20). The RDTSC instruction, which provides those time-seeds, is
called very frequently, not only to randomize stuff, but also for choosing random locations in

the target application, where relevant data regarding decryption keys, buffer pointers, etc.,
will be placed.

20: Building a customized import table.

In Figure 21, we can see a sequence of instructions which progressively builds the
decoration of the new infection.

21/29

https://www.virusbulletin.com/files/9814/5201/3919/Virlock-19.jpg

Build Compare instructions
and conditional jumps

esi. [BuedShb

4t
pedl

FCHLBA |piEe
W

Figure 21: Reshaping a new infection.

All the steps required for a full file creations are called in a sequence of three consecutive
calls, as shown in Figure 22 {reshape / append / recrypt}.

call

MmO * A5 2321

mow B 11, eax

puzh

pop

add WO A 1. Bx2B006

Pre?]are import table
Reshape the decoration

] . call Append Core-code
5151515 0 call i
D5 B94588 84 LIE pop word [51 Crypteverything
CE 1E mow

add

mow

sub

mow

mow

Figure 22: Main reshape steps for self—copies.

2.2 Analysing Virlock — Combining purpose

We have seen lots of malware categories that combine their powers with other malware
categories. The results of those combinations have, most of the time, been some kind of
surprise for security products. Not only do malware authors learn from security products how
to improve their performance, but we also learn from malware authors that there is always
something which we have not taken into account in the first place. This sounds like an

22/29

https://www.virusbulletin.com/files/7914/5201/3973/Virlock-21.jpg

evolving loop, where security products try to nullify malware actions, while on the other hand
malware authors try to nullify security products’ actions. Well, at least the loop is more like a
three-dimensional spiral, otherwise we would not exist at this moment in time.

The following is a brief history of combined malware actions including Virlock, which we find
as a reference for this case:

Viking / Jadtre — rootkit and file infector
CBDoorK - rootkit and backdoor

Sality — file infector, botnet, worm
Virlock — ransomware, file infector.

2.2.1 File infector and screen-locker

Until Virlock, no other malware combined these features. Malware authors who write
ransomware are doing it for the money — they say as much in their readme files appearing on
the infected computers. For example, a piece of ransomware using the Bitlocker feature from
Windows tells the infected users that ‘This is just how business works, pay and you'll get
your data back.’

Early versions of ransomware only locked users’ accounts, hoping that some of them would
fall into their trap — and they succeeded, but there is always room for improvement. Some of
the next versions tried to encrypt users’ files with symmetric keys and locked the users’
accounts, making it more difficult to revert the process. But as the security products improved
their strategies and delivered rescue-CDs to users, malware authors improved their methods
of cryptography, using asymmetric algorithms, and gave up the screen-locking. When
infecting users with those kinds of ransomware, malware creators need a management
system in order to bind private-keys with malware versions. Maybe they did not expect their
methods to be so fruitful, but they seem to be overwhelmed by the number of infected users
and public/private keys. It is not unusual for a user to try to pay, and get a decryptor which
attempts to decrypt files from a different infection.

Virlock tries somehow to escape the load produced by the key-infection management system
while improving the old techniques used in locking files and user accounts by embedding the
clean file and packing it safe inside the malware with random and hard-coded keys. It also
tries to crack users’ account passwords, to lock their account in order to make it as difficult
as possible for the users to recover their files. Using the presented technique for file
infection, security products have to consider an entire arsenal of variables in order to begin a
clean method, because it would be very easy to miss a certain hard-coded-key and to
damage the file instead of recovering it.

3. Getting to the Core of Virlock

23/29

We've seen so far that Virlock uses a template-based reshape, so we can use that template
as some kind of regular expression to find some inner pylons / code-blocks to start with.
Studying the five different versions until now, there are certain similarities between them,
which will lead us to classify a sample as infected.

In this chapter we will try to reveal the malware’s weak points and see how those
weaknesses may contribute to studying it better in all its present forms.

3.1 Revealing the core, inside different malware versions

First, there is an initial layer of decryption which will end up by continuing the execution
somewhere at FirstSectionVA+0x400 or FirstSEctionVA+0x1000 with or without additional
obfuscated code and possibly a short second decryption stage (Figure 23).

2 = - < try Point
rd [Bx4A14421, Bx158%fc e - Cta] dword [Bx481412]1, BxefBd?d

eax,. BxB108d483F
1416 :
Bxf2

(i E

edi

edx

ehx,
edx.

ehx.
edx.
eax,

1 [8x481262]), Bx4ffd3c

Jmy
loc_4012A9 :
mow esi, Bx4813ab

Figure 23: First chunk of relevant code in all five versions.

There are two major switch sections inside the malware which choose a path of execution
depending on the hard-coded flag discussed in section 2.1.2.2. We will consider the two
sections as the core of the malware, as they are present inside all versions, no matter how
obfuscated the code is, and the path to those functionalities is unique if an emulator behaves
just like a real operating system.

Not all versions are as compact, as shown in Figure 24. There are some cases where junk-
code might appear between relevant instructions in our target code, but ignoring them is not
as difficult as one may think.

24/29

O EAX gD

ROV DS FTR bS:
ROV DRSS FTR DS:
MOV DROGD PTR DS:[40
CALL wi. 0040173
CALL wiI.00401K¢
CHF DWOFD FTR D31 [400A24),

INT FHRT

MOV ER,00TE
LEA EST,DWORD FTR D3: [401753]
MOV ESC,DWORD FTR D: [AD1723]
MOV D9OFD FTR. IS¢ [401 7
ROV DW0RD FTR DE:[4017071,
FUSH DRORD FTR D: [400720]
FOF TACED]
CALL
CALL
CHP DTOED FTR DS

i [401717]
D8 [40170F]

w
|"-"F|

Lol
CALL
CALL ik
CNF D4ED TTR

INT SHORT O0bSDdeS. 00401448
MOV EAX DUORD FTR Da: [40175F]
iR BORD FTR D:[431727, EAX
MOV ERX,

LEA EDI,DWORD FTR D31 [4024E1]
NIV KB DUORD PTR D31 [401727]

OopEC-4bE, D0ADLT

O B, (b

LEX EDI,IUGRD FTR DS:[40L
B0V EEN,IWIRD FTR DE:[40L
B0V DWORD FTR D31 (4016EC], 004

BT DWORD FTR D3i[4016F0], 04477750, G401

aBLT1E)
1401715] BAX
Dn [A0245L]
DSz [401T10]

Ll FD ITR DE:[40 31 [4016EC] EAX
N0V DROFD FTR 4016F0] EDT
£ MOV 1R FTR A1EFA], ERY
CALL w2.004017% CALL 1 W d
LULE D FTR DS: [&00442] OF TCBAF MOV DECRD FTR A 2], 0447775
RITSC Liged
WOR DPORD FTR DSz [400402],ERX HOR MRS FTR DS:[401 a 41.EAd
KOR DRORD FTR. D33 [4004D6] ,ERX XOR DO FTR DS:[401200], ERX 20 Eax
WOR DRORD FTR DS: [400501],ER% ‘OZF- DRORD TR D3 B EAX
CALL g4anL CALL 0447773k, 00401354
ROV DMOES: FTR BS: [4054TT] IR B DVGRD FTR Dl [A01ERA], A
CALL w2, 0040144 CALL 0447773, 040152
wap L
W L
THF ol Sdadd0AF ~HEF TP O0ES0ANS . D0S0E IHF J 03 THF 044 0402 4%
RETH FETH Fre TR FETH

Flgure 24: A comparison between all five versions inside context-switch sections.

3.2 Searching for a match

Most detection algorithms will just try to find a relevant piece of code inside a piece of
malware. Looking at the code shown in Figure 25, we might be tempted to say that we found
something relevant for our malware (a branching point where it chooses to execute as
installed or as a fresh infection). However, in other malware versions we found other such
pieces of code, doing the same thing but with modified instructions. Considering this, the
detection cannot choose that sequence of instructions to follow, but we need some rules
depending mostly on the constant addresses given in the piece of code and the instruction
types, which are not so different across different malware versions. This kind of matching
seems to be as powerful as a regular expression-matching algorithm, but additional changes
have to be considered.

L ECi640808 : [Heecl, Bxd4s
5 FBi Ba] » Bx48173c
» BC174080 5 L P 1 [:
L F4i64080 pop
CHABARRR call
r.dl] .
[Bx4@16fc], Bxl Fresh Run of Infection

i mou o, [Bx4@17 Sizeof{Filename)
AR1 74088 add :
[A1 84888 1 L lea

B) BBl 740808 add
Uﬂ4ﬂl 481) FB164888 2, audd
Ap4p1 487 ? B8 add
aa481 48n) 141748088 N3 mow
BB4R1418 A 1 i | mow
AB4P1415 |893D FPi640088 ¢ mow
BA4R141B |891D PF4164888 I Mo
aa4ai421 £ YEABBBBE g~ call
BR481426 loc_481426:
BB481 426 : '—‘JHEL‘IHEB
BE481 B B :_ D 64888
a@4814 L'I'J
BE481434 ﬂ_'l_'ln FC1 64888 [Bx4B16fc], Bxd

Figure 25: Piece of malware cde to decrypt clean file.

Sizeof{MalwareCode)
Absolute address for all operations
Sizeof{CleanFile)

S‘I.Euf[DE:rlpttunCude}
Sizeof{HeaderStructure)

Decrypt clean file

[Bx4B16fc], BxB8

25/29

https://www.virusbulletin.com/files/5414/5201/4058/Virlock-24.jpg

3.3 Cleaning infected files

To recover the clean file from the malware, we need to follow the code until a point at which
we can check whether the infection contains a clean file (switch-flag == 1) or not (switch-flag
I=1). If we do have a clean file, we need to grab the hard-coded values inside the malware
(different with each infected file) and to force the emulation of decryption functions.

A simple clean procedure is to use the emulation to execute the decryption function. After
that, we can grab from memory, using the specified variables, the actual clean file. The
starting point of a particular clean file inside the malware is shown in Figure 26.

8 bytes Header
FileName
CleanFile

Figure 26: Finding clean file using hard-coded variables.

4. Statistics

Figure 27 shows a graphic for the timeline of Win32.Virlock.Gen.1, which is the most
widespread version at the moment.

Timeline

P

/TR

- Winld Virlock Cen

Unique systems

Figure 27: Infection timeline for Win32.Virlock.Gen.1.

26/29

https://www.virusbulletin.com/files/4414/5201/4136/Virlock-27.jpg

In Figure 28, we see how many systems have been infected since March 2015 for the three
most common detections. Almost 39,700 unique files were detected by Bitdefender on 148
systems in less than five months. The highest number of infections were detected in Canada
— almost 30,000, representing 75% of all infections. We expect a small increase in the next
few months as the authors of the malware seem to still be working on it, and a total decrease
by the middle of next year, by which time many security products will have solutions for it.

Inf. systems m Country name Inf. systems Inf. files

China 22 192 Canada 3 19124
United States 11 663 [| Australia 2 IC
Germany 10 106 | United States 2 281
Russian Federation 9 82 I Indonesia 1 4
Canada i} 10101 Russian Federation 1 1
Auslralia i 3708 . Vietnam 1 115
France 5 172 Namibia 1 23
Switzerland 1] 909 Switzerland 1 29
Romania 5 219 .

United Kingdom 4 544

Iran, Islamic Republic of 3 7T Country name Inf. systems Inf. files
Sweden 3 42 - France 2 205
India 2 15 | | Canada 1 1
Bosnia and Herzegovina 2 47 | | Indonesia 1 13
Ukraine 2 9 | | United States 1]
Metherlands 2 1178 | | Russian Federation 1 2
Poland 2 4 | | Vietnam 1 33
Indonesia 2 74 Namibia 1 2
Vietnam 2 1388 Switzerland 1 8

Figure 28: Left: Win32.Virlock.Gen.1, Top-rigHt: Win32.Virlock.Gen.3, Bottom-right:
Win32.Virlock.Gen 4.

5. Conclusions

It seems that malware creators are constantly learning from their mistakes and they always
find new ways to bypass security products, be it with a small improvement such that their
sample will not be detected for a few days, combining technologies that could force certain
security products to redesign their engines (due to performance-hits) in order to come up
with a feature to successfully detect and clean the malicious application, or forcing security
companies to search for better solutions or to give-up by not being able to keep up with
damages done by specific malware infections.

Virlock is among the few malware applications which combines different technologies to
harden the reverse engineering process and at the same time to make the creators of
security products question their technologies. The redesign process of certain engines is not
always an easy step, and most of the time this is not a solution. For example, to add some
features to emulators, in order to execute unimplemented APIs, to track a certain sequence
of generic assembly instructions, or to increase the complexity of search algorithms near to
the complexity of strstr(), might result in performance hits which will impact the overall

27/29

functionalities of the security product. Some designers being inspired in the first place might
laugh at the idea that an improvement could be made as a next step inside an already
evolved tool, but that is not always the case.

With the advance of malware technologies in the last few years, we find it even harder to
revert malware, or to revert the infection process and to restore the system to a clean state.
Ransomware using asymmetric encryption algorithms is constantly destroying user-data
requiring money to get data back. More than ever, we need methods to automate dynamic
analysis and at the same time to extract relevant features from different infections along with
improving the prevention techniques. Model-checking and symbolic simulation may be a
solution from that point of view, and maybe combining that with time-line analysis and control
of a running operating system environment, we might prevent, learn and successfully revert
much more complex infections.

There is also a small chance that by using classifiers to extract common vector-features from
traces obtained from emulation of such malware, and then dynamically observing the
modifications which take place during the infection, one could generate the detection process
(which resumes to a search problem in the space of files to be scanned), along with the
disinfection process, in just one click.

Acknowledgements

This work was co-funded by the European Social Fund through Sectoral Operational
Programme Human Resources Development 2007 — 2013, project number
POSDRU/187/1.5/S/155397, project title “Towards a New Generation of Elite Researchers
through Doctoral Scolarships.’

i 2 Download PDF

Latest articles:

Cryptojacking_ on the fly: TeamTNT using NVIDIA drivers to mine
cryptocurrency

TeamTNT is known for attacking insecure and vulnerable Kubernetes deployments in order
to infiltrate organizations’ dedicated environments and transform them into attack
launchpads. In this article Aditya Sood presents a new module introduced by...

Collector-stealer: a Russian origin credential and information extractor

28/29

https://www.virusbulletin.com/uploads/pdf/conference/vb2015/Craciun-etal-VB2015.pdf
https://www.virusbulletin.com/virusbulletin/2022/04/cryptojacking-fly-teamtnt-using-nvidia-drivers-mine-cryptocurrency/
https://www.virusbulletin.com/virusbulletin/2021/12/collector-stealer-russian-origin-credential-and-information-extractor/

Collector-stealer, a piece of malware of Russian origin, is heavily used on the Internet to
exfiltrate sensitive data from end-user systems and store it in its C&C panels. In this article,
researchers Aditya K Sood and Rohit Chaturvedi present a 360...

Fighting Fire with Fire

In 1989, Joe Wells encountered his first virus: Jerusalem. He disassembled the virus, and
from that moment onward, was intrigued by the properties of these small pieces of self-
replicating code. Joe Wells was an expert on computer viruses, was partly...

Run your malicious VBA macros anywhere!

Kurt Natvig wanted to understand whether it's possible to recompile VBA macros to another
language, which could then easily be ‘run’ on any gateway, thus revealing a sample’s true
nature in a safe manner. In this article he explains how he recompiled...

Dissecting the design and vulnerabilities in AZORult C&C panels

Aditya K Sood looks at the command-and-control (C&C) design of the AZORult malware,
discussing his team's findings related to the C&C design and some security issues they
identified during the research.

Bulletin Archive

29/29

https://www.virusbulletin.com/virusbulletin/2021/06/fighting-fire-fire/
https://www.virusbulletin.com/virusbulletin/2021/04/run-your-malicious-vba-macros-anywhere/
https://www.virusbulletin.com/virusbulletin/2021/04/dissecting-design-and-vulnerabilities-azorultccpanels/
https://www.virusbulletin.com/virusbulletin/archive

