
1/29

VB2015 paper: It's A File Infector... It’s Ransomware... It's
Virlock

virusbulletin.com/virusbulletin/2016/12/vb2015-paper-its-file-infector-its-ransomware-its-virlock/

Vlad Craciun, Andrei Nacu & Mihail Andronic

Bitdefender, Romania

Copyright © 2015 Virus Bulletin

Table of contents

Abstract

Introduction

1. Ransomware and file infector evolution

1.1 Old file infectors, behaviour and purpose

Purpose:

Behaviour:

1.2 Old screen-lockers: behaviour and purpose

Purpose:

Behaviour:

2. Analysing Virlock, Refining Behaviour, Combining Purpose

2.1 Analysing Virlock – refining behaviour

2.1.1 Not embedding malware code, but embedding a clean file

2.1.2 Anti-analysing techniques

2.1.2.1 Code obfuscation

2.1.2.2 Anti-debugger

Multi-staged unpack

Staged unpack

Checking for the presence of a debugger

Rooting inside the execution environment

2.1.2.3 Anti-emulation

Randomly chosen API calls

Increasing the number of executed instructions

2.1.3 Cheating users

2.1.4 Polymorphic engine

2.2 Analysing Virlock – Combining purpose
2.2.1 File infector and screen-locker
3. Getting to the Core of Virlock

3.1 Revealing the core, inside different malware versions

https://www.virusbulletin.com/virusbulletin/2016/12/vb2015-paper-its-file-infector-its-ransomware-its-virlock/

2/29

3.2 Searching for a match
3.3 Cleaning infected files

4. Statistics

5. Conclusions

Acknowledgements

Abstract

Win32.Virlock, with all its variations, is both a new kind of file infector and a piece of
ransomware (screen-locker) at the same time. In this paper, we aim to cover the techniques
used by this virus and discuss methods that can be used to detect and disinfect systems
affected by it.

Virlock uses several techniques, including code obfuscation, staged unpacking, random API
calls and large/redundant areas of decrypted code, to make it difficult to analyse. It also
protects its code by decrypting only the sequences that are going to be executed. After a
sequence of code is executed, Virlock encrypts it again. By staggering the
decryption/encryption process, it ensures that a memory dump at a certain point will not
reveal its features but only the piece of code that is being executed at that time.

There is also a moment in its first execution when it shifts its shape by changing certain
instructions and encryption keys so that new generations will look different. Each new
infection is different from any other, mostly because of the timestamps that play an important
role in computing the encryption keys. Having these protection methods will also make any
clean-up attempt quite a challenge. The disinfection process for this virus involves searching
inside malware code for specific instruction arrangements.

We will present some ideas that could help in detecting and disinfecting a Virlock-infected
system.

Introduction

Malware has grown significantly in the last decade, both in prevalence and complexity. It has
developed from innocent bad jokes and simple trojans to advanced polymorphic file
infectors, rootkits and ransomware. While security companies have studied all the types of
malware and built specific categories for them, it can be difficult, today, to categorize a
malicious application as a trojan, a piece of spyware, or even a file infector, as they tend to
be more complex and to embed several different kinds of behaviour at once.

Security vendors have been forced to develop different kinds of engines to reach faster
conclusions in malware analysis, be it static or dynamic, but security products by definition
are usually a step behind the malware creators, even if we try to minimize that time-interval.
The security industry had tried to figure out better solutions and better engines to prevent

3/29

malware execution in advance by using artificial intelligence, but no matter how hard we try,
or how much time we invest in research, there is always something new which doesn’t get
caught. There are many cases in which we reach the conclusion that an engine is not doing
the best to protect against a new piece of malware, or that making a small improvement will
slow down the entire product. In some cases we reach the conclusion that a particular
detection method is simply not adequate for a specific piece of malware.

1. Ransomware and file infector evolution

1.1 Old file infectors, behaviour and purpose

Known categories: appenders, prependers, EPO, polymorphic, interleaved.

Purpose:

The first file infectors were just bad jokes or proofs of concept. The earlier ones interleaved
malicious code with original application code or prepended malware code to a clean
application. By prepending the malicous code to a clean application, the authors increased
the time needed for analysis, and also gained time for their malware to spread while users
were searching for solutions. This is also a safe way to expose users’ computers to hackers;
file infectors act like agents, collecting confidential user data, or continuously delivering other
kinds of malware to the infected system.

Behaviour:

Malicious code is executed first, infecting the system or ensuring it is running within another
process or thread and eventually deploying any missing files, then it executes the original
application. When a portion of the clean application is executed, the malware will also be
executed at some point, this being triggered by a patched API import or by malicious code
insertion. After the malicious code has finished running, the clean application’s code
continues to be executed from where it was left off.

4/29

Figure 1: Example of a common file infector (appended code to clean application).

1.2 Old screen-lockers: behaviour and purpose

Purpose:

An easy way to get money from users by blocking access to their working environment.
(Childish play for grownups!!!)

Behaviour:

This kind of malware creates an additional desktop and switches to the new environment,
just as if another user had logged on. Some of them may encrypt user files, but most of them
don’t. The ones that do encrypt user files, like some CryptoLockers, do not lock the user’s
screen, because the damage is already at a stage where the user might wonder where the
backup is, or whether a decryption tool is worth paying for.

https://www.virusbulletin.com/files/7814/5201/3430/Virlock-1.jpg

5/29

Figure

2: Ransomware blocking user screen and requesting payment.

6/29

Figure 3: RSA1024 CryptoLocker displaying message to user.

Let us mention some of the well known pieces of ransomware among both families:

ACCDFISA, PornoBlocker, Rannoh, IcePol, CryptoWall, CoinVault.

In the following chapters we will uncover the main features and components of Virlock;
however we are not going to focus on the infection process. This type of malware has the
vaccine within itself, but only applies it for each infected file at runtime. We will focus mainly
on its design and its abilities to sneak past some security solutions.

2. Analysing Virlock, Refining Behaviour, Combining Purpose

Virlock combines the technology of file infection with the screen-locking features of regular
screen-lockers. The authors embed both infection and disinfection tools, throwing away the
management system to bind infected users to some private decryption keys. Their remaining
concern is about users who are willing to pay their fee rated in bitcoins.

The screen-locking picture is very similar to that of those pieces of ransomware that pretend
to be some higher authority with full rights to request certain amounts of money from home-
users – for example as fines (see Figure 4). Most texts appearing on the locked screen are

7/29

trying to scare the users, for example threatening them with prison for up to five years or
more if they do not pay the money.

Figure 4: Virlock screen lock.

2.1 Analysing Virlock – refining behaviour

Virlock is changing the way in which the infection process takes place:

It has an ingenious polymorphic engine (most file infectors don’t come with such an
engine), making the detection process more difficult with each infected system.
It doesn’t just insert a piece of code into the clean application as most file infectors do,
but the entire clean application becomes a small piece of the malware itself (similar to
Morto/Sality/ACCDFISA).
It uses techniques to cheat users at first glance (seen in a few other pieces of
malware), to bypass users’ doubts that an infected file is really malicious.
It has a lot of features (not new, but different) that make the reverse-engineering
process more difficult, overload the analysts and annoy them.
It has screen-locking (borrowed from screen-lockers) to increase the time taken to get
to an infected sample – most home-users prefer to reinstall their operating system
rather than trying to remove the malware.

8/29

It uses multi-threading and rooting into the environment to get full control over the
infected systems without the need for drivers, and to execute different paths inside the
same application, but from different points of view (running
processes/services/threads).

2.1.1 Not embedding malware code, but embedding a clean file

The infection process is somewhat different from the infection process of other known file
infectors. However, there are small similarities between Virlock and both the Sality file
infector and the ACCDFISA ransomware:

Virlock and Sality: both replace the clean application with the malware which contains
the original application packed or modified.
Virlock and ACCDFISA: ACCDFISA uses the RAR archiver to make all the infections
self-extractable – this is very similar to Virlock’s behaviour but with the small difference
that Virlock uses its own techniques to accomplish the same behaviour.

2.1.2 Anti-analysing techniques

At the moment we know about five different Virlock versions. They’re not too different but
they do differ in such a way that some simple checks will not catch them all.

2.1.2.1 Code obfuscation

One of the main techniques used to harden the reverse engineering and analysis process is
obfuscation.

Obfuscation is present in all five versions and is similar between some and different between
others. However, while obfuscation may contribute to detection, it is not a key-point in doing
that.

Figure 5 shows some screenshots of obfuscated code from four different versions.

Figure 5: Obfuscated code inside four different Virlock versions.

https://www.virusbulletin.com/files/6214/5201/3569/Virlock-5.jpg

9/29

If we are going to trace the entropy of those pieces of code, or count the number of some
target instructions which repeat excessively, we can create some checkpoint conditions that
Virlock infections will not pass. Code can be obfuscated in lots of configurations, but some of
them are built based on some basic principles. It is not too difficult to observe the criteria with
which an obfuscation engine was built.

We could also de-obfuscate some instruction blocks by following the true aim of an
obfuscated piece of code. However, de-obfuscation becomes irrelevant when one can look at
the execution traces. They are still a plus when building documents to reveal the true
meaning of some code.

Obfuscation also contributes to making the static analysis procedure more difficult.

2.1.2.2 Anti-debugger

There are lots of anti-debugger techniques, and usually, malware creators combine those
features with techniques to detect virtual machines, emulators or supervisor tools like PIN
from Intel (which allows one to instrument an executed application), or API loggers which
inject tracing modules or pieces of code into a target process.

Virlock does not combine all of these, but it uses the strongest of them all, in order to bring
the analyst to a point where he/she could easily give up.

Multi-staged unpack

This is a known technique for making the reverse engineering procedures harder, for both
static and dynamic analysis. If a piece of code is unpacked piece by piece, one at a time,
while it is executed, then performing a static analysis could be very difficult. Following the
modifications inside a debugger might also be tricky, as some debuggers simply refuse to
disassemble the code at the point where they think that there is no code in the first place. If
we add to that the fact that code might re-encrypt the previously executed code, then things
get really interesting.

10/29

Figure 6: Short example of execution flow, following the chunk encryption/decryption
template.

Staged unpack

Staged unpack is a feature which minimizes the ‘area’ of ‘plain-text’ code at any time. There
is a piece of code, more like a template, which repeats itself along the execution of the
malware, and at each step:

It hashes the buffer to be unpacked
It decrypts the next piece of code, only if the hashes match
It executes the code inside the decrypted chunk (possible more function-templates)
It rehashes the unpacked code and alters the hash, inside the code
It re-encrypts the previously decrypted code.

The template follows the data structure of a linear linked list, where each node is itself a
linear linked list of many possible function calls. We are seeing linked lists inside linked lists
mainly because each function call inside such a code-chunk calls another unpack-execute-
repack template.

Figure 7 shows the code template for the mentioned trick inside a particular infection, which
starts by checking the integrity of the packed chunk-code at 40193F, decrypts the buffer at
4019C0, jumps to unpacked code at 401A7E, and finally rebuilds the HASH for the unpacked
code which it overwrites at the beginning of the code template and re-encrypts the entire
code starting at 401A7E.

https://www.virusbulletin.com/files/8914/5201/3588/Virlock-6.jpg

11/29

Figure 7: Template-code for staged unpack (yellow square -> unpacked code).

If someone is trying to make some process-dumps to have a look at the code inside the
malware while it’s executing, they might be surprised to find that the malware is almost fully
packed, just as it was in the first place. The surprise gets bigger, as one is thinking that the
malware might have some running threads which did not get dumped at the time of the
process dump and while trying to grab all the memory pieces, one will obtain nothing more
than the first process dump.

Checking for the presence of a debugger

Every infected sample checks for the presence of a debugger at some point. There is a
standard way to do that, which is by querying a flag inside PEB, called isDebuggerPresent at
[fs:[30h]+2], bit 0 (see Figure 8).

Figure

8: Anti-debugger checking inside PEB.

In our example, if it’s being debugged, the code jumps to 0x495A2D . If we are taking a
closer look we can see in Figure 9 that the code is being executed in those conditions.

https://www.virusbulletin.com/files/5814/5201/3609/Virlock-7.jpg

12/29

Figure

9: Code executed when debugger is found.

Eventually we find a piece of code looping on itself and calling Sleep.

Most of the time, we can trick the application by changing the condition flags; and thus the
condition itself or the value being compared. However, the time spent getting one’s hands on
that piece of code is sometimes too much to continue with the dynamic analysis that way.

Rooting inside the execution environment

We mentioned earlier that the malware does not use all known methods to harden the
analysis procedure, but it uses the strongest of all methods gathered together to at least
discourage analysts or to create problems for automated tools.

The technique described in this section does not refer to a behaviour that rootkits are using,
but rather to a behaviour which spreads the infection inside the infected system, making self-
copies and additional processes or services, each of them with a couple of threads. If the
malware gets to execute inside such a configuration, then the synchronization policies
between processes and threads will enable it to do its main job, otherwise one will not get
anything useful from it.

At the beginning of the execution, an infected sample will first create two copies (of the
original infection core – morphed) inside hidden folders with random names but constant
length (eight characters), one located in %AllUsersProfile% and one inside %UserProfile%:

[%UserProfile%\[a-zA-Z]{8}\[a-zA-Z]{8}.exe]

[%AllUsersProfile%\[a-zA-Z]{8}\[a-zA-Z]{8}.exe]

The copy located in the %UserProfile% folder is executed first using CreateProcess and it is
also set as a starting point inside the startup key:

13/29

[HKCU\Software\Microsoft\Windows\CurrentVersion\Run].

Second and (in some cases) third copies are written in the %AllUserProfile% folder inside
different subfolders. One of them is executed like the first copy in order to work together with
it (one of the copies ensures that the other is not killed, and if that happens then it just
recreates it), and the other is created as a service to supervise some tasks and gain
privileged access to operating system components.

It is important at that point to note that the malware copies are not only different from the first
one (using a polymorphic packer), but also have some key-flags changed. The changing of
flags will enable, for example, one of the copies to execute a slightly different path inside the
malware just like a switch-case block. For example, the malware self-disinfects the file inside
it, only if a certain flag located at a hard-coded address says that this can be done.

A series of batch-files and VBS scripts are written on the disk temporarily to help the
malware infect files by first making a backup and then overwriting the target file. Scripts are
also used to change security policies inside the registry, in order to hide the malware or to
disable default security features.

The following is a list of commands altering registry entries:

reg add HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\Advanced /f /v
HideFileExt /t REG_DWORD /d 1

reg add HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\Advanced /f /v Hidden
/t REG_DWORD /d 2

reg add HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System /v
EnableLUA /d 0 /t REG_DWORD /f

Straight after the installation, the malware tries to brute-force the user logon account
password with at least a few thousand common password templates, and straight after that
creates a new user with a random name and full administrator rights.

Figure

10: New account created by Virlock after successfully brute-forcing the administrator
password.

14/29

 The following are just a few examples of passwords that had been tried by the malware:

password, , 1234, Password1, 123456, admin, 12345, Passw0rd,
, Pa$$w0rd, !QAZ2wsx, test, sunshine, , ,
123456789, 12345678, abc123, qwerty, letmein, changeme, master, Password!, passw0rd,
1q2w3e4r, Password01, password1, hunter, qazwsx, welcome, Welcome123, secret,
orig_Administrator, princess, dragon, pussy, baseball, football, monkey, 696969,
operator123, N0th1n9, , 1q2w3e4r5t6y7u8i, abcd12345, 7654321,
Administrator, q1w2e3r4, q1w2e3r4t5.

A process created with the following command line will discard any possible API-tracer or
debugger following the process execution. However, we can still trick such behaviours by
altering the code at the entry-point and forcing a debugger to enter first, modifying the
parameters for CreateProcess, or using some advanced environment emulators:

CreateProcessW("%TEMP%\AccMwMEs.bat", " "%TEMP%\AccMwMEs.bat"
"C:\samples\virlock.exe" ", …………)

[AccMwMEs.bat]

echo WScript.Sleep(50)>%TEMP%/file.vbs

cscript %TEMP%/file.vbs

del /F /Q file.js

del /F /Q %1

del /F /Q %0

When an infected sample gets to execute on a clean system, we say that the sample is the
original one which is the primary cause of the infection. This sample is almost like any other
fresh infected sample, which was not executed after the infection. There are some flags
hard-coded into the malware so that it knows, at runtime, whether the sample being
executed is a fresh infection that has not been executed before, or a drop made by malware
targeted as a service or a malicious process running on the user’s system. Figures 11 and 12
illustrate that behaviour.

Hard-coded
value

Meaning

0 Installed malware process, usually two synchronized processes

1 Original sample, installs malware components

2 Intermediate actions (while rooting into environment), brute-force user
account password

3 Multithreading and synchronization (screen-locking, online payment)

4 Sample is running as service

Table 1: Associations between hard-coded values and their meaning.

https://www.virusbulletin.com/cdn-cgi/l/email-protection
https://www.virusbulletin.com/cdn-cgi/l/email-protection
https://www.virusbulletin.com/cdn-cgi/l/email-protection
https://www.virusbulletin.com/cdn-cgi/l/email-protection
https://www.virusbulletin.com/cdn-cgi/l/email-protection

15/29

Figure 11: First context switching actions.

Figure 12: Last context switching actions.

2.1.2.3 Anti-emulation

16/29

Most malware creators integrate into their applications techniques to escape emulation
and/or virtual machines. There are a number of known methods to accomplish that, we won’t
discuss all of them, but mainly those used by Virlock.

Among all the techniques which can cause emulators not to work, there are time constraints
and unimplemented emulated API calls. Some emulators which are at the beginning, might
have problems overcoming both of these, others might give up over time constraints (mainly
because authors consider this a performance hit), and other advanced emulators could solve
all of these in more efficient ways. However, most emulators are somewhere in the middle
most of the time. We have to consider the possibility that from time to time malware creators
reverse our engines and create malware which might target some of these security engines.
If that is the case, then no matter how strongly an emulator is built, it might become useless
if it’s being targeted by malware.

Randomly chosen API calls

In an attempt to morph itself, Virlock rebuilds itself inside each infection, decorating the core
of functionalities with things like random API calls from randomly chosen modules. The
malware uses some tables, meaning that it does not choose from a huge set of possibilities
but from a finite set. It chooses a random number of libraries which the future infection will
import, and from those libraries, some random APIs inside each of them are chosen as
imports.

If emulators are only emulating a certain set of APIs, then that might impede their ability to
continue at the point of an unknown API call, or an API call not implemented accordingly
(Figure 13).

Figure 13: Consecutive blocks of random API calls, trying to escape emulators from the
beginning.

Increasing the number of executed instructions

Most malware, be it packed or unpacked, does not require more than a few million
instructions to be executed. At that point there are optimizations such as binary translation,
which tries to improve performance over emulated loops like decryption blocks which get to

https://www.virusbulletin.com/files/7014/5201/3737/Virlock-13.jpg

17/29

be executed by the real processor and not by the emulator. Binary translation is sometimes
combined with file-read operations – the best emulators will try to reduce the number of read
operations and at the same time the maximum number of instructions allowed to be
executed.

All versions of Virlock have a first stage decryption. Without it, any further code execution is
basically impossible. There is currently no version that executes fewer than 60M instructions
for that purpose, and the number of instructions increases for bigger files and larger
obfuscated loops, to hundreds of millions of instructions. Some infections also spread the
obfuscated loops over a large area of the infected file, thus passing to emulators the pain of
consecutive file reads, which also is a hit for performance.

There are many cases where the binary translation for loops is almost impossible if we are
not first going to de-obfuscate the code being executed by the loop. Figure 14 shows such a
case where just three calls to load more than 180 APIs from different modules is taking at
least 500k instructions.

Figure

14: Loading some APIs (calling is based on templates discussed in 2.1.2.2).

2.1.3 Cheating users

Very rarely seen in other pieces of malware of this kind (which embed the clean file into a
totally different file), Virlock tries to cheat users into thinking that an infected file is actually
what its icon claims it to be. There is a stage in the infection process where the malware
searches inside the registry for the application associated with an extension type, in order to
get to the file containing the icon of the associated application. This is a primary step for
grabbing the icon and embedding it into the final infected file as an icon-resource. At a first
glance, there is no difference between the original file and the infected one.

Straight after the infection, the malware will set a registry setting to hide extensions for
known filenames. That way users will see their original files with their relevant icons and no
EXE extension, so no one will ever doubt the actions of the file.

18/29

Figure 15: Infected files with extensions revealed.

2.1.4 Polymorphic engine

The thing that makes Virlock so special is that it has a polymorphic engine which mutates its
shape in future infections. In this section we reveal the techniques used by the malware to
accomplish this task.

Straight after the API-loading process, the malware allocates two buffers (one of them big
enough to hold the core of the malware) to prepare the morphing process for the infections to
come. The core of the malware is somewhere inside the infected application, but only visible
after a few stages of successive decryption procedures. Figure 16 shows the schematics of
the core, which resides packed, layered inside any infected file.

19/29

Figure 16:

Virlock core with embedded clean application.

A polymorphic engine is located in our example at 0x45E636 and it is called several times
during the installation of the malware into the newly infected system. Each new malware
copy will also have modified the flags discussed previously, accordingly.

Figure 17:

Code calling the polymorphic engine.

20/29

The process of shape-changing is accomplished in two steps, for each of the two dropped
files which are going to do the real infection. Figure 18 shows the preparation for the
reshaping of a self-copy.

Figure 18: Preparing the reshape of a self-copy.

The first stage consists of preparing random file names, some random seeds, and the buffers
involved in the morphing procedure (see Table 2).

Buffer alias Buffer size Buffer ptr Description

TAB1 0x200 0x970000 Randomization table 1

TAB2 0x2300000 0x1100000 Working buffer for reshaping procedure

TAB3 0x10000 0x9A0000 Intermediate table 1

TAB4 0x10000 0xAA0000 Intermediate table 2

TAB5 0x200 0x980000 Randomization table 2

Table 2: Buffers involved in the morphing procedure.

We also see at this step the creation of two different MZPE file headers, originally packed
inside the malware (see Figure 19). Their purpose is to fulfil the creation of the processes
which will actually carry out the infection.

21/29

Figure 19: Preparing headers for the files to be constructed.

In the beginning of the second stage, the malware creates a custom import table, also based
on time seeds (see Figure 20). The RDTSC instruction, which provides those time-seeds, is
called very frequently, not only to randomize stuff, but also for choosing random locations in
the target application, where relevant data regarding decryption keys, buffer pointers, etc.,
will be placed.

Figure

20: Building a customized import table.

In Figure 21, we can see a sequence of instructions which progressively builds the
decoration of the new infection.

https://www.virusbulletin.com/files/9814/5201/3919/Virlock-19.jpg

22/29

Figure 21: Reshaping a new infection.

All the steps required for a full file creations are called in a sequence of three consecutive
calls, as shown in Figure 22 {reshape / append / recrypt}.

Figure 22: Main reshape steps for self-copies.

2.2 Analysing Virlock – Combining purpose

We have seen lots of malware categories that combine their powers with other malware
categories. The results of those combinations have, most of the time, been some kind of
surprise for security products. Not only do malware authors learn from security products how
to improve their performance, but we also learn from malware authors that there is always
something which we have not taken into account in the first place. This sounds like an

https://www.virusbulletin.com/files/7914/5201/3973/Virlock-21.jpg

23/29

evolving loop, where security products try to nullify malware actions, while on the other hand
malware authors try to nullify security products’ actions. Well, at least the loop is more like a
three-dimensional spiral, otherwise we would not exist at this moment in time.

The following is a brief history of combined malware actions including Virlock, which we find
as a reference for this case:

Viking / Jadtre – rootkit and file infector
CBDoorK – rootkit and backdoor
Sality – file infector, botnet, worm
Virlock – ransomware, file infector.

2.2.1 File infector and screen-locker

Until Virlock, no other malware combined these features. Malware authors who write
ransomware are doing it for the money – they say as much in their readme files appearing on
the infected computers. For example, a piece of ransomware using the Bitlocker feature from
Windows tells the infected users that ‘This is just how business works, pay and you’ll get
your data back.’

Early versions of ransomware only locked users’ accounts, hoping that some of them would
fall into their trap – and they succeeded, but there is always room for improvement. Some of
the next versions tried to encrypt users’ files with symmetric keys and locked the users’
accounts, making it more difficult to revert the process. But as the security products improved
their strategies and delivered rescue-CDs to users, malware authors improved their methods
of cryptography, using asymmetric algorithms, and gave up the screen-locking. When
infecting users with those kinds of ransomware, malware creators need a management
system in order to bind private-keys with malware versions. Maybe they did not expect their
methods to be so fruitful, but they seem to be overwhelmed by the number of infected users
and public/private keys. It is not unusual for a user to try to pay, and get a decryptor which
attempts to decrypt files from a different infection.

Virlock tries somehow to escape the load produced by the key-infection management system
while improving the old techniques used in locking files and user accounts by embedding the
clean file and packing it safe inside the malware with random and hard-coded keys. It also
tries to crack users’ account passwords, to lock their account in order to make it as difficult
as possible for the users to recover their files. Using the presented technique for file
infection, security products have to consider an entire arsenal of variables in order to begin a
clean method, because it would be very easy to miss a certain hard-coded-key and to
damage the file instead of recovering it.

3. Getting to the Core of Virlock

24/29

We’ve seen so far that Virlock uses a template-based reshape, so we can use that template
as some kind of regular expression to find some inner pylons / code-blocks to start with.
Studying the five different versions until now, there are certain similarities between them,
which will lead us to classify a sample as infected.

In this chapter we will try to reveal the malware’s weak points and see how those
weaknesses may contribute to studying it better in all its present forms.

3.1 Revealing the core, inside different malware versions

First, there is an initial layer of decryption which will end up by continuing the execution
somewhere at FirstSectionVA+0x400 or FirstSEctionVA+0x1000 with or without additional
obfuscated code and possibly a short second decryption stage (Figure 23).

Figure 23: First chunk of relevant code in all five versions.

There are two major switch sections inside the malware which choose a path of execution
depending on the hard-coded flag discussed in section 2.1.2.2. We will consider the two
sections as the core of the malware, as they are present inside all versions, no matter how
obfuscated the code is, and the path to those functionalities is unique if an emulator behaves
just like a real operating system.

Not all versions are as compact, as shown in Figure 24. There are some cases where junk-
code might appear between relevant instructions in our target code, but ignoring them is not
as difficult as one may think.

25/29

Figure 24: A comparison between all five versions inside context-switch sections.

3.2 Searching for a match

Most detection algorithms will just try to find a relevant piece of code inside a piece of
malware. Looking at the code shown in Figure 25, we might be tempted to say that we found
something relevant for our malware (a branching point where it chooses to execute as
installed or as a fresh infection). However, in other malware versions we found other such
pieces of code, doing the same thing but with modified instructions. Considering this, the
detection cannot choose that sequence of instructions to follow, but we need some rules
depending mostly on the constant addresses given in the piece of code and the instruction
types, which are not so different across different malware versions. This kind of matching
seems to be as powerful as a regular expression-matching algorithm, but additional changes
have to be considered.

Figure 25: Piece of malware code to decrypt clean file.

https://www.virusbulletin.com/files/5414/5201/4058/Virlock-24.jpg

26/29

3.3 Cleaning infected files

To recover the clean file from the malware, we need to follow the code until a point at which
we can check whether the infection contains a clean file (switch-flag == 1) or not (switch-flag
!= 1). If we do have a clean file, we need to grab the hard-coded values inside the malware
(different with each infected file) and to force the emulation of decryption functions.

A simple clean procedure is to use the emulation to execute the decryption function. After
that, we can grab from memory, using the specified variables, the actual clean file. The
starting point of a particular clean file inside the malware is shown in Figure 26.

Figure 26: Finding clean file using hard-coded variables.

4. Statistics

Figure 27 shows a graphic for the timeline of Win32.Virlock.Gen.1, which is the most
widespread version at the moment.

Figure 27: Infection timeline for Win32.Virlock.Gen.1.

https://www.virusbulletin.com/files/4414/5201/4136/Virlock-27.jpg

27/29

In Figure 28, we see how many systems have been infected since March 2015 for the three
most common detections. Almost 39,700 unique files were detected by Bitdefender on 148
systems in less than five months. The highest number of infections were detected in Canada
– almost 30,000, representing 75% of all infections. We expect a small increase in the next
few months as the authors of the malware seem to still be working on it, and a total decrease
by the middle of next year, by which time many security products will have solutions for it.

Figure 28: Left: Win32.Virlock.Gen.1, Top-right: Win32.Virlock.Gen.3, Bottom-right:
Win32.Virlock.Gen.4.

5. Conclusions

It seems that malware creators are constantly learning from their mistakes and they always
find new ways to bypass security products, be it with a small improvement such that their
sample will not be detected for a few days, combining technologies that could force certain
security products to redesign their engines (due to performance-hits) in order to come up
with a feature to successfully detect and clean the malicious application, or forcing security
companies to search for better solutions or to give-up by not being able to keep up with
damages done by specific malware infections.

Virlock is among the few malware applications which combines different technologies to
harden the reverse engineering process and at the same time to make the creators of
security products question their technologies. The redesign process of certain engines is not
always an easy step, and most of the time this is not a solution. For example, to add some
features to emulators, in order to execute unimplemented APIs, to track a certain sequence
of generic assembly instructions, or to increase the complexity of search algorithms near to
the complexity of strstr(), might result in performance hits which will impact the overall

28/29

functionalities of the security product. Some designers being inspired in the first place might
laugh at the idea that an improvement could be made as a next step inside an already
evolved tool, but that is not always the case.

With the advance of malware technologies in the last few years, we find it even harder to
revert malware, or to revert the infection process and to restore the system to a clean state.
Ransomware using asymmetric encryption algorithms is constantly destroying user-data
requiring money to get data back. More than ever, we need methods to automate dynamic
analysis and at the same time to extract relevant features from different infections along with
improving the prevention techniques. Model-checking and symbolic simulation may be a
solution from that point of view, and maybe combining that with time-line analysis and control
of a running operating system environment, we might prevent, learn and successfully revert
much more complex infections.

There is also a small chance that by using classifiers to extract common vector-features from
traces obtained from emulation of such malware, and then dynamically observing the
modifications which take place during the infection, one could generate the detection process
(which resumes to a search problem in the space of files to be scanned), along with the
disinfection process, in just one click.

Acknowledgements

This work was co-funded by the European Social Fund through Sectoral Operational
Programme Human Resources Development 2007 – 2013, project number
POSDRU/187/1.5/S/155397, project title ‘Towards a New Generation of Elite Researchers
through Doctoral Scolarships.’

Latest articles:

Cryptojacking on the fly: TeamTNT using NVIDIA drivers to mine
cryptocurrency

TeamTNT is known for attacking insecure and vulnerable Kubernetes deployments in order
to infiltrate organizations’ dedicated environments and transform them into attack
launchpads. In this article Aditya Sood presents a new module introduced by…

Collector-stealer: a Russian origin credential and information extractor

https://www.virusbulletin.com/uploads/pdf/conference/vb2015/Craciun-etal-VB2015.pdf
https://www.virusbulletin.com/virusbulletin/2022/04/cryptojacking-fly-teamtnt-using-nvidia-drivers-mine-cryptocurrency/
https://www.virusbulletin.com/virusbulletin/2021/12/collector-stealer-russian-origin-credential-and-information-extractor/

29/29

Collector-stealer, a piece of malware of Russian origin, is heavily used on the Internet to
exfiltrate sensitive data from end-user systems and store it in its C&C panels. In this article,
researchers Aditya K Sood and Rohit Chaturvedi present a 360…

Fighting Fire with Fire

In 1989, Joe Wells encountered his first virus: Jerusalem. He disassembled the virus, and
from that moment onward, was intrigued by the properties of these small pieces of self-
replicating code. Joe Wells was an expert on computer viruses, was partly…

Run your malicious VBA macros anywhere!

Kurt Natvig wanted to understand whether it’s possible to recompile VBA macros to another
language, which could then easily be ‘run’ on any gateway, thus revealing a sample’s true
nature in a safe manner. In this article he explains how he recompiled…

Dissecting the design and vulnerabilities in AZORult C&C panels

Aditya K Sood looks at the command-and-control (C&C) design of the AZORult malware,
discussing his team's findings related to the C&C design and some security issues they
identified during the research.

Bulletin Archive

https://www.virusbulletin.com/virusbulletin/2021/06/fighting-fire-fire/
https://www.virusbulletin.com/virusbulletin/2021/04/run-your-malicious-vba-macros-anywhere/
https://www.virusbulletin.com/virusbulletin/2021/04/dissecting-design-and-vulnerabilities-azorultccpanels/
https://www.virusbulletin.com/virusbulletin/archive

