
1/9

January 21, 2016

Android Spywaller: Firewall-Style Antivirus Blocking
fortinet.com/blog/threat-research/android-spywaller-firewall-style-antivirus-blocking

FortiGuard Labs Threat Research

By Ruchna Nigam
| January 21, 2016
Malware has been known to use new and innovative ways to evade detection by Antivirus
software, a phenomenon AV analysts have often seen with PC malware. Not a lot of
examples of the same have been seen employed by mobile malware.

A recently discovered Android malware has brought to light one such Antivirus evasion
technique with its use of "a legitimate firewall to thwart security software".

The legitimate firewall referred to is iptables which is a well-known "administration tool for
IPv4 packet filtering and NAT" on Linux. The malware essentially sets up rules using iptables
to reject network traffic originating from a well-known Chinese Antivirus application.

This post is a technical explanation of how the malware achieves this.

The main malicious service used by the malware is called com.GoogleService.MainService
which calls the disable360Network() function that implements the selective blocking of
network traffic.

disable360Network()
The function first reads the list of installed applications and checks for package names
corresponding to a well-known Chinese Antivirus on the list.

https://www.fortinet.com/blog/threat-research/android-spywaller-firewall-style-antivirus-blocking
https://www.fortinet.com/blog/search?author=Ruchna+Nigam
http://www.symantec.com/connect/blogs/spyware-androidspywaller-uses-legitimate-firewall-thwart-security-software
https://en.wikipedia.org/wiki/Iptables

2/9

The corresponding UID is then read from the ApplicationInfo class for the matching package
and the Api.disableUidNetwork(.. , UID, ..) function is called.

Api.disableUidNetwork()
This function copies the binaries "iptables_armv5" and "busybox_g1" from the folder
/res/raw in the package to the folder /app_bin within the package's home directory on the
phone.

Next it creates a script saved as "droidwall.sh" in the /app_bin directory and runs it as root.

This script basically creates environment variables BUSYBOX, GREP and IPTABLES.

Subsequently, it creates an iptables chain called 'droidwall' for all network traffic on the

phone.

The traffic for interfaces "rmnet+", "pdp+", "ppp+", "uwbr+", "wimax+", "vsnet+",
"ccmni+", "usb+" is forwarded to a chain droidwall-3g and that for interfaces "tiwlan+",
"wlan+", "eth+", "ra+" to a chain droidwall-wifi.

The main UID Blocking is implemented by the filtering rule droidwall-rejet that is defined as

$IPTABLES -A droidwall-reject -j REJECT

The droidwall-reject rule receives traffic from the droidwall-3g and droidwall-wifi rules under
the conditions defined below

$IPTABLES -A droidwall-3g -m owner --uid-owner [UID] -j droidwall-reject ||
exit

$IPTABLES -A droidwall-wifi -m owner --uid-owner [UID] -j droidwall-reject ||
exit

3/9

These rules mainly ensure that all traffic originating from the application with kernel user-ID
as UID is dropped. The flow of traffic filtered by droidwall can be seen in the illustration
below.

Icons made by Freepik from www.flaticon.com is licensed by CC BY 3.0

This unique Antivirus evasion trick is the first of its kind I've come across on Android malware
so far.

Apart from that, the malware employs various Anti-debugging tricks, a few of which are
explained below.

Anti-debugging Tricks

http://www.freepik.com/
http://www.flaticon.com/
http://creativecommons.org/licenses/by/3.0/

4/9

Application-Hiding

To begin with, the application misleadingly calls itself "Google Service" and comes in a
package called "com.schemedroid.apk".

5/9

Once the package is launched, its icon is hidden from and can no longer be seen in the
applications menu. However, a few seconds later, it also requests Root access from the user.

6/9

The hiding of the application icon is the only visible, suspicious activity by the malware, that
also has the potential to go unnoticed in some cases.

7/9

Malicious Package Obfuscation

In reality, the seemingly benign sample hides its malicious code in a misleadingly named and
encrypted file droid.png in the package assets.

The MainActivity in the original application launches SchemeService that, in turn launches
the decryption routine that XOR 'decrypts' and loads the malicious code. The decrypted file is
saved as annotation.jar.

A simple python script that can be used to emulate this :

def xor(data, key):

 l = len(key)

 return bytearray((

 (data[i] ^ key[i % l]) for i in range(0,len(data))
))

data =

https://www.virustotal.com/en/file/7b31656b9722f288339cb2416557241cfdf69298a749e49f07f912aeb1e5931b/analysis/

8/9

bytearray(open('7b31656b9722f288339cb2416557241cfdf69298a749e49f07f912aeb1e5931b.out/asse
ts/droid.png','rb').read())

key = bytearray([0xff])

a = xor(data,key)

with
open('7b31656b9722f288339cb2416557241cfdf69298a749e49f07f912aeb1e5931b.out/assets/annotat
ion.jar', 'wb') as f:

 f.write(a)

The decrypted file annotation.jar, as expected is a JAR file, containing the malicious
functions.

It is loaded using API's from Android's DexClassLoader API as seen below.

Several other components of the malware are similarly encrypted and present in the package
assets with misleading names

logo.png : Root exploit for SDK versions 14 to 18
help4.png : Root epxloit for other SDK versions
splash : su binary
setting.prop : Malware configuration file, containing C&C address and the status of
various flags used by the malware receivers, among other things.
about.png : Malware daemon

Malicious Class name obfuscation

The malicious class names are Base64 encoded to prevent string-based searches for the
malicious class names.

$ echo "Y29tLkdvb2dsZVNlcnZpY2UuTWFpblNlcnZpY2U=" | base64 -d

com.GoogleService.MainService

$ echo "Y29tLkdvb2dsZVNlcnZpY2UuQ29tbW9uLkNvbmZpZw==" | base64 -d

com.GoogleService.Common.Config

9/9

com.GoogleService.Common.Config decrypts, reads and updates the configuration file used
by the malware.

com.GoogleService.MainService registers several receivers to perform a variety of functions,
from monitoring the victim's location, recording all incoming calls, taking pictures or recording
videos using the phone camera to even monitoring when the SIM card on the phone is
changed. More interestingly, it has the ability to steal message history from known Android
messenger applications like Skype, Whatsapp, Viber, Voxer, QQ etc. and can even be
instructed to drain phone battery or slow down operation by performing several
miscellaneous operations in the background.

Fortinet detects the sample as Android/Spywaller.A!tr. A detailed description can be found
here.

Copyright © 2023 Fortinet, Inc. All Rights Reserved

Terms of ServicesPrivacy Policy
| Cookie Settings

http://www.fortiguard.com/encyclopedia/virus/6962952
https://www.fortinet.com/corporate/about-us/legal.html
https://www.fortinet.com/corporate/about-us/privacy.html

