
1/8

Alina POS malware 'sparks' off a new variant
trustwave.com/Resources/SpiderLabs-Blog/Alina-POS-malware--sparks--off-a-new-variant/

Loading...

Blogs & Stories

SpiderLabs Blog

Attracting more than a half-million annual readers, this is the security community's go-to
destination for technical breakdowns of the latest threats, critical vulnerability disclosures
and cutting-edge research.

Alina is a well-documented family of malware used to scrape Credit Card (CC) data from
Point of Sale (POS) software. We published a series of in-depth write-ups on the
capabilities Alina possesses as well as the progression of the versions. Xylitol has a nice
write-up on the Command and Control (C&C) aspects of Alina.

In this blog post I'd like to discuss a variant that first cropped up in late 2013 and has been
seen in the wild as recent as a month ago. Some anti-virus companies have identified
similar samples as JackPOS, but there are several interesting behavior differences that
haven't been posted about in any other write-ups. It is clear that Alina, JackPOS, and this

https://www.trustwave.com/Resources/SpiderLabs-Blog/Alina-POS-malware--sparks--off-a-new-variant/
http://blog.spiderlabs.com/2013/05/alina-shedding-some-light-on-this-malware-family.html
http://www.xylibox.com/2013/10/inside-malware-campaign-alina-dexter.html
http://blog.spiderlabs.com/2014/02/jackpos-the-house-always-wins.html

2/8

variant all bear close resemblances to each other, but there are behavioral differences that
distinguish this version from the others which I have not seen detailed elsewhere. For the
purposes of this write-up I will be referring to this variant as Spark.

AutoIt Staged Loader

The first and most interesting difference between Alina and Spark is that several of the
samples have been found embedded in a compiled AutoIt script, which then loads the
malware into memory. Both Security Affairs and Security Intelligence posted about a similar
type of AutoIt compiled script being used as a loader with a JackPOS binary instead of
Spark here and here, but did not provide many details. We will take a closer look at how the
loader works.

AutoIt "is a freeware BASIC-like scripting language designed for automating the Windows
GUI and general scripting". This AutoIt script contains functions to allocate space in
memory, map a binary into that memory, fix the relocations and Import Address Table, and
execute the binary. A malicious binary is concatenated into a variable 4,000 bytes at a time
and the script's functions are used to load and execute it. The script is converted into a
windows executable by running the utility Aut2Exe, which produces a new binary with the
malware inside it.

Figure 1: Compiling an AutoIt Script

Converting a script into an executable is a normal and useful part of AutoIt's functionality. I
used a third party utility called Exe2Aut to recover the original script and retrieve the binary.

http://securityaffairs.co/wordpress/22121/malware/jackpos-pos-malware.html
http://securityintelligence.com/trusteer-apex-preempts-new-point-of-sale-malware-jackpos/#.VItdf2TF9WY
https://www.autoitscript.com/site/autoit/
http://10.10.0.46/images/slblog-03-02-2018-10-57-10/spiderlabs/6dbf45e8-1dc4-4606-aa5a-22e0ff17b051.html;%20charset=utf-8
https://exe2aut.com/

3/8

Figure 2: Decompiling an AutoIt Script

The use of AutoIt as a loader is an interesting tactic. We typically see malware authors
writing a script to execute another binary on the system or perform some function needed to
accomplish the dastardly deed the author set out to do. This script is then compiled using
Aut2exe for AutoIt, py2exe for python, or perl2exe for perl. These programs include their
respective interpreters in the compiled binary for executing the script and are generally
considered to be unsophisticated malware. In this case, however, the script has a binary in
a variable that is loaded into dynamic memory and fixes up all the addresses required for
execution. This is a much more advanced technique and is reusable with different
embedded binaries. Like all such loaders, the binary is initially obfuscated artifacts such as
strings and import tables from the malicious binary.

Startup

Previous versions of Alina picked a name from a list of legitimate sounding executable
names and copied itself into the oh-so-common %APPDATA% folder under the chosen
name. Instead, Spark creates a sub-folder in (surprise) %APPDATA% called "Install" and
stores its malicious goodies in there. These malicious goodies include copying the original
executable to %APPDATA%/Install/hkcmd.exeand writing a file called ntfs.dat. Spark will
always copy itself as hkcmd.exe as opposed to previous Alina versions that selected from a
list of varying names.

http://10.10.0.46/images/slblog-03-02-2018-10-57-10/spiderlabs/83c7fa15-c943-4554-b20f-844257c81505.html;%20charset=utf-8
https://www.trustwave.com/images/slblog-03-02-2018-10-57-10/spiderlabs/d5c3122f-484f-4251-8c23-3515e67637d9.png

4/8

Figure 3: Spark Install Directory

At startup, the malware builds the path to %APPDATA%/Install/ntfs.datand checks to see if
the file exists. If the file does not exist, it uses the systems volume serial id and overwrites
the first 6 digits with random upper and/or lower case characters. The result of this
operation is written to ntfs.dat and is used as the unique ID for the bot. Here is an example:

Volume ID => "602C0256"

Random chars => "mRtyfo"

Unique ID => "mRtyfo56"

Figure 4: Random Character Generation

This differs from earlier variants, which just used the volume serial id to identify the bot. If
the ntfs.dat does exist, the identifier is read into memory. This unique identifier is included in
the POST message for all communication with the C&C server.

Like all the other versions of Alina, Spark also adds itself to the commonly used
HKCU\Software\Microsoft\Windows\CurrentVersion\Run\hkcmdkey in order to maintain
persistence through reboot.

Spark uses a named pipe to synchronize moving the malware from its original execution
folder to the %APPDATA%/Install directory. The pipe name is generated as
\\.\pipe\spark<uniqueID> where <uniqueID> is the same as what is generated above. Using
our previous example the pipe name would be\\.pipe\sparkmRtyfo56.

Black List

Alina includes a black list of processes that are not scraped for CC data. Spark takes the
same black list as before and adds additional applications to the list:

https://www.trustwave.com/images/slblog-03-02-2018-10-57-10/spiderlabs/bdde2552-d1ff-47b1-92db-03c9d3e8bbdf.png

5/8

Figure 5: Black List Differences

Since the author is looking for CC data, the choice to add additional processes is an easy
one since these applications are highly unlikely to contain the data they are seeking. The
majority of the additions are system and common processes.

Spark Execution Flow

Here is a general picture overview of Spark's execution flow:

http://10.10.0.46/images/slblog-03-02-2018-10-57-10/spiderlabs/d9f76e9c-a2e8-4d8b-a207-f34e0236e8e1.html;%20charset=utf-8

6/8

Figure 6: Spark

Execution Flow

Communication

The final two differences in this variant have to do with communication to the C&C server.
Where previous versions used "Alina vx.x" as the User-Agent, Spark now uses something
that is supposed to look legitimate.

Figure 7: Spark

POST Example

http://10.10.0.46/images/slblog-03-02-2018-10-57-10/spiderlabs/c8f19729-e3bf-44aa-b219-5342afe4b484.html;%20charset=utf-8
http://10.10.0.46/images/slblog-03-02-2018-10-57-10/spiderlabs/1b63128c-92b6-4165-914f-65e5021425e4.html;%20charset=utf-8

7/8

As you can see, in their attempts to look legitimate, the author still includes the bot version
but forgets to include the closing parenthesis. Here is an IDS signature that has been used
to detect Spark.

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"ET TROJAN
JackPOS Checkin"; flow:established,to_server; content:"POST"; http_method;
content:".php"; http_uri; content:"User-Agent|3a 20|Mozilla/4.0 (compatible|3b| MSIE 7.0|3b|
Windows NT 5.1|3b| InfoPath.1 Spark v1.1|0d 0a|"; http_header; fast_pattern:66,20;
content:!"Referer|3a|"; http_header; pcre:"/\.php$/U";
reference:md5,3959fb5b5909d9c6fb9c9a408d35f67a; reference:url,trendmicro.com/cloud-
content/us/pdfs/security-intelligence/white-papers/wp-pos-ram-scraper-malware.pdf;
classtype: slr-et; sid:4004777; rev:1;)

This signature refers to the sample as JackPOS, but I think this sample falls somewhere in
the spectrum of malware between Alina and JackPOS.

As you can see the Spark name has come up several times, both in the POST
communication and the named pipe used by the malware. The usage of a version number
suggests that the malware author had intentions to produce additional versions.

The POST data communication with the C&C server retains the same structure as Alina
from v5.2 on, however, Spark chose to reverse the order of the XOR scheme used.

Figure 8: XOR'd POST Data

To recover the clear text message, bytes 18 through 35 (red) are used as a running XOR
key for bytes 76 (green) to the end of the data and then the entire message is XOR'd with
0xAA. This will decrypt the entire message. The yellow section (including the red bytes)
contains the header information, while the green is the dynamic data. Earlier variants would
first XOR the entire message with 0xAA and then grab bytes 18-35 to decode bytes from 76
to the end. A minor change, but sufficient in that it breaks any tools made to decode any
prior communications. I've written a ruby script that decodes and parses the traffic and can
be found at spark.rb.

http://10.10.0.46/images/slblog-03-02-2018-10-57-10/spiderlabs/03108bd1-d9f3-4f4f-9832-e272e053393d.html;%20charset=utf-8
https://github.com/SpiderLabs/malware-analysis/blob/master/Ruby/Alina/spark.rb

8/8

JackPOS

Spark and JackPOS have several similar techniques that relate them. The use of the AutoIt
compiled script as a loader is a technique that we have not seen very much and its use with
both JackPOS and Spark is a very interesting link. Both use similar blacklist approaches as
well as custom functions for finding CC data. However, JackPOS almost exclusively
attempts to masquerade as java or a java utility. It also either copies itself directly into the
%APPDATA% directory or into a java based sub-directory inside %APPDATA%. JackPOS
uses the MAC address as a bot ID and base64 encodes the CC data found on the system
in order to obfuscate the exfiltration. In case you missed the link above, here is SpiderLabs'
detailed write-up on JackPOS. It seems fairly clear that these are two different variants. So
while these two samples appear to be related, Spark bears a much stronger resemblance to
Alina than JackPOS.

Conclusion

There have been rumors and conjecture about Alina source code being sold off as well as
JackPOS being a successor to the Alina code base. While I don't have a pony in the race,
the Spark variant shows that someone has been updating the Alina source code recently.
The Spark string that shows up in both the named pipe and the POST communication
shows an obvious distinction from previous Alina versions. The use of AutoIt as a loader for
both Spark and JackPOS variants indicate that it could have potentially been a version
between the transition from Alina to JackPOS.

I believe it was Shakespeare who said, "Malware by any other name will still steal your
credit card data", or something to that affect. Regardless of what you call these variants, the
important part is to understand the details of this threat and how to keep your data secure.

http://blog.spiderlabs.com/2014/02/jackpos-the-house-always-wins.html

