
1/14

TR-23 Analysis - NetWiredRC malware
circl.lu/pub/tr-23/

Overview

CIRCL analyzed a malware sample which was only sporadically detected by just a handful
antivirus engines, based on heuristic detection. CIRCL analyzed the entire command
structure of the malware and was able to attribute this specific malware to the malware
NetWiredRC. The malware is a feature-rich Remote Access Tool, and compared to the
identified predecessors, this specific version even implements more features.

Pre-Analysis

Sample A

Hashes:

Type of
Hash Hash

MD5 37e922093d8a837b250e72cc87a664cd

SHA1 c4d06a2fc80bffbc6a64f92f95ffee02f92c6bb9

SHA-256 3946d499d81e8506b8291dc0bd13475397bbcd7cb6e2c7ea504c079c92b99f62

VirusTotal results for sample A

Engine Result

McAfee Artemis!37E922093D8A

TrendMicro-HouseCall TROJ_GEN.F47V0407

Comodo TrojWare.Win32.Amtar.JEI

McAfee-GW-Edition Artemis!37E922093D8A

ESET-NOD32 Win32/Spy.Agent.NYU

Ikarus Backdoor:Signed.Agent

Scanned: 2014-04-07 - 49 scans - 7 detections

https://www.circl.lu/pub/tr-23/

2/14

Engine Result

AVG BackDoor.Agent.AWYR

Scanned: 2014-04-07 - 49 scans - 7 detections

Signature check for sample A

Verified Signed

Signers Avira Operations GmbH & Co. KG

 VeriSign Class 3 Code Signing 2010 CA

 VeriSign Class 3 Public Primary Certification Authority - G5

Signing date 10:52 AM 6/25/2012

Publisher Avira Operations GmbH & Co. KG

Description Avira Notification Tool

Product Avira Free Antivirus

Version 12.3.0.34

File version 12.3.0.34

Import table

KERNEL32.dll
USER32.dll
GDI32.dll
ADVAPI32.dll
SHELL32.dll
COMCTL32.dll
SHLWAPI.dll
ole32.dll
OLEAUT32.dll
VERSION.dll

Sections

Sections attributes in the file reveal a first hint on the maliciousness of the file: the .text
section is writable and thus allows self-modifying code:

3/14

SECTION 1 (.text):
 virtual size : 000314DA (201946.)
 virtual address : 00001000
 section size : 00031600 (202240.)
 offset to raw data for section: 00000400
 offset to relocation : 00000000
 offset to line numbers : 00000000
 number of relocation entries : 0
 number of line number entries : 0
 alignment : 0 byte(s)
 Flags E0000020:
 text only
 Executable
 Readable
 Writable
SECTION 2 (.rdata):
 virtual size : 0000E238 (57912.)
 virtual address : 00033000
 section size : 0000E400 (58368.)
 offset to raw data for section: 00031A00
 offset to relocation : 00000000
 offset to line numbers : 00000000
 number of relocation entries : 0
 number of line number entries : 0
 alignment : 0 byte(s)
 Flags 40000040:
 data only
 Readable
SECTION 3 (.data):
 virtual size : 00003A5C (14940.)
 virtual address : 00042000
 section size : 00002200 (8704.)
 offset to raw data for section: 0003FE00
 offset to relocation : 00000000
 offset to line numbers : 00000000
 number of relocation entries : 0
 number of line number entries : 0
 alignment : 0 byte(s)
 Flags C0000040:
 data only
 Readable
 Writable
SECTION 4 (.rsrc):
 virtual size : 000064D0 (25808.)
 virtual address : 00046000
 section size : 00006600 (26112.)
 offset to raw data for section: 00042000
 offset to relocation : 00000000
 offset to line numbers : 00000000
 number of relocation entries : 0
 number of line number entries : 0
 alignment : 0 byte(s)
 Flags 40000040:
 data only
 Readable

4/14

Debugging Sample A

We’re not going into detail about all the obfuscation layers and extraction routines sample A
is using, but briefly outline the concept. After an anti-emulation stage, stage 2 decrypts the
final malware, using the key 0x5A4C4D4D4C4D, which in ASCII is ZLMMLM.

Stage 2 (xor):

.text:0040227A xor:

.text:0040227A lodsb

.text:0040227B xor al, [ebx+edx]

.text:0040227E inc edx

.text:0040227F jmp short loc_40229B

.text:00402281 loc_402281:

.text:00402281 stosb

.text:00402282 mov eax, edx

.text:00402284 xor edx, edx

.text:00402286 mov ebp, 6

.text:0040228B

.text:0040228B loc_40228B:

.text:0040228B div ebp

.text:0040228D loop xor

.text:0040228F mov eax, ebx

.text:00402291 add esp, 6

.text:00402294 pop ebx

.text:00402295 pop esi

.text:00402296 pop edi

.text:00402297 pop ebp

.text:00402298 push eax

.text:00402299 jmp short loc_4022A8

.text:0040229B ; ---------------------------------------

.text:0040229B

.text:0040229B loc_40229B:

.text:0040229B test edx, edx

.text:0040229D jnz short loc_402281

...

.text:004022A8 call $+5

.text:004022AD pop ebp

From the memory segment the code has been decrypted to, it is being written back to the
.text section. Additional libraries are being loaded:

C:\WINDOWS\system32\crypt32.dll
C:\WINDOWS\system32\msasn1.dll
C:\WINDOWS\system32\winmm.dll
C:\WINDOWS\system32\ws2_32.dll
C:\WINDOWS\system32\ws2help.dll

Finally, the instruction pointer is pointing back to the .text section at 0x00401FEC, which is
the original entry point of this malware.

5/14

This binary has been isolated, extracted and named sample B:

Sample B

Hashes:

Type of
Hash Hash

MD5 759545ab2edad3149174e263d6c81dce

SHA1 2182ff6537f38a4e8c273316484c2c84872633d0

SHA-256 34d88b04956cbed54190823c94753b0dc6d8c19339d22153127293433b398cf1

VirusTotal results for sample B

VirusTotal result for hash: 759545ab2edad3149174e263d6c81dce -> Hash was not found on
VirusTotal.

Signature check for sample B

File is not signed.

Analysis

Upon start, sample B, the actual malware, initializes memory, sets up Winsock by calling
WSAStartup and decrypts the following strings:

String Use

VM Vmware check? Not used

37.252.120.122:3360 Communication channel

- literally as “-“

Password literally as this string

HostId-%Rand% format string for identifier file

mJhcimNA Name of mutex

%AppData%\Microsoft\Crypto\Office.exe Filename when made persistent

Office Registry key

- literally as “-“

6/14

%AppData%\Microsoft\Crypto\Logs\

105 ?

001 ?

Then it starts to communicate with the Command and Control server, waiting for commands.

The commands are listed in the following table.

All commands have return codes. In case of success, the return code corresponds to
command code. If the command fails, usually the return code is the incremented command
code.

Command switch:

The following table shows the commands of the malware. If there is an interesting return
code, it is mentioned with (r):

Code Command

1 (r) heartbeat (send back return code 1)

2 (r) socket created

3 (r) registered

4 (r) setting password failed

5 set password, identifier and fetch computer information (user, computername,
windows version)

6 create process from local file or fetch from URL first and create process

7 create process from local file and exit (hMutex = CreateMutexA(0, 1,
“mJhcimNA”))

8 (r) failed to create process

9 stop running threads, cleanup, exit

A stop running threads, cleanup, sleep

B stop running threads, delete autostart registry keys, cleanup, exit

C add identifier (.Identifier) file

D threaded: get file over HTTP and execute

E fetch and send logical drives and types

7/14

Code Command

10 locate and send file with time, attributes and size

12 find file

13 (r) file information

14 unset tid for 0x12

14 (r) file not found (?)

15 send file

16 write into file

17 close file (see 0x1F)

18 copy file

19 execute file

1A move file

1B delete file

1C create directory

1D file copy

1E create directory or send file to server

1F close file (see 0x17)

20 start remote shell

21 write into WritePipe

22 reset tid for remote shell

22 (r) terminated remote shell

23 (r) failed to start remote shell

24 collect client information and configuration

25 (r) failed to get client information and configuration

26 get logged on users

26 (r) send logged on users

8/14

Code Command

27 (r) failed to send logged on users

28 get detailed process information

29 (r) failed to get detailed process information

2A terminate process

2B enumerate windows

2B (r) send windows

2C make window visible, invisible or show text

2D get file over HTTP and execute

2E (r) HTTP connect failed

2F set keyboard event “keyup”

30 set keyboard event $event

31 set mouse button press

32 set cursor position

33 take screenshot and send

35 (r) failed to take screenshot

36 locate and send file from log directory with time, attributes and size

38 check if log file exists

39 delete logfile

3A read key log file and send

3C (r) failed to read key log file

3D fetch and send stored credentials, history and certificates from common browsers

3E fetch and send stored credentials, history and certificates from common browsers

3F fetch and send chat (Windows Live and/or Pidgin) credentials

40 fetch and send chat (Windows Live and/or Pidgin) credentials

41 fetch and send mail (Outlook and/or Thunderbird) credentials and certificates

9/14

Code Command

42 fetch and send mail (Outlook and/or Thunderbird) credentials and certificates

43 socks_proxy

44 get audio devices and formats

44 (r) audio devices and formats

45 (r) failed to get audio devices

46 start audio recording

47 (r) error during recording

48 stop audio recording

49 find file get md5

4C unset tid for find file get md5 (0x49)

Network

Communication is performed via TCP/IP. First, the client registers itself at the server by
sending

41 00 00 00 03 (...)

to the server, which in return replies with

41 00 00 00 05 (...)

There is a hearbeat communication going on by sending

01 00 00 00 02

to the remote site.

Outgoing communication can be detected by Network Intrusion Detection systems in order to
detect compromised machines. Suricata rules are included in this report.

IOCs

HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\Run
value:Office
data:%AppData%\Microsoft\Crypto\Office.exe

10/14

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Active Setup\Installed Components
value:-
data:%AppData%\Microsoft\Crypto\Office.exe

Mutex name “mJhcimNA”
%AppData%\Microsoft\Crypto\Logs\

logfile per day, format DD-MM-YYYY (without extension)
%AppData%\Microsoft\Crypto\Office.exe
%AppData%\Microsoft\Crypto\Office.exe.Identifier
IP 37.252.120.122
TCP port 3360

A MISP XML file is available if you want to import the indicators into MISP or any other threat
indicators sharing platform.

NIDS

The following Suricata rule can be used to detect heartbeat and registration messages from
a compromised client to the C&C server. The rules have only been tested mildly against live
traffic and may produce a bunch of false positives. While keeping this fact in mind, you could
limit the destination to the IP address and port given in this report. On the downside, you will
lose the ability to track server/port changes the attacker may apply.

alert tcp $HOME_NET any -> $EXTERNAL_NET any (\
 msg:"NetWiredRC heartbeat"; \
 pkt_data; \
 content:"|01 00 00 00 02|"; \
 offset:0; \
 depth:10; \
 reference:url,https://www.circl.lu/pub/tr-23/; \
 sid:70023;\
 rev:1;)
alert tcp $HOME_NET any -> $EXTERNAL_NET any (\
 msg:"NetWiredRC registration"; \
 pkt_data; content:"|41 00 00 00 03|"; \
 offset:0; \
 depth:10; \
 reference:url,https://www.circl.lu/pub/tr-23/; \
 sid:70123;\
 rev:1;)

Related samples

Similarity by network connection (same IP:PORT), strings
MD5: 4af801e0de96814e9095bf78be790003
SHA1: b2beb80f0b1ed9b1ccbb9ae765b68d6db432a532
Attribution: Backdoor:Win32/NetWiredRC.B

https://www.circl.lu/assets/files/misp-circl-tr-23.xml
https://github.com/MISP/

11/14

Similarity by network connection (same IP:PORT)
MD5: 1d2f110f37c43a05407e8295d75a1974
SHA1: d199349a3811c508ca620195327123600e1d9392

By name NetWiredRC
http://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?
Name=Backdoor:Win32/NetWiredRC.B#tab=2
MD5: 1e279c58a4156ef2ae1ff55a4bc3aaf6
SHA1: 40e8e3b5fce0cd551106ccb86fc83a0ca03c9349
Quick analysis: previous version of this malware

missing features: SOCKS, audio recording, find file by MD5

Decrypting NetWire C2 traffic

NetWire uses a proprietary protocol with encryption by default (AES-256-OFB). The Palto
Alto Network threat intelligence team did a report on how to decrypt the traffic (as long as
you know the key or you extracted it from the malware). The NetWiredDC Decoder is
available on GitHub.

Recommendations

CIRCL recommends to review the IOCs of this report and compare them with servers
in the infrastructure of your organization which produce log files including proxies, A/V
and system logs.

In the case you have an infection, we recommend to capture the network traffic with the
full payload as soon as possible. You might be able to decrypt the traffic later on.

Isolate the machine infected. Acquire memory (especially to get a malware sample and
a potential encryption key) and disk. Reinstall the system after the forensic acquisition.

Server intel

The server (37.252.120.122) used for this campaign is hosted at

http://researchcenter.paloaltonetworks.com/2014/08/new-release-decrypting-netwire-c2-traffic/
https://github.com/pan-unit42/public_tools/tree/master/netwire
https://www.circl.lu/pub/tr-22/

12/14

inetnum: 37.252.120.0 - 37.252.120.255
netname: TILAA
descr: Tilaa
descr: This space is statically assigned
country: NL
admin-c: TLRL-RIPE
tech-c: TLRL-RIPE
status: ASSIGNED PA
mnt-by: TILAA-MNT
source: RIPE # Filtered

role: Tilaa admin role
address: Februariplein 14
address: 1011MT Amsterdam
address: The Netherlands
abuse-mailbox: abuse@tilaa.net
admin-c: TLDK-RIPE
admin-c: TLGV-RIPE
admin-c: TLRK-RIPE
tech-c: TLDK-RIPE
tech-c: TLGV-RIPE
tech-c: TLRK-RIPE
nic-hdl: TLRL-RIPE
mnt-by: TILAA-MNT
source: RIPE # Filtered

% Information related to '37.252.120.0/21AS196752'

route: 37.252.120.0/21
descr: Routed by Tilaa
origin: AS196752
mnt-by: TILAA-MNT
source: RIPE # Filtered

and reveals several open ports:

13/14

3360/tcp open unknown
3389/tcp open ms-wbt-server
5985/tcp open wsman
47001/tcp open unknown
49152/tcp open unknown
49153/tcp open unknown
49154/tcp open unknown
49155/tcp open unknown
49158/tcp open unknown
49159/tcp open unknown
49160/tcp open unknown
Device type: general purpose
Running (JUST GUESSING): Microsoft Windows 2008 (92%)
OS CPE: cpe:/o:microsoft:windows_server_2008::sp1
OS fingerprint not ideal because: Host distance (11 network hops) is greater than
five
Aggressive OS guesses: Microsoft Windows Server 2008 SP1 (92%)
No exact OS matches for host (test conditions non-ideal).
TCP/IP fingerprint:
SCAN(V=6.40%E=4%D=4/23%OT=3360%CT=1%CU=32387%PV=N%DS=11%DC=I%G=N%TM=5357A5F8%P=x86_64-
apple-darwin13.1.0)
SEQ(SP=104%GCD=1%ISR=10C%TI=I%TS=7)
OPS(O1=M5ACNW8ST11%O2=M5ACNW8ST11%O3=M5ACNW8NNT11%O4=M5ACNW8ST11%O5=M5ACNW8ST11%O6=M5A

WIN(W1=2000%W2=2000%W3=2000%W4=2000%W5=2000%W6=2000)
ECN(R=Y%DF=Y%T=80%W=2000%O=M5ACNW8NNS%CC=Y%Q=)
T1(R=Y%DF=Y%T=80%S=O%A=S+%F=AS%RD=0%Q=)
T2(R=N)
T3(R=N)
T4(R=N)
T5(R=Y%DF=Y%T=80%W=0%S=Z%A=S+%F=AR%O=%RD=0%Q=)
T6(R=N)
T7(R=N)
U1(R=Y%DF=N%T=80%IPL=164%UN=0%RIPL=G%RID=G%RIPCK=I%RUCK=0%RUD=G)
IE(R=N)

Uptime guess: 54.768 days (since Thu Feb 27 18:11:41 2014)

Ports might be used for several purposes/campaigns. Probing the ports gives the following
result:

3360/tcp - C&C port for this campaign
3389/tcp - no reaction to crafted requests
5985/tcp - HTTP port
47001/tcp - HTTP port
49152/tcp - no reaction to crafted requests
49153/tcp - no reaction to crafted requests
49154/tcp - no reaction to crafted requests
49155/tcp - no reaction to crafted requests
49158/tcp - no reaction to crafted requests
49159/tcp - no reaction to crafted requests

14/14

49160/tcp - no reaction to crafted requests

The ports not reacting to crafted requests might be used for different campaigns for the same
malware or for different versions of the malware family or even for other malware. We were
not able to find a different sample of the malware that connects to a different port.

Starting of Friday 25 April, the C&C port is not active as the ISP took the appropriate action.

Classification of this document

TLP:WHITE information may be distributed without restriction, subject to copyright controls.

Acknowledgment

CIRCL thanks CERT Société Générale for sharing Sample A.

Revision

Version 1.1 November 26, 2014 Decrypting NetWire C2 Traffic reference added
Version 1.0 April 25, 2014 C&C (for the known TCP port) is no more active
Version 0.9 April 23, 2014 Initial version (TLP:WHITE)

