
1/5

malware-kitten

securitykitten.github.io/_posts/2014-11-26-getmypass-
point-of-sale-malware.md

github.com/malware-kitten/securitykitten.github.io/blob/master/_posts/2014-11-26-getmypass-point-of-sale-malware.md

layout title date

category-
post

Getmypass Point of Sale
Malware

2014-11-26 13:00:33
-0500

Introduction

While doing some digging recently on VirusTotal I had a rule trigger on what
appears to be a new POS malware family.

The MD5 (1d8fd13c890060464019c0f07b928b1a) is the malware that I will be
dissecting in this post.

The first interesting thing that struck my eye is the incredibly low detection rate
which at the time of this writing was 0/55.

https://github.com/malware-kitten/securitykitten.github.io/blob/master/_posts/2014-11-26-getmypass-point-of-sale-malware.md

2/5

Secondly (and what may be affecting detection) is that the binary is signed from
“Bargaining active” which is currently a valid certificate.

So digging into the code a bit, this malware appears to do something in
common with other POS RAM scrapers.

Process Dumping
Searching for CC data
Validation using Luhn's algorithm
Writing that to a file
Encrypting / Encoding file

There doesn't appear to be any C2 functionality in this particular piece of
malware so this is more of a utility than a backdoor. This malware also does not
contain code to do any of the following:

Lateral movement
Credential harvesting
Pushing the harvested data to a non-local file
Keylogging

Analysis

https://github.com/malware-kitten/securitykitten.github.io/blob/master/images/getmypass_sigs.png
https://github.com/malware-kitten/securitykitten.github.io/blob/master/images/getmypass_cert.png

3/5

The malware will first search for an ini file named 1.ini in the same directory as
the malware. Without the ini file the malware will exit. Thanks to Josh
Grunzweig for pointing out the ini format.

The cryp argument is responsible for toggling on/off functionality to encrypt the
collected CC data with RC4.

The malware will also create a mutex when running "1yn8RQLkm8"

Diving in head first, the first function that stuck out to me is at loc 0x402360.
This function is responsible for iterating over processes, calling OpenProcess,
and then ultimately ReadProcessMemory.

Very (very!) rough logic for this would look resemble:

{% highlight ruby %} {% raw %} procs = CreateToolhelp32Snapshot
Process32FirstW(procs) do OpenProcess while true if VirtualQueryEx
ReadProcessMemory else break CloseHandle while Process32NextW
CloseHandle VirtualFree {% endraw %} {% endhighlight %}

Many of the POS ram scrapers will use this same sort of functionality to crawl
and enumerate processes. One difference is that this malware does use a
whitelist (in the ini file) and only dumps processes the user would specify.

Below is a screenshot of the configuration file 1.ini and the encrypted track1
and track2 CC information:

[settings]
proc=notepad.exe
time=1000
cryp=1

https://github.com/malware-kitten/securitykitten.github.io/blob/master/images/getmypass_mutex.png

4/5

When running the malware in a debugger, I posted sample track data into
notepad and stepped though execution. The malware will locate the notepad
process (using the above loop) and then pass those results to a function to
search for strings that look like track data. These are then parsed and the
results are passed to a function that will use the Luhn's algorithm to process
and check for valid numbers. A lookup table is used rather than calculating a
digital root. This is the same version of the algorithm used in FrameworkPOS
and Dexter.

{% highlight c %} {% raw %} v5 = 0; v6 = 2; v7 = 4; v8 = 6; v9 = 8; v10 = 1; v11
= 3; v12 = 5; v13 = 7; v14 = 9; v16 = 1; v15 = 0; v17 = a2; while (1) { v2 = v17-
-; if (!v2) break; if (v16) v4 = *(_WORD *)(a1 + 2 * v17) - 48; else v4 = *(&v5
+ *(_WORD *)(a1 + 2 * v17) - 48); v15 += v4; v16 = v16 == 0; } return v15 % 10
== 0; } {% endraw %} {% endhighlight %}

Which in source code would look more like this

{% highlight c %} {% raw %} int IsValidCC(const char* cc,int CClen) { const int
m[] = {0,2,4,6,8,1,3,5,7,9}; // mapping for rule 3 int i, odd = 1, sum = 0; for (i =
CClen; i--; odd = !odd) { int digit = cc[i] - '0'; sum += odd ? digit : m[digit]; }
return sum % 10 == 0; } {% endraw %} {% endhighlight %}

Once the numbers have been validated, they are passed to an RC4 function
and written out to rep.tmp and rep.bin the RC4 password used is "getmypass"

Disabling the "cryp" option in the config file will write plaintext data to the
rep.tmp and rep.bin files

https://github.com/malware-kitten/securitykitten.github.io/blob/master/images/getmypass_config_cryp.png
https://github.com/malware-kitten/securitykitten.github.io/blob/master/images/getmypass_rc4.png

5/5

Final Thoughts

To run this malware successfully the attacker would need several pieces of
information:

Credentials
Name of the POS executable / service
A method for moving the data out of the network

This malware seems to be in its infancy. There are debug strings still existent in
the malware indicate to me that the author is still testing the tool or is still
actively developing it.

It's important to track tools like this from their very young stages so that
researchers can watch them develop and eventually grow into the next big tool.
While this isn't the most advanced POS RAM scraper there is, it's still capable
of bypassing all 55 AV's used to scan it.

https://github.com/malware-kitten/securitykitten.github.io/blob/master/images/getmypass_dump.png
https://github.com/malware-kitten/securitykitten.github.io/blob/master/images/getmypass_outputdebugstring.png

