securitykitten.github.io/_posts/2014-11-26-getmypass-
point-of-sale-malware.md

O github.com/malware-kitten/securitykitten.github.io/blob/master/_posts/2014-11-26-getmypass-point-of-sale-malware.md

malware-kitten

malware-kitten/
securitykitten.github.io

Jekyll theme inspired by Swiss design

A0 ©o0 wo 0 @)
Contributors Issues Stars Forks
layout title date
category- Getmypass Point of Sale 2014-11-26 13:00:33
post Malware -0500

Introduction

While doing some digging recently on VirusTotal | had a rule trigger on what
appears to be a new POS malware family.

The MD5 (1d8fd13c890060464019c0f07b928b1a) is the malware that | will be
dissecting in this post.

The first interesting thing that struck my eye is the incredibly low detection rate
which at the time of this writing was 0/55.

1/5

https://github.com/malware-kitten/securitykitten.github.io/blob/master/_posts/2014-11-26-getmypass-point-of-sale-malware.md

SHAZ56: 6bffe5385dd1321febb99dec 3f8858bedfT99c8629¢ 1c8d6f414eebaabt3ar10
File name: fileD9. exe
Detection ratio: 0/ 55

Analysis date: 2014-11-26 01:19:32 UTC (16 hours, 44 minutes ago)

Secondly (and what may be affecting detection) is that the binary is signed from
“Bargaining active” which is currently a valid certificate.

Publisher Bargaining active
Signature verification & Signed file, verified signature
Signing date 1:28 PM 11/9/2014
Signers [+] Bargaining active
Status @ Valid
Valid from 1200 AM 8/5/2014
Valid to 12:59 AM 8/6/2015
Valid usage Code Signing
Algorithm SHA1
Thumbrint 4B49ETE9861 5732541 AD4TESFBACEBIE3BE3ISEIM

Serial number 2CTIBAZ3I1ZED BD 2ZEGASASAFF 77 48 F10C

So digging into the code a bit, this malware appears to do something in
common with other POS RAM scrapers.

e Process Dumping

Searching for CC data

Validation using Luhn's algorithm
Writing that to a file

Encrypting / Encoding file

There doesn't appear to be any C2 functionality in this particular piece of
malware so this is more of a utility than a backdoor. This malware also does not
contain code to do any of the following:

e Lateral movement

e Credential harvesting

e Pushing the harvested data to a non-local file
» Keylogging

Analysis

2/5

https://github.com/malware-kitten/securitykitten.github.io/blob/master/images/getmypass_sigs.png
https://github.com/malware-kitten/securitykitten.github.io/blob/master/images/getmypass_cert.png

The malware will first search for an ini file named 1.ini in the same directory as
the malware. Without the ini file the malware will exit. Thanks to Josh
Grunzweig for pointing out the ini format.

[settings]
proc=notepad.exe
time=1000

cryp=1

The cryp argument is responsible for toggling on/off functionality to encrypt the
collected CC data with RCA4.

The malware will also create a mutex when running "1yn8RQLkm8"

push ebp

mow ebp, =sp

push ecx

push ocffset alynB8rglkm8 ; "
push 1

push i

call ds:

test £ax, eax

jz short loc_402EEY

Diving in head first, the first function that stuck out to me is at loc 0x402360.
This function is responsible for iterating over processes, calling OpenProcess,
and then ultimately ReadProcessMemory.

Very (very!) rough logic for this would look resemble:

{% highlight ruby %} {% raw %]} procs = CreateToolhelp32Snapshot
Process32FirstW(procs) do OpenProcess while true if VirtualQueryEx
ReadProcessMemory else break CloseHandle while Process32NextW
CloseHandle VirtualFree {% endraw %} {% endhighlight %}

Many of the POS ram scrapers will use this same sort of functionality to crawl
and enumerate processes. One difference is that this malware does use a
whitelist (in the ini file) and only dumps processes the user would specify.

Below is a screenshot of the configuration file 1.ini and the encrypted track1
and track2 CC information:

3/5

https://github.com/malware-kitten/securitykitten.github.io/blob/master/images/getmypass_mutex.png

ST1 empty BB | Buinnows sy stencdll
10l
File Edit Format Yiew Help
UG, sWwil’ dd 2 250EREpOnF LY " GS0% ESY E, -™EQRIF™i:Xic-UZpIdeyeqiaSaE« 07 e wRa ™ (KF#T UL éE'"EIU'écId

File Edit Format Wiew Help

[settings]
| proc=notepad. exe
ftime=3000
ilcryp=1

!

When running the malware in a debugger, | posted sample track data into
notepad and stepped though execution. The malware will locate the notepad
process (using the above loop) and then pass those results to a function to
search for strings that look like track data. These are then parsed and the
results are passed to a function that will use the Luhn's algorithm to process
and check for valid numbers. A lookup table is used rather than calculating a

digital root. This is the same version of the algorithm used in FrameworkPOS
and Dexter.

{% highlight ¢ %} {% raw %} v5 =0;v6 =2;v7 =4;v8=6;v9=8;vi0=1; vi1
=3;v12=5;v13=7;v14 =9;v16 = 1; v15=0; v17 = a2; while (1) {v2 = v17-
-;if (Iv2) break; if (v16) v4 = *(_ WORD *)(a1 + 2 * v17) - 48; else v4 = *(&v5
+*(_WORD *)(a1 + 2 *v17) - 48); v15 +=v4; v16 = v16 == 0; } return v15 % 10
== 0; } {% endraw %} {% endhighlight %}

Which in source code would look more like this

{% highlight ¢ %} {% raw %} int IsValidCC(const char* cc,int CClen) { const int
m[] = {0,2,4,6,8,1,3,5,7,9}; // mapping for rule 3 int i, odd = 1, sum = 0O; for (i =
CClen; i--; odd = 'odd) { int digit = cc[i] - '0"; sum += odd ? digit : m[digit]; }
return sum % 10 == 0; } {% endraw %} {% endhighlight %]}

Once the numbers have been validated, they are passed to an RC4 function
and written out to rep.tmp and rep.bin the RC4 password used is "getmypass"

- ——— ——

push :

push cffset aGetmypass ;
call passToRod

add esp, ldh

pop ebp

Disabling the "cryp" option in the config file will write plaintext data to the
rep.tmp and rep.bin files

4/5

https://github.com/malware-kitten/securitykitten.github.io/blob/master/images/getmypass_config_cryp.png
https://github.com/malware-kitten/securitykitten.github.io/blob/master/images/getmypass_rc4.png

0 = T T R N 1l 2 T 1 =TT =T 1
P rep.tmp - Notepad]
File Edit Format Wiew Help der

lFUCK%EI4 BBBA03170607238AHead,/PotatorA0505101000000000012031918051910000007;488860317060723 8=0;|

=Nl

L |
A

o

No add 10 zero's after service code:
E48886031706072384Head,/PotatoACS051010000000000

Mext add the remaining numbers from Track? (after the
E48886031706072384AHead /POt atoA0S05101000000000012031%
and then add six zero's (&) zero's

B4 888603170607238AHead,/POTAT0AGS051010000000000120319
wour Track 1

Track 1:B4888603170607238 AHead,//PotatoAr050510100000000

Final Thoughts

To run this malware successfully the attacker would need several pieces of
information:

e Credentials
 Name of the POS executable / service
¢ A method for moving the data out of the network

This malware seems to be in its infancy. There are debug strings still existent in
the malware indicate to me that the author is still testing the tool or is still
actively developing it.

[E:t ring

| [Eitr-ing =

It's important to track tools like this from their very young stages so that
researchers can watch them develop and eventually grow into the next big tool.
While this isn't the most advanced POS RAM scraper there is, it's still capable
of bypassing all 55 AV's used to scan it.

5/5

https://github.com/malware-kitten/securitykitten.github.io/blob/master/images/getmypass_dump.png
https://github.com/malware-kitten/securitykitten.github.io/blob/master/images/getmypass_outputdebugstring.png

