
1/6

Palo Alto Networks August 14, 2014

Hunting the Mutex
researchcenter.paloaltonetworks.com/2014/08/hunting-mutex/

By Palo Alto Networks

August 14, 2014 at 2:15 PM

Category: Malware, Threat Advisories - Advisories, Threat Advisory/Analysis, Threat
Prevention, Unit 42

Tags: Haystack, mutex, WildFire

Summary

Mutex analysis is an often overlooked and useful tool for malware author fingerprinting,
family classification, and even discovery. Far from the hypothesized "huge amount of
variability" in mutex names, likely hypothesized due to the seemingly random appearance of
them, practical mutex usage is embarrassingly consistent. In fact, over 15% of all collected
worms share a single mutex [2gvwnqjz].

This blog was sourced from the data generated by the WildFire Analytics cloud, which
processes thousands of samples a day and provides insights into various characteristics and
behaviors of malware worldwide. But before we get into the details, here is a quick overview
of mutexes and why they exist in the first place.

Mutex Overview

The mutex is the fundamental tool for managing shared resources between multiple threads
(or processes). If you think of the threads as a whole bunch of people in a meeting, all trying
to talk at once, a mutex is the baton that gets passed from one person to the next so that
there’s only one person talking at a time. The important thing to understand is what the
mutex is really protecting. In the above example, the resource being protected isn’t the right
to speak, as many might think, but rather the ability to listen.

Here’s a more technical example. Lets say you want to update an Internet Explorer (IE)
cookie file, adding a unique identifier for use later. Naively, what you need to do is read the
cookie file in, add your data to what you’ve read, and write the file back to disk. But what if IE
is running and also updating that file? The worst case, for you, is that both you and IE read
the file at the same time but you write your edits first. This is because IE will completely
destroy your edits when it writes its new version of the file over yours.

https://researchcenter.paloaltonetworks.com/2014/08/hunting-mutex/
https://unit42.paloaltonetworks.com/author/paloaltonetworksstaff/
https://unit42.paloaltonetworks.com/category/malware-2/
https://unit42.paloaltonetworks.com/category/threat-briefs-assessments/threat-advisories-advisories/
https://unit42.paloaltonetworks.com/category/threat-briefs-assessments/threat-advisory-analysis/
https://unit42.paloaltonetworks.com/category/threat-prevention-2/
https://unit42.paloaltonetworks.com/category/unit42/
https://unit42.paloaltonetworks.com/tag/haystack/
https://unit42.paloaltonetworks.com/tag/mutex/
https://unit42.paloaltonetworks.com/tag/wildfire/
http://resources.infosecinstitute.com/mutexes-analysis-part-one/

2/6

The solution to this problem is to use a mutex to protect the integrity of the cookie file. A
process that has the mutex knows that while it holds that mutex no other process will be
accessing the cookie file. It can then read, tweak, and write the file without fear of any
clobbering by other processes.

Analysis

Since each shared resource can only have a single mutex effectively protecting it, leveraging
that mutex is indication that a program will be using said resource. In the cookie file example
above, just referencing the mutex protecting that file indicates, with extremely high
probability, that functionality to change the file exists somewhere in the program.

Any given mutex, and protected functionality, can then be thought of as an independent
library of sorts. Note that while the technical implementation may not expose said
functionality as a normal library, such exposure is not necessary for the types of analysis
performed here. That library’s usage can be analyzed in terms of who uses it. Simply put:
malware writers leverage malware specific libraries and groups of like actors will reuse these
core libraries when able.

Dear Haystack, You Failed

The needle in a haystack problem forever plagues malware research: it’s extremely difficult
to find reliable information with malware writers constantly working to undermine or eliminate
that information. But, in the case of mutex analysis, the useful information pretty well slapped
us in the face.

As can be clearly seen, mutex 2gvwnqjz1 is strongly associated with malware. In fact, we
have only seen it in malware.

3/6

As is equally obvious, not all mutexes offer such dramatic insight. There are many common
mutexes shared across both benign software and malware. What’s more, they don’t all share
millions of uses across both sides of the fence.

In cases such as these the common approach is to use sets of the data, in this case sets of
mutexes, to create fingerprints of each sample and then leverage those fingerprints to extract
higher confidence classification decisions. While this avenue of research is being pursued, it
suffers from all the traditional challenges of big data research. In other words, it’s slow going.

In parallel, and to inform better hypothesis for the fingerprint generation, research is being
done to determine how far single mutex analysis can take us. The research is ongoing but
the initial results are extremely promising.

Dear Haystack, We Repent

The number of times any single mutex is used drops rapidly from the millions of samples
down to thousands and from there, even further. Tens of thousands of the mutexes have
been seen in only a single sample each. This results in a few hundred thousand individual
mutexes available for further analysis.

What quickly becomes apparent is that a large majority of the mutexes provide no obvious
means to automatically classify them as necessarily indicative of good or bad behavior. And,
unfortunately, the ones, which are reasonably easy for a human to identify, are so for
significantly different reasons. For example,

“autoproto_*” -- More than 20 mutexes share that preface, offering a natural fingerprint.

“global\setup_028746_mutexitem” -- Associated solely with known malware digital signers.

“defined_setnocandy” -- After reading mutex names for a few hours this just sticks out like a
sore thumb.

Only the first of the examples had the mutex associated with a vast majority of malware
samples. This implies that any fully automated association of a mutex to either benign or
malware samples will itself require complex fingerprinting and confidence models.

Hybrid Approach

Full automation is always the ideal but it isn’t always necessary. With the appropriate tools
it’s possible to enable a single researcher to continually review and categorize new mutexes.
The initial classifications to be used are “benign”, “malware”, or “statistical”. Meaning that the
mutex either itself indicates a benign or malware sample, or that the mutex alone is not
enough to make a determination and the statistical ratio of benign to malware is the best it
can offer.

4/6

The backlog of already collected mutexes is too great for a small team of researchers to
meaningfully tackle without some kind of ranking system. Luckily, the most objective piece of
data collected about each mutex, how many samples were classified benign vs. malware,
has all the information necessary to ensure that the researchers’ tackle the low hanging fruit
first.

Case Study: “jhdheruhfrthkgjhtjkghjk5trh”

With over hundreds of thousands of malware associations, this specific mutex is associated
exclusively with the Net-worm:W32/Allaple malware family which has been around since
2006 but continues to propagate and reinvent itself through the years. Though the fact that
the malware writer obviously named the mutex by rolling their face on the keyboard made it
obvious before we'd done any further analysis that we’d found a unique identifier within the
binaries.

This malware is well documented as a powerful polymorphic worm that encrypts itself
differently every time it propagates. The evasive nature of this malware family leads to a
different file hash, import hash, and only a 20% average SSDeep hash overlap between the
samples. But because the mutex name is set at compile time, the mutex itself offers a
common thread between all of the samples we collected and analyzed.

However, this particular mutex was associated with only a recent subset of the Allaple family.

Lessons Learned

Unlike many other avenues of research and classification, mutex name based associations
provides an almost trivial means of uniquely identifying common code blocks and thereby
malware families.

Case Study: “jhdgcjhasgdc09890gjasgcjhg2763876uyg3fhg”

The first thing our researchers noticed was the similarity between this mutex name and the
previous one. While programmatic analysis would have a hard time associating the two, it's
obvious to a human that the same face rolling technique was used to name this mutex. The
author simply rolled around a bit more.

Quick follow up analysis revealed that this mutex was also associated with the Allaple
malware family. More interestingly, it was another, non-overlapping, subset of the Allaple
family. Several hypotheses followed directly from this observation.

1. The same author created both variants.
2. The second mutex was created at some point after the first.
3. The underlying functionality protected by the first mutex was removed or altered so

significantly that a new mutex was required to provide the necessary protection.
4. This functionality is not available and/or used generally in the malware community.

5/6

5. Each mutex exists across multiple variants.

Absolute proof for a few of these hypotheses may never be realized. However, and lucky for
us, the malware author was arrested in 2010 so several of the hypothesis can be verified.

The first is very likely due to the similarities present in the order of keys hit. Both begin with
“jhd”. “jh” itself is more common than would be expected given that, with fingers on the home
row, it requires the right index finger to move and press another key before any other key is
struck. And “jh” is always followed by a key from the left side of the keyboard. These unique
consistencies make it extremely improbable that two different people named these mutexes.

The second mutex appears to be a concerted effort to make the mutex seem “more random”
than the first. It's immediately obvious that the author didn't move his fingers/hands much
while typing the first. It’s obvious enough that the author likely noticed it when reworking this
section of code. It's highly improbable that one would see the second mutex and make a
concerted effort to make it appear “less random”. And, as can be quickly verified by
searching through standard virus detection logs, the mutexes did in fact appear in the
hypothesized order.

The third is likely due to the lack of overlap between mutex names. However, the research
necessary to conclusively prove this hypothesis would be very time consuming and provide
little other benefit.

The fourth is likely due to the mutexes only appearing in a single malware family. If this
functionality were available in some more open source setting, and was of even moderate
quality, we would expect to see it used in other malware families as well. As this functionality
has not migrated outside the Allaple family, either the quality of the code is bad (see: face
rolling), or it's simply not available to other malware developers.

The fifth is very likely as a change to the specific functionality these mutexes protect, with
every change to any functionality, is simply not a practical method of development. And
indeed, as with the second hypothesis, standard virus detection logs prove that each of
these mutexes do span multiple variants of the worm.

Lessons Learned

Mutex names provide a window into the entire development process and timeline for
malware. Idiosyncrasies of the malware author become apparent, the evolution can be
traced, the availability or quality of code deduced, and reuse of functionality made clear with
a simple mutex. No other currently used method of analysis offers such a personal view into
malware development.

Conclusion

http://nakedsecurity.sophos.com/2010/03/12/allaple-worm-author-sentenced-jail/

6/6

Mutex name analysis as a whole offers a unique look into the results of any sample
classification system and the malware therein. While the research may never result in a fully
automated decision system, it has been proven that researchers employing a hybrid
approach to analysis will be able to provide critical and timely information to support the
continual improvement of the classification system as a whole.

From edge case to systematic misclassifications, mutex usage is even more generally the
canary in a coal mine than was previously realized.

Anecdotes

While tedious and time consuming, combing through mutex names did come with more than
a few good laughs. After nearly as much debate as some of the real research, we’ve whittled
the list down to our favorites (For the curious, these are all malware mutexes). Enjoy.

Pluguin - When penguins and wall sockets mate. Development environments don’t have
spell check but, maybe they should.

senna spy rock in rio 2001 virus - Subtlety. Overwhelming. There were many variations on
this one, Senna’s obviously proud of his work.

chinese-hacker-2 - We’re not sure which is worse: that this is a legitimate signature or a sad
frame job. Either way, somebody needs their computer privileges revoked.

mutexpolesskayaglush*.*svchost.comexefile\shell\open\command %1 %*@ - Putting
shell code in a mutex name is right on the border of brilliant and insane. We’ll leave that
determination to the reader.

mr_coolface - Really, not so much, no.

don't stop me! i need some money! - http://www.monster.com/ - don’t say we never did
anything for you.

Get updates from
 Palo Alto

 Networks!

Sign up to receive the latest news, cyber threat intelligence and research from us

By submitting this form, you agree to our Terms of Use and acknowledge our Privacy
Statement.

http://resources.infosecinstitute.com/mutexes-analysis-part-one/
http://www.monster.com/
https://www.paloaltonetworks.com/legal-notices/terms-of-use
https://www.paloaltonetworks.com/legal-notices/privacy

