
1/10

Josh Grunzweig July 14, 2015

Unit 42 Technical Analysis: Seaduke
unit42.paloaltonetworks.com/unit-42-technical-analysis-seaduke/

By Josh Grunzweig

July 14, 2015 at 9:47 AM

Category: Malware, Threat Prevention, Unit 42

Tags: Duke malware, forkmeiamfamous, Seaduke, Symantec, Trojan

Earlier this week Symantec released a blog post detailing a new Trojan used by the ‘Duke’ family of
malware. Within this blog post, a payload containing a function named ‘forkmeiamfamous’ was
mentioned. While performing some research online, Unit 42 was able to identify the following
sample, which is being labeled as ‘Trojan.Win32.Seadask’ by a number of anti-virus companies.

MD5 A25EC7749B2DE12C2A86167AFA88A4DD

SHA1 BB71254FBD41855E8E70F05231CE77FEE6F00388

SHA256 3EB86B7B067C296EF53E4857A74E09F12C2B84B666FC130D1F58AEC18BC74B0D

Compile
Timestamp

2013-03-23 22:26:55

File type PE32 executable (GUI) Intel 80386, for MS Windows, UPX compressed

Our analysis has turned up more technical details and indicators on the malware itself that aren’t
mentioned in Symantec’s post. Here are some of our observations:

First Layer of Obfuscation

Once the UPX packer is removed from the malware sample, it becomes quickly apparent that we’re
dealing with a sample compiled using PyInstaller. This program allows an individual to write a
program using the Python scripting language and convert it into an executable for the Microsoft
Windows, Linux, Mac OSX, Solaris, or AIX platform. The following subset of strings that were found
within the UPX-unpacked binary confirms our suspicions.

sys.path.append(r"%s")
del sys.path[:]
import sys
PYTHONHOME
PYTHONPATH
Error in command: %s
sys.path.append(r"%s?%d")

https://unit42.paloaltonetworks.com/unit-42-technical-analysis-seaduke/
https://unit42.paloaltonetworks.com/author/joshgruznweig/
https://unit42.paloaltonetworks.com/category/malware-2/
https://unit42.paloaltonetworks.com/category/threat-prevention-2/
https://unit42.paloaltonetworks.com/category/unit42/
https://unit42.paloaltonetworks.com/tag/duke-malware/
https://unit42.paloaltonetworks.com/tag/forkmeiamfamous/
https://unit42.paloaltonetworks.com/tag/seaduke/
https://unit42.paloaltonetworks.com/tag/symantec/
https://unit42.paloaltonetworks.com/tag/trojan/
http://www.symantec.com/connect/blogs/forkmeiamfamous-seaduke-latest-weapon-duke-armory
https://www.virustotal.com/en/file/3eb86b7b067c296ef53e4857a74e09f12c2b84b666fc130d1f58aec18bc74b0d/analysis/
https://github.com/pyinstaller/pyinstaller/wiki

2/10

_MEI%d
INTERNAL ERROR: cannot create temporary directory!
WARNING: file already exists but should not: %s
Error creating child process!
Cannot GetProcAddress for PySys_SetObject
PySys_SetObject

Because the sample was written in Python originally, we’re able to extract the underlying code. A
tool such as ‘PyInstaller Extractor’ can be used to extract the underlying pyc files present within the
binary.

Figure 1. Extracted Python files from Seaduke

We can then use a tool such as uncompyle2 to convert the Python byte-code into the original
source code. Once this process is completed, we quickly realize that the underlying Python code
has been obfuscated.

http://sourceforge.net/projects/pyinstallerextractor/
https://unit42.paloaltonetworks.com/wp-content/uploads/2015/07/pic-1.png
https://github.com/wibiti/uncompyle2

3/10

Figure 2. Obfuscated Python code

Second Layer of Obfuscation

Tracing through the obfuscated code, we identify an ‘exec(ZxkBDKLakV)’ statement, which will
presumably execute some Python code. Tracing further, we discover that this string is generated
via appending a number of strings to the ‘ZxkBDKLakV’ variable. Finally, we find that after this
string is created, it is base64-decoded and subsequently decompressed using the ZLIB library.

https://unit42.paloaltonetworks.com/wp-content/uploads/2015/07/pic-2.png

4/10

Figure 3. Second layer of obfuscation identified

The following simple Python code can be used to circumvent this layer of obfuscation:

https://unit42.paloaltonetworks.com/wp-content/uploads/2015/07/pic-3.png

5/10

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

import sys, re, base64, zlib

if len(sys.argv) != 2:
print "Usage: python %s [file]" % __file__
sys.exit(1)

f = open(sys.argv[1], 'rb')
fdata = f.read()
f.close()

Set this accordingly
variable = "ZxkBDKLakV"

regex = "%s \+= ([a-zA-Z0-9]+)\n" % variable
out = ""
for x in re.findall(regex, fdata):
regex2 = "%s = \"([a-zA-Z0-9\+\/]+)\"" % x
for x1 in re.findall(regex2, fdata):
out += x1

o = base64.b64decode(out)
print zlib.decompress(o)

The remaining Python code still appears to be obfuscated, however, overall functionality can be
identified.

Final Payload

As we can see below, almost all variable names and class names have been obfuscated using long
unique strings.

Figure 4. Obfuscation discovered in final payload

Using a little brainpower and search/replace, we can begin identifying and renaming functionality
within the malware. A cleaned up copy of this code can be found on GitHub. One of the first things
we notice is a large blob of base64-encoded data, which is additionally decompressed using ZLIB.
Once we decode and decompress this data, we are rewarded with a JSON object containing
configuration data for this malware:

https://unit42.paloaltonetworks.com/wp-content/uploads/2015/07/figure-4.png
https://github.com/pan-unit42/iocs/blob/master/seaduke/decompiled.py

6/10

Figure 5. Base64-encoded / ZLIB compressed data

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

{
"first_run_delay": 0,
"keys": {
"aes": "KIjbzZ/ZxdE5KD2XosXqIbEdrCxy3mqDSSLWJ7BFk3o=",
"aes_iv": "cleUKIi+mAVSKL27O4J/UQ=="
},
"autoload_settings": {
"exe_name": "LogonUI.exe",
"app_name": "LogonUI.exe",
"delete_after": false
},
"host_scripts": ["http://monitor.syn[.]cn/rss.php"],
"referer": "https://www.facebook.com/",
"user_agent": "SiteBar/3.3.8 (Bookmark Server; http://sitebar.org/)",
"key_id": "P4BNZR0",
"enable_autoload": false
}

This configuration object provides a number of clues and indicators about the malware itself. After
this data is identified, we begin tracing execution of the malware from the beginning. When the
malware is initially run, it will determine on which operating system it is running. Should it be
running on a non-Windows system, we see a call to the infamous ‘forkmeiamfamous’ method. This
method is responsible for configuring a number of Unix-specific settings, and forking the process.

https://unit42.paloaltonetworks.com/wp-content/uploads/2015/07/figure-5.png

7/10

Figure 6. Main execution of malware

Continuing along, we discover that this malware has the ability to persist using one of the following
techniques:

1. Persistence via PowerShell
2. Persistence via the Run registry key
3. Persistence via a .lnk file stored in the Startup directory

The malware copies itself to a file name referenced in the JSON configuration.

Figure 7. Persistence techniques

After the malware installs itself, it begins making network requests. All network communications are
performed over HTTP for this particular sample; however, it appears to support HTTPS as well.
When the malware makes the initial outbound connection, a specific Cookie value is used.

https://unit42.paloaltonetworks.com/wp-content/uploads/2015/07/figure-6.png
https://unit42.paloaltonetworks.com/wp-content/uploads/2015/07/figure-7.png

8/10

Figure 8. Initial HTTP request made

In actuality, this Cookie value contains encrypted data. The base64-encoded data is parsed from
the Cookie value (padding is added as necessary).

EBJhZTlKiqN8nYWejKh7UpDycPlcrGMEcTE=

The resulting decoded data is shown below.

\x10\x12ae9J\x8a\xa3|\x9d\x85\x9e\x8c\xa8{R\x90\xf2p\xf9\\\xacc\x04q1

The underlying data has the following characteristics.

Figure 9. Cookie data structure

XORing the first single character against the second character identifies the length of the random
string. Using the above example, we get the following.

First Character : '\x10'
Second Character : '\x12'
String Length (16 ^ 18) : 2
Random String : 'ae'
Encrypted Data : '9J\x8a\xa3|\x9d\x85\x9e\x8c\xa8{R\x90\xf2p\xf9\\\xacc\x04q1'

Finally, the encrypted data is encrypted using the RC4 algorithm. The key is generated by
concatenating the previously used random string with the new one, and taking the SHA1 hash of
this data.

https://unit42.paloaltonetworks.com/wp-content/uploads/2015/07/figure-8.png
https://unit42.paloaltonetworks.com/wp-content/uploads/2015/07/figure-9.png
https://unit42.paloaltonetworks.com/wp-content/uploads/2015/07/figure-X.png

9/10

This same key is used to decrypt any response data provided by the server. The server attempts to
mimic a HTML page and provides base64-encoded data within the response, as shown below.

Figure 10. Server response

Data found within tags in the HTML response is joined together and the white space is removed.
This data is then base64-decoded with additional characters (‘-_’) prior to being decrypted via RC4
using the previously discussed key. After decryption occurs, the previous random string used in key
generation is updated with the random string. In doing so, the attackers have ensured that no
individual HTTP session can be decrypted without seeing the previous session. If the decrypted
data does not produce proper JSON data, Seaduke will discard it and enter a sleep cycle.

Otherwise, this JSON data will be parsed for commands. The following commands have been
identified in Seaduke.

Command Description

cd Change working directory to one specified

pwd Return present working directory

cdt Change working directory to %TEMP%

autoload Install malware in specified location

https://unit42.paloaltonetworks.com/wp-content/uploads/2015/07/figure-10.png

10/10

migrate Migrate processes

clone_time Clone file timestamp information

download Download file

execw Execute command

get Get information about a file

upload Upload file to specified URL

b64encode Base64-encode file data and return result

eval Execute Python code

set_update_interval Update sleep timer between main network requests

self_exit Terminate malware

seppuku Terminate and uninstall malware

In order for the ‘self_exit’ or ‘seppuku’ commands to properly execute, the attackers must supply a
secondary argument of ‘YESIAMSURE’.

Conclusion

Overall, Seaduke is quite sophisticated. While written in Python, the malware employs a number of
interesting techniques for encrypting data over the network and persisting on the victim machine.
WildFire customers are protected against this threat. Additionally, Palo Alto Networks properly
categorizes the URL used by Seaduke as malicious.

Get updates from
 Palo Alto

 Networks!

Sign up to receive the latest news, cyber threat intelligence and research from us

By submitting this form, you agree to our Terms of Use and acknowledge our Privacy Statement.

https://www.paloaltonetworks.com/legal-notices/terms-of-use
https://www.paloaltonetworks.com/legal-notices/privacy

