Analysis of Uroburos, using WinDbg

‘@ gdatasoftware.com/blog/2014/06/23953-analysis-of-uroburos-using-windbg

Uroburos was already described as a very sophisticated and highly complex malware in our
G DATA Red Paper, where we had a look at the malware’s behavior. This malware belongs
to a specific type called rootkit. The general purpose of a rootkit is to modify the behavior of
the system and, especially, to hide its activity. Generally, a rootkit resides in the kernel. To
analyze this kind of malicious software, analysts need to use specific tools, such as WinDbg,
to debug the Microsoft Windows kernel. WinDbg is a debugger provided by Microsoft. One
can use this tool to debug user mode applications and kernel mode applications (for example
the drivers).

Today, we would like to give you an understanding of how analysts work their way through
malware and give you some insights into the code of one of the most sophisticated digital
threats. In this current example case, we decided to work with a memory dump (crash dump)
of a system infected with Uroburos. To facilitate the analysis, we added an extension to add
the support of python, called: PyKd. WinDbg has its own script language, but it is not easy to
understand. One can download this python extension here, for free:
http://pykd.codeplex.com/.

To realize this article, the machine was infected by the Uroburos dropper with the following
md>5: 626576e5f0f85d77c460a322a92bb267.

Visualization of the hooks

The Uroburos rootkit adds several hooks to hide its activity. In our specific case, the hooking
is a technique used to alter the behavior of specific system functions; the rootkit fakes the
output of the Microsoft Windows API. For example, it hides registry entries, files and more.
To perform this task, the rootkit developers decided to use interrupts. We can display the
Interrupt Descriptor Table (IDT), as shown below. The IDT table stores pointers to ISR
(Interrupt Service Routines), which are called when an interrupt is triggered.

kd> !idt

Dumping IDT: 80b5%5400

3154855000000030: 82c27ca4 hal'!HalpB254ClockInterrupt

3154855000000031: 8486b058 18042prt!I8042FeyboardInterruptService (EINTERRUPT 8486b000)
3154855000000038: 82cl8cbe hal !HalpRtcProfileInterrupt

3154895000000039: 8§486bcdf ACPI!ACPIInterruptServiceRoutine (EINTERRUPT B486bcB0)
31548%500000003a: 85afd7d8 ndis!ndisMiniportIsr (EINTEREUET 85afd780)

315485500000003b: 8486b558 ataport!IdePortInterrupt (EINTERRUPT H486b5300)
315485500000003c: 85afdcdf i8042prt!IB042MouseInterruptService (RINTERRUPT 85afdcB0)
315485500000003e: 848¢6bas8 ataport!IdePortInterrupt (EINTERRUPT B8486ball)
315485500000003£: 8486b7d8 ataport!IdePortInterrupt (RINTERRUPT 848¢b780)
BIBQEBSDDDDDDD.: 835=84£0

1/14

https://www.gdatasoftware.com/blog/2014/06/23953-analysis-of-uroburos-using-windbg
http://pykd.codeplex.com/

One of the pointers (0x859e84f0) is unknown and cannot be resolved. All other pointers have
a function name, following the address. The last digits of the first column are the ID of the
interrupt (in our case 0xC3). We can disassemble the code available at this address:

kd> u 859e84f0 [HOxIE

859e84£f0 S0 nop
855=04f1 %0 nop
85%9=84£f2 S0 nop
855=04£f3 20 nop
85%9=84f4 S0 nop
85S=04f5 20 nop
855=84f6c 20 nop
85%=84£f7 S0 nop
855=04f8 %0 nop
85%9=84£f5 S0 nop
855=04fa 20 nop
85%9=84fk S0 nop
8§5%9e84fc S0 nop
855=84fd 20 nop
85%e=84fe S0 nop
855=04ff %0 nop
85%9=8500 &a08 push 8
B5%=8502 &B80B85%=85 push B59EBS08h
83928507 cb retf
85%=8508 fb =ti
855=850% 50 push eax
85%9e8350a 31 push SCK

The last argument of the WinDbg command is the length (LOx16) to disassemble. The
function starts by a series of NOP. The interrupt OxC3 is used by the malware, the next step
is to identify how and when this interrupt is triggered. Here is the code of the beginning of the
function loCreateDevice():

kd> ? IoCreateDevice
Evaluate expression: —-2103684120 = B25c53e8
kd> u B25c53e8

nt!IoCreatelevice:

829%c353e8 Gall push 1

B829%c53ea cdc3 int 0c3h

82%c53ec ec in al,dx

829c53ed 83e=4f8 and esp, OFFFFFFFEh

B29c53£f0 8lec54000000 sub esp, 94h

B29c53f6 ald4cdaS282 mov eax,dword ptr [nt! security cockie (B292dadc)]
829c353fb 33c4 Hor sax, esp

825%c53fd 89842450000000 mov dword ptr [espt+50h],e=ax

We can see that the second instruction is int OxC3 (interrupt 0xC3). Thanks to the PyKd
extension, we can easily create a python script to detect every function with this interrupt:

2/14

import pykd

ocutput = pykd.dbgCommand ("x nt!*") .split ("\n")
for i in output:
if i 1= "
addr=i.=plit() [0]
name=1i.=zplit () [1]
opcode=pykd.dbgCommand ("db % (addr)s+2 LZ" % {'addr': addr}) .split()
if {opcode[l] == "ecd") and (opcode[2] == "c3"):
print "Hook: "+name
This script starts to list each exported function in ntoskrnl.exe. Secondly, for each function it
checks if the second instruction is int 0xC3 (cdc3). If it is the case, the exported function’s

name is displayed. Here is the output of the script regarding the current analysis:

kd> !py c:\hook.py

Hook: nt!NtCreateRey

Hook: nt!NtCueryInformationProcess
Hook: nt!NtQuerySystemInformation
Hook: nt!cbOpenChjectByName

Hook: nt!NtClose

Hook: nt!IoCreateDevice

Hook: nt!NtEnumerateEey

Hook: nt!NtShutdownSystem

Hook: nt!NtTerminateProcess

Hook: nt!IofCallDriver

Hook: nt!NtQueryEey

Hook: nt!NtCreateUserProcess

Hook: nt!NtCreateThread

Hook: nt!NtSaveEey

Hook: nt!NtReadFile

We could use the function: Ichkimg to easily identify the hook. However, it was a good

exercise to play with PyKd.

Another interesting step is to dump the code of the driver. To perform this task, we first need
to find the beginning of the PE. We can find the address thanks to the address of the code
executed when an interrupt is triggered:

3/14

kd> lpool B5%9=84f0
Pool page 855%=84f0 region is Nonpaged pool

*83580000

kd> db 83580000

845580000
845580010
85580020
85580030
845580040
85580050
85580060
845580070
845580080
845580050
855800a0
855800b0
855800c0
8455800d0
855800e0
855800£0

oo
oo
oo
oo
oo
oo
T4
ed
oo
44
63
63
oo
55
Ob
el

oo
oo
0o
oo
oo
oo
20
6f
£8
95
=f
=f
oo
41
01
d2

oo
oo
0o
oo
oo
oo
62
G4
30
=f
23
26
oo
04
o8
oo

o0
o0
oo
o0
o0
o0
&5
&5
25
76
76
76
o0
de
o0
o0

00
00
o0
00
00
00
20
Ze
44
S4
45
45
00
00
00
00

o0
o0
oo
o0
o0
o0
T2
od
55
55
55
55
o0
o0
e
10

large page allocation,

LOx100

oo
oo
oo
oo
oo
oo
75

oo
06
oo

o0-00
o0-00
00-00
o0-00
o0-00
o0-e1
6e—20
Da-24
T6—-44
T6-1d
TEe—63
T6-52
00-50
o0-00
o0-00
o0-00

This output shows us two remarkable things:

00
00
o0
00
00
&d
69
00
S5
ba
5f
69
45
00
62
S0

oo
oo
oo
oo
oo
20
e
oo
Se
dd
2f
63
oo
oo
0z
06

oo
oo
0o
oo
oo
63
20
oo
T6
T6
T6
68
oo
oo
oo
oo

Tag i= NtFs,

oo
oo
oo
oo
oo
el
44
oo
44
dd
21
44
dc
el
oo
oo

o0
o0
oo
o0
o0
e
4f
o0
55
55
55
55
01
o0
o0
o0

o0
o0
oo
o0
o0
e
53

20

=zize is 0xS52000 bytes

........ am canno
t be run in DOS

mode....5.......
- -0%D.*vD."vD."v
D. v.."v..MvM."v
c fvF."ve /vl."v

© &vE."vRichD."v

o First, the driver uses a well-known Windows kernel memory pool tag called "NtFs".
The Windows components mark allocated memory block with a unique tag. But the
rootkit uses the same tag as the legitimate ntfs.sys driver. This choice was made to
hide the rootkit and dupe the analyst.

» Secondly, the output looks like the beginning of a PE. But this PE is broken: the MZ is
not available and some information is missing. For example, the value of the
SizeOflmage (85980000+0x140) is null...

The rootkit alters the beginning of the PE to hide itself. Some tools parse the memory and
look for the MZ string to identify the beginning of a PE. In our current case, if we used these
tools looking for a PE file, we would never identify our malware using this automation.
Manual analysis is needed here. To dump our driver we need to reconstruct the PE but we

don't know the size of the binary, as mentioned above, so we need to make a large dump, to

be sure to not forget a part of the binary.

Modules, drivers and devices

We can now display the loaded (and unloaded) modules with WinDbg:

a/14

kd> 1m £
start

00400000
T3T7£0000
T4££0000
TS0Z20000
T5070000
T51c0000
T5210000
TS2£0000

[---]
5538000

Unloaded
8da0s000

In our case,

running!

end

0041a000
73815000
73017000
7506000
T5082000
T7520e000
75225000
T753c4000

S53f5000

modules:

8db£7000

the rootkit's module is fdisk.sys. According to the code shown above, it seems to
be unloaded, but as we analyzed before, the code is really present on the infected system.
So, the developers found a way to unload the modules while the malicious code is still

We can list the drive

module name

win32dd 400000 cC:\Users\userl\Desktop\win32dd.exe
POWRPROF C:\Windowz'=sy=stem3Z\POWRFROF.d11l
CPEMGR3Z C:\Windows'\system3Z\CFGMGR3Z.d1l
EERENELBASE C:\Windows\=zystem32\EKERNELBLSE.d11l
DEVCEJ C:\Windows\=ystem32\DEVCOEJT.d11l

GDI3Z C:A\Windowssy=stem3Z2\GDI32.d11

zechost C:\Windows\SYSTEM3Z\=sechost.dll

kernel3Z C:\Windows\system3Z\kernel3Z.dll

topipreg \SystemRoot\System32\drivers\tcpipreg.sys

fdisk.ays

kd> !object ‘\driwver)

Cbhject: 89585ea70
ChijectHeader:
HandleCount:

Directory Cbhject: 8580528

Hash

28

25

The driver used by our module is \driver\Null. All other modules are legitimate modules used
by Windows. We can display the devices associated to the driver we are focusing on:

Lddres=ss
85a=0530
8576alds
855b74kR0
[...]
85a3d310
85a51030
8576a3f8
B5a7aa38
[---1
85526610

0

Type: (84841=950)

8985=a58 (new wversion)

PolinterCount: 92

Type

Driver
Driver
Driver

Driver
Driver
Driver

Driver

Driver

84872780 Driver

MNames: Driver

Name
rdpbus
Beep
NDIS

Wanarpvhb
discache
Null
VBoxVideo

rdyboost

intelide

Directory

5/14

kd> !drvob] \Driver‘\Null
Driver cbject (8576a3f8) i= for:

“WDriveri\Null
Driver Extension List: (i1d , addr)

Device Object list:
86447320 862531e0 86253748 8576a2d0

The device objects associated to our driver are:

o 0x864473e0
o 0x862531e0
o 0x86253748
e 0x8576a2d0

Furthermore, we can see the description of those devic

6/14

kd> !devobj 864473e0

Device cbject (B64473e0) i= for:

FWEMCALLOUT “Driver‘Null DriverCbject 8576a3f8

Current Irp 00000000 RefCount 0 Type 00000000 Flags 000000c0
Dacl 8%85aafl DevExt 00000000 DevChblExt 86447458
ExtensionFlags (0x00000800) DOE DEFAULT 5D FRESENT
Characteristics (0000000000)

Device gueue is not busy.

kd> !devob] 0xB862531e0

Device object (862531el) 1= for:

FRawDiskZ “\Driver\Mull DriverCbject B57&€a3f8

Current Irp 00000000 RefCount 0 Type 00000007 Flags 00000050
Vpb 86253158 DevExt 00000000 DevChjExt 86253258 Dope BE257008
Exten=zionFlags (0x00000800) DOE DEFAULT SD FRESENT
Characteristics (0x00000001) FILE REMOVAELE MEDIZ

Device gueus 1s not busy.

kd> !devobj B&253748

Device object (86253748) 1= for:

RawDiskl “\Driver\Mull DriverCbject B57&a3f8

Current Irp 00000000 RefCount 22 Type 00000007 Flags 00000050
Vpb B862536c0 DevExt 00000000 DevChjExt 86253800 Dope BE6253678
ExtensionFlags (0x00000800) DOE DEFARULT SD PRESENT
Characteristics (0x00000001) FILE_REMOVAELE MEDIA

Device gueue i1s not busy.

kd> !devobj 8576a2d0

Device ocbject (B8576a2d0) i=s for:

Null \Driwver‘\Null DriverChject 8576a3fif

Current Irp 00000000 RefCount 0 Type 00000015 Flags 00000040
Dacl 8985aaf0 DevExt 00000000 DevOb]Ext 8576a388
ExtensionFlags (0x00000800) DOE DEFRULT SD PRESENT
Characteristics (0x00000100) FILE DEVICE SECURE CPEN

Device gueues i1s not busy.

Two objects are particularly interesting: FWPMCALLOUT and RawDisk1

WFP callout

This first device is FWPMCALLOUT. Thanks to the name of the device we can guess that
the rootkit registers a callout for Windows Filtering Platform (WFP). The WFP is a set of API
and system services which provides a platform for creating network filtering applications. In
our case, the rootkit uses this technology to perform Deep Packet Inspection (DPI) and
modifications of the network flow. The purpose of this device is to intercept relevant data as
soon as a connection to the Command & Control server or other local infected machines
used as relay is established and to receive commands.

7/14

As there is no command to simply list the WFP callouts, we have to extract the information
needed using different steps:

First, the netiolgWfpGlobal variable contains the starting point for the WFP data structures:

kd> dp netio!gWfpGlobal L1
BBbLS5260 B4B845008

A global table stores the number of callouts and the array of the corresponding callout
structures.

Here is a method to find suitable offsets:

kd> u netio!FeInitCallocutTable LTL10
NETIC!FeInitCalloutTable:

88k785%= 8kbff mowv edi, edi

88b785a0 56 push esl

88b785al1 57 push edi

88b785a2 Bb3d6052b988 mowv edi, dword ptr [NETIC!gWfpGlokbal (88bS5260)]
88b785a8 23c0 HoOr eax, eax

88b785aa 81748020000 add edi, EDBR

88b785b0 ab sto= dword ptr es:[edi]

88b785b1 ab stos dword ptr es:[edi]

88b785kb2 ale052b9848 mov eax,dword ptr [NETIC!gWfpGlobal (88b53260)]
88b785b7 05dc020000 add eax, BDCH

88b785bc 50 push eax

8B8b785bd 6857667043 push 43706657h

88b785c2 beS0010000 mowv esi,190h

8B8b785<c7 56 push esi

88b785ch e=fBedfffeff call NETIC!WfpPoolAllocHNonPaged (88b&7ekl)
88bk785cd B8bLf8 mowv edi, sax

The first number is the offset that contains the number of total callouts made, in hex, of
course:

kd> dps 84845008+2D8 L1
84845220 0000011e

The second number is the offset that contains the array in which the callout structure is
stored:

kd> dps 84845008+2B8 L1
84845224 B6233000

The pool tag of this address confirms our findings so far and proves that we have found the
right track:

kd> !pool 86233000
Pool page B6233000 region i= Nonpaged pool
*BE233000 : large page allocation, Tag is WEfpl, =ize i=s OxZchbf bytes

Pooltag WEpC : _, Binary : netioc.sys

8/14

We can now extract the size of each structure stored within the array. As it is not
documented by Microsoft, we identify the size by disassembling the function
InitDefaultCallout():

kd> u NETIC!InitDefaultCallout
NETIC!InitDefaultCallout:

8878614 Bbff mov edi,edi

B8bTEE1lE 56 push esi

8878617 ©84852b538 push offset NETIC!gFeCallout (88b535248)
88b78B61c EB5STEET0432 push 4370665Th

88b78621 ca2i push 28h

88bT7BE623 =8859f8feff call NETIC!WfpPoolRllocHNonPaged (B88bE&7Tekbl)
BBLT7HE628 BLEO mowv esl,eax

BBbT7B62a BSEE test e=l,es1l

Finally, we use a one-liner command to list the elements of this array:

9/14

kd> r S$t0=86233000 ;.for (r $tl1=0; @S5tl < lle; r $tl=@Stl+l) {dps @S$t0+2*@Sptrsize LZ; r
St0=@S5t0+28;}

86233008 00000000

8623300c 00000000

[...]

86233238 00000000

862333a4 B8ccll32 tcopip!WipilepSetOptionsCalloutClassify
862333c8 00000000

862333cc 8BBccll3Z topip!WiphlepSetOptionsCalloutClassify
862333f0 00000000

862333f4 8B8dl3acT tcpip!IPSecInboundTunnelZicceptButhorizeCalloutClassify
86233418 00000000

8623341c 88dl3acT tcpip!IPSecInboundTunnellfcceptfuthorizeCalloutClassify
86233440 00000000

86233444 HBceZeld tcpip!FlpEdgeTraversalCalloutClassify
86233468 00000000

8623346c HBBceZeld tcpip!FlpEdgeTraversalCalloutClassify
86233450 00000000

86233454 HBceZeld tcpip!FlpEdgeTraversalCalloutClassify
862334b8 00000000

§62334bc HBBceZeld tcpip!FlpEdgeTraversalCalloutClassify
862334=0 00000000

8623344 HBd1£f331 tcpip!IdpralloutClassifyVe

86233508 00000000

8623350c 88d1f4d3 tcpip!IdpCalloutClassifyV4a

86233530 00000000

[...]

86235808 00000000

BE623580c 992ba730 mpsdrv!MpsGetFwpRuthData+0x£f£f0
86233830 00000000

86235834 592ba750 mpsdrv!MpsGetFwpluthData+0x£f£f0
86235858 00000000

BE235853c 992ba730 mpsdrv!MpsGetFwpRuthData+0x£f£f0
86235880 00000000

86235884 592ba750 mpsdrv!MpsGetFwpluthData+0x£f£f0
86233b28 00000000

86235b2c 99%92baafl mpsdrv!MpsGetFwpluthData+0x1350
86233b50 00000000

86235b534 99%2baafl mpsdrv!MpsGetFwpluthData+0x1350
8€235b78 00000000

86233b7c 8535b3040

862353bal0 00000000

86235ba4 B39b3520

862353bcd 00000000

86235bcc 00000000

The list of elements reminds us of the information we have seen in the IDT: two addresses
are not resolved. Those two WFP callouts are: 0x859b5040 and 0x859b5520. WinDbg is not
able to resolve these two addresses because the addresses are unknown. These are not
addresses of a Microsoft. Now that we have the addresses, we can use the command !pool
to validate that the addresses are in the same region as the code executed when an interrupt
is triggered:

kd> !pocl B55b5040

Pool page B859%=84f0 region i= Nonpaged pool

*B5580000 : large page allocation, Tag i=s MNtFs, s=size is 0x5%2000 bytes
Pooltag NtF= : StrucSup.c, Binary : ntfs.sys=

kd> db 853%80000 LOx100

10/14

Virtual file system

Previously, when looking at the device objects, we came across two devices with very similar
names: RawDisk1 and RawDisk2. Let us have a detailed look at the first one:

kd> !devob] Rawdiskl

Device cbject (BE6253748) i=s for:

RawDi=kl \Driver‘\Null Drivercbject B8576a3fi

Current Irp 00000000 RefCount 22 Type 00000007 Flags 00000050
vpb BEZSSEEH pDevExt 00000000 DevobjExt 86253800 Dope 86253678
ExtensionFlags (0x00000800) DCE DEFRULT SD PRESENT
Characteristics (0x00000001) FILE REMOVAELE MEDIZ

Device gueue is not busy.

xd> !vpb HESSSEEN
veb at 0xE625HGED
Flags: 0xl mounted
DeviceChject: 0xB6255020
RealDevice: O0xB86253748
RefCount: Z2

Volume Lakel:

kd> !devobj 0x86255020
Device ocbject (BE255020) i=s for:

PSRN Drivercbject 8516e558

Current Irp 00000000 RefCount 0 Type 00000008 Flags 00040000
DevExt B862550d8 DevObjExt 86Z59fb0

ExtensionFlags (0x00000800) DOE DEFRULT SD PRESENT
Characteristics (0000000000)

Zttachedbevice (Upper) 86253020 \FileSystem\FltMgr

Device gueue is not busy.
As we can see, RawDisk1 device is in fact an NTFS file system; a virtual file system used by
the rootkit to store its configuration, the exfiltrated data...

We can identify the used files (opened handles) within the file system, like \queue and \klog:

11/14

kd> !devhandles ‘“device\Rawdiskl

Checking handle table for process 0xB483c8£0
Eernel handle table at 8%801kel with 411 entries in use

PROCESS 8483c8f0 SessionId: none Cid: 0004 Peb: 00000000 ParentCid:

DirBase: 00185000 o©ObjectTable: 85801be0 HandleCount: 411.
Image: System

0Zbc: Chject: B62Z5béef Grantedfccess: 0012015%f Entry: B5803578
Cbject: B625béeB Type: (B848bd3f8) File
CbjectHeader: B&25béd0 (new version)

HandleCount: 1 PointerCount: 2

Directory Object: 00000000 Name: “$Extend\$BmMetadatal\$T=xfLog\$TxflLog.blf {RawDiskl}

[-..]

PROCESS 8483c8f0 SessionId: none Cid: 0004 peb: 00000000 ParentCid:

DirBase: 00185000 ©CbjectTable: 85301be0 HandleCount: 411.
Image: System

02£f0: Object: B8626b6f0 Grantedficcess: 0012015f Entry: 8%8035e0
Chject: B62ebef0 Type: (B48bd3f8) File
ObjectHeader: B8626b6d8 (new version)
HandleCount: 1 PointerCount: 10

Directory Obhject: 00000000 MName: _

PROCESS 8483cBf0 SessionId: none Cid: 0004 Peb: 00000000 ParentCid:

DirBa=se: 00185000 ObjectTable: 8% i01bel HandleCount: 411.
Image: System

0344: Chject: BE26£400 GrantedRccess: 00100004 Entry: BS803688
Cbject: BE26£400 Type: (B48bd3f8) File
CbhjectHeader: B62Z6f3ef (new version)
HandleCount: 1 PolnterCount: 1

Directory Cbject: 00000000 MName: _

[--.]

PROCESS B6248al00 SessionId: 0 Cid: 01£0 Peb: T££d48000 ParentCid: 0las8

DirBase: 7ecS5b080 OCbjectTable: 823742538 HandleCount: Z88.
Image: services.exe

0340: Chject: B6435038 Grantedliccess: 001201%f Entry: 8237beBO
Cbhject: 86435038 Type: (B48bd3fi) File
CbjectHeader: B€435020 (new version)
HandleCount: 1 PointerCount: 1

Directory Object: 00000000 Name: NGueueliBRawDiSkdl

[--.]

Checking handle table for process 0xB864bfa38
Handle table at 54557fc0 with B850 entries in use

PROCESS B64bfa%8 SessionId: 1 Cid: 074c Peb: T££4£000 ParentCid: 0540

DirBase: TecSblal ObjectTable: 5455%7fc0 HandleCount: 850.

Image: explorer.exe

0c70: Object: 8649d350 Granted@ccess: 0012015f Entry: Sc0laBel
Cbject: B645d350 Type: (B848bd3f8) File
CbjectHeader: BE&45d338 (new version)
HandleCount: 1 PolnterCount: 1

Directory Object: 00000000 Name: _

12/14

Thanks to this command we are able to list the files hidden from the operating system.

Digital signature enforcement

Microsoft created a Driver Signing Policy for its 64-bit versions of Windows Vista and later
versions. To load a driver, the .sys file must be signed by a legitimate publisher. Developers
may disable the Driver Signature Enforcement process during the development phase of a
driver, which means a developer does not have to sign each compiled driver version during
development phase. This mode is called “Test-mode”. In our case, the rootkit is not signed,
which would usually mean that it had no chance to be accepted by Microsoft’s policy, but it
disables the digital signature process to circumvent the checks. The status of this feature is
stored in the global variable nt!g_cienabled. Compare the value of this variable on a clean
system, without infection with the same information on an infected system:

kd> dg nt!g cienabled
fEfffA00 " 02e45ebl DDDDDDDI

The code above shows that the value is set to 1

kd> dg nt!g cienabled
EfEfFffR00" 02245ek8 DDDDDDDI

We can clearly identify that the malware disabled the driver signature enforcement. Generally
speaking, we could do the same by using bcdedit.exe -set TESTSIGNING OFF, to switch
into testing mode to be able to load unsigned driver. The difference is: Using bcdedit.exe
triggers a message window which is shown to the user, at the bottom of the desktop, and this
is not very secretive. The action could be detected immediately.

More information about the malware’s circumvention of the driver signature enforcement can
be found in our SecurityBlog article: Uroburos — Deeper travel into kernel protection
mitigation

Conclusion

What you have seen now, is a very limited part of the extensive analysis of complicated
malware and a very short introduction into WinDbg. Generally, it is very hard to apprehend
such an extensive tool, but when working on such a case of kernel land analysis,
researchers do not have a choice.

Processed like this, in an article with code snippets, the results seem logic and do make
perfect sense. But, believe us, working with malware code costs a lot of extensive training,
experience and time.

Related articles

13/14

https://www.gdatasoftware.com/blog/2014/03/23966-uroburos-deeper-travel-into-kernel-protection-mitigation

2014/05/13 Uroburos rootkit: Belgian Foreign Ministry stricken

2014/03/07 Uroburos — Deeper travel into kernel protection mitigation

2014/02/28 Uroburos - highly complex espionage software with Russian roots

2014/02/28 G DATA RedPaper about Uroburos

14/14

https://www.gdatasoftware.com/blog/2014/05/23958-uroburos-rootkit-belgian-foreign-ministry-stricken
https://www.gdatasoftware.com/blog/2014/03/23966-uroburos-deeper-travel-into-kernel-protection-mitigation
https://www.gdatasoftware.com/blog/2014/02/23968-uroburos-highly-complex-espionage-software-with-russian-roots
https://secure.gd/dl-en-rp-Uroburos

