Uroburos — Deeper travel into kernel protection
mitigation

6'@ gdatasoftware.com/blog/2014/03/23966-uroburos-deeper-travel-into-kernel-protection-mitigation

Uroburos was already described as a very sophisticated and highly complex malware in our
G Data Red Paper, where we had a look at the malware’s behavior. This assumption is again
supported, looking at its installation process. Uroburos uses a technique not previously
known to the public to bypass Microsoft’s Driver Signature Enforcement, an essential part of
Windows’ security.

First of all, we would like to send regards and thanks to the people being active on the
kernelmode.info forum , in particular, R136a1 and EP_XOFF. They provided a proficient
analysis of the Driver Signature Enforcement bypass which enriches the overall
understanding of the case.

Introduction

The following analysis article is closely linked to G DATA's Red Paper about Uroburos,

published on Friday, February 28th. The paper can be downloaded here: https://secure.gd/dI-
en-rp-Uroburos

For fellow researchers, we provide the hash of the sample used for this subsequent article:
SHA256: 33460a8f849550267910b7893f0867afe55a5a24452d538f796d9674e629acc4

This file is a 64-bit driver, compiled in 2011.

Kernel Patch Protection

Definition

The majority of rootkits mainly use kernel modification or kernel patching to hide their
activities and modify the behavior of the infected system. To protect the Windows operating
system, Microsoft added a new technology to its 64-bit Windows editions. The Kernel Patch
Protection technology (aka PatchGuard) checks the integrity of the Windows kernel to make
sure that no critical parts are modified. In case a harmful modification of the kernel is
detected, the KeBugCheckEXx() function is executed, called with an argument with the value
0x109 (CRITICAL_STRUCTURE_CORRUPTION) as bug code. The result is a shutdown of
the system with a blue screen.

Microsoft describes that the Kernel Patch Protection technology prevents the following
modifications:

* modify system services tables, for example, by hooking the KeServiceDescriptor table
» modify the Interrupt Descriptor Table (IDT)

1/5

https://www.gdatasoftware.com/blog/2014/03/23966-uroburos-deeper-travel-into-kernel-protection-mitigation
http://www.kernelmode.info/forum/viewtopic.php?f=16&t=3193
https://secure.gd/dl-en-rp-Uroburos
http://technet.microsoft.com/en-us/library/cc759759(v=ws.10).aspx

* modify the Global Descriptor Table (GDT)

* use kernel stacks that are not allocated by the kernel

» patch any part of the kernel

Uroburos mitigation

Uroburos’ developers used the same inline hooks, explained in our previous Red Paper, to
bypass Kernel Patch Protection. The attacker’s goal is to hook the KeBugCheckEx() function

to avoid handling the bug code 0x109.

The screenshot below shows the code snippet in which the address of KeBugCheckEXx() is

stored in qword_787D8

bl i
mou rce, csioff GLOBA

1lea r8, quord_787DE

lea rdx, aKebugcheckex ; "HeBugCheckEx"
mou rFcx, [rcx+18h]

call sub_4AFBC

test eax, eax

mov ebx, eax

jnz loc 16147

The following screenshot shows that Uroburos checks if the bug code equals to 0x109

In case you wish to get more information concerning the technique used by the developers,
we suggest the following link: http://www.codeproject.com/Articles/28318/Bypassing-

push rsi
push rdi
sub rsp, 28h
mou rax, cs:qword_ 787D8
cmp rdx, rax
jb loc_ 1648F
v
s =
add rax, oih
cmp rax, rdx
jb loc_1648F
L J
il s
cmp ecx, 18%9h
jnz loc 1648F
v
(|
cmp csIiquord_787DA, B
jz short loc_ 163F2

PatchGuard

2/5

https://secure.gd/dl-en-rp-Uroburos
http://www.codeproject.com/Articles/28318/Bypassing-PatchGuard

Driver Signature Enforcement

Definition

Rootkits are usually drivers which used to work in kernel space. To avoid this kind of
malware, Microsoft created a Driver Signing_Policy for its 64-bit versions of Windows Vista
and later versions. To load a driver, the .sys file must be signed by a legitimate publisher.
Developers may disable the Driver Signature Enforcement process during the development
phase of a driver, which means a developer does not have to sign each compiled driver
version during development phase. In this case, the desktop of the machine is changed and
the following message appears in the bottom right corner: “Test Mode”. The flag with which
the current status of the policy is stored is called g_CiEnabled. The value of g_CiEnabled is
set during the Windows boot phase, and considered “static" during runtime. This means,
Windows assumes the value is set correctly and does not change during runtime.

Uroburos mitigation

Uroburos’ developers used new techniques to disable the Driver Signature Enforcement. In
our case, they used a vulnerability in a legitimately signed driver to disable the policy! During
the installation of Uroburos, the Oracle VirtualBox driver (version 1.6.2) is installed on the
targeted system. This driver (VBoxDrv.sys) is signed:

3/5

http://msdn.microsoft.com/en-us/library/windows/hardware/ff548231(v=vs.85).aspx

Details der digitalen Signatur 7| x|
Allgemein | Erweitert |

— . Informationen der digitalen Signatur
—.
Die digitale Signatur ist glltig.

— Signaturgeberinformationen

Marme: Iinru:utek GmbH

E-Mail: |i.-.1=c. @innotek,de

Signaturzeitpunkt: | samstag, 31 Mai 2008 03:18:55

Zertifikat anzeigen |

~Gegensignaturen

Mame des Signa... | E-Mail-Adresse: | Zeitstempel |
VeriSign Time 5t... Micht verflighar Samstag, 31, Mai 20...

Uroburos’ developers used new techniques to disable the Driver Signature Enforcement. In
our case, they used a vulnerability in a legitimately signed driver to disable the policy! During
the installation of Uroburos, the Oracle VirtualBox driver (version 1.6.2) is installed on the
targeted system. This driver (VBoxDrv.sys) is signed:

Conclusion

Previously, we have claimed that Uroburos is a highly complex and very sophisticated
malware, programmed by skilled people. This assumption is corroborated once more by the
aforementioned analysis of Uroburos’ installation technique.

The developers had to deal with Microsoft Windows security enforcement. They had to find
ways to bypass the Kernel Patch Protection technology and also the Driver Signature
Enforcement. The technique used to bypass the Kernel Patch Protection has been
documented on the Internet and therefore is not absolutely new.

But, concerning the Driver Signature Enforcement, this is the first time that we see a
malware using a vulnerability in a legitimately signed driver to disable the policy!

This example shows the limitation of the signature process. Generally, the signature
expiration date is set to happen several years after its creation date. In case any vulnerability
is found, a patch is provided, but the old binary is still available and valid, except in case the
certificate is revoked by the author/signer and set onto the CRL, the certificate revocation list.

4/5

http://support.microsoft.com/kb/289749/en

But, revoking a signature is only the first step in the protection process, because each and
every system that needs to check a signature needs to have access to an up to date CRL.
And even in case the system has an updated CRL, the Uroburos authors are certainly
thought to be skilled enough to manipulate the verification process the operation system is
using without alerting the user.

So, it is the first time that we see those two techniques to bypass Windows’ protection
mechanisms in the wild. We expect that they will be used by more malware in the future, of
course.

In case someone from the audience notices an infection caused by the Uroburos rootkit and
needs help, would like to receive further technical information or would like to contribute any
information about this case, please feel free to contact us by email using the following
mailbox: intelligence@remove-this.gdata.de

G Data's Uroburos analysis red paper:
https://secure.gd/dl-en-rp-Uroburos

5/5

https://secure.gd/dl-en-rp-Uroburos

