
1/19

Needle in a haystack
virusbulletin.com/virusbulletin/2014/02/needle-haystack

2014-02-03

Gabor Szappanos

Sophos, Hungary
Editor: Helen Martin
Abstract

Sometimes what looks like a genuine MP3 encoder library, and even works as a functional
encoder, actually hides malicious code deep amongst a pile of clean code. Gabor
Szappanos reveals the lengths to which one piece of malware goes to hide its tracks.

Malware authors engaged in Advanced Persistent Threat (APT) operations put great effort
into making sure their creations live up to their name and achieve persistence over the
course of months or years; in order to do so, the threats must remain undetected by security
products.

The authors try both to conceal the presence of the threats on infected systems and to hide
their code from analysis and detection. Most crimeware authors achieve the latter by
applying sophisticated execryptors and protectors to their code.

Over the past year, however, we have spotted a different approach: malicious code is
compiled into an open source library, hidden among a large pile of clean library code, with
only a single export pointing to the trojan functionality. The deployment and progression of
this malware spans about two years now – however its versioning suggests that its
development started longer ago than that.

This malware doesn’t take anything for granted: even common system tools like rundll32.exe
and wscript.exe, which are present on all Windows systems, are carried with the installer and
dropped when needed.

The malware goes to great lengths to cover its tracks. All of the string constants that could
reveal the nature of the backdoor are protected with strong encryption. Additionally, the
backdoor itself is disguised as a legitimate MP3 encoder library. In fact, it is a legitimate and
functional MP3 library – and a bit more besides.

Exploited carrier workbook

https://www.virusbulletin.com/virusbulletin/2014/02/needle-haystack

2/19

In a handful of cases we have been able to identify the original exploited document that
leads to the system infection. At the time of finalizing this paper, three exploited workbooks
have been found that install this threat.

All of them are protected Excel workbooks with the default password (for more details see
[1]). In short: the workbooks are password protected (that is, checked before opening). It is
possible to leave the password field blank – in which case Excel encrypts the content using
the default password: ‘VelvetSweatshop’. On the other hand, if a workbook is protected with
exactly this password, Excel assumes that there is no password, and opens the document
transparently. As a result, the document content is encrypted and hidden from normal
analysis, but opening it will execute the shellcode without further prompting.

The workbooks exploit the CVE-2012-0158 vulnerability, which triggers the execution of
shellcode within the document.

After the workbooks are opened, the intended operation is to open a decoy workbook – a
clean file that grabs the attention of the user while malicious activities proceed in the
background. The themes of the decoys give us some idea as to the areas of interest of the
target audience of this malware distribution.

Workbook 1

Filename: 300 .xls (rough translation: ‘300 petitioners cosigned.xls’)

File size: 839756 bytes

SHA1: 066998e20ad44bc5f1ca075a3fb33f1619dd6313

MD5: 5c370923119f66e64a5f9accdd3d5fb

This does not display any decoy document, just closes the Excel window. Nevertheless, the
shellcode execution proceeds.

If the file was opened, it would display a workbook with a list of names, gender, region and
phone numbers of Chinese individuals.

3/19

Figure 1. Decoy content for 066998e20ad44bc5f1ca075a3fb33f1619dd6313.

Workbook 2

Filename: sample.xls

File size: 638912 bytes

SHA1: e5e183e074d26416d7e6adfb14a80fce6d9b15c2

MD5: 2066462274ed6f6a22d8275bd5b1da2b

4/19

Figure 2. Decoy content for e5e183e074d26416d7e6adfb14a80fce6d9b15c2.

Workbook 3

Filename: LIST OF KEY OFFICIALS IN THE DND PROPER.xls

File size: 638912 bytes

SHA1: d80b527df018ff46d5d93c44a2a276c03cd43928

MD5: 80857a5541b5804895724c5d42abd48f

This decoy workbook contains information about key officials in the Philippines Department
of National Defense (DND).

5/19

Figure 3. Decoy content for d80b527df018ff46d5d93c44a2a276c03cd43928.

In the rest of this article, unless specified otherwise, we refer to the operation resulting from
infection via Workbook 1 – but the overall operations (dropped filenames, registry keys,
backdoor functions) are the same in each case.

When mining our sample collection for related samples we were able to spot other examples
– however, in these instances the initial dropper was not available for our analysis, only the
temporary dropper executables or the final payloads could be located. In these cases we
don’t have complete information about the system infection, but it is safe to assume that
similar exploitation schemes were utilized.

Shellcode

The shellcode features an interesting anti-debugging trick that I have come across quite
regularly in APT samples lately. Most of the Windows API functions are resolved and called
normally, but some of the critical ones (such as WinExec and CreateFile) are not entered at
the entry address (as stored in the kernel32.dll export table), but five bytes after it instead.

6/19

These functions are responsible for the most critical operations of the code (dropping the
payload executable and executing it), which would reveal unusual activity in the scope of an
ordinary Excel process.

As most tracers and debuggers would place the breakpoint or hijack function right at the
entry of the API function, skipping the first few bytes is a good way to avoid API tracing and
debugging.

Figure 4. Anti-tracing trick.

(Click here to view a larger version of Figure 4.)

The same happens with WriteFile and GlobalAlloc, but this time, depending on whether or
not there is a call right at the entry of the function, the displacement will be either five or
seven bytes.

https://www.virusbulletin.com/uploads/images/figures/2014/02/Lame-4-large.jpg

7/19

Figure 5. Anti-tracing hook initialization.

As a result of the functions not being entered at their usual entry points, the first few
instructions are missed. As these are still essential for the stack management, the code is
compensated within the shellcode, where a standard function prologue (stack frame creation
push ebp, move ebp,esp) is executed.

For system functions compiled with standard compilers, the first few instructions are fixed on
the entry point, but anything after that can’t be taken for granted. The shellcode can’t enter
further than five or seven bytes into the API function, otherwise it could end up in the middle
of a multi byte instruction, easily crashing the application.

Figure 6. Anti-tracing used in practice.

In order to extract the embedded executable, the shellcode needs to find the carrier
workbook. It does this using the fact that, at the time of the exploitation, the workbook must
remain open in Excel. The code enumerates all possible handles and tries to call GetFileSize
on each of them. If the function fails, because the handle does not belong to an open file (it

8/19

could belong to many other objects such as directory, thread, event or registry key), or the
file size is smaller than the expected size of the workbook (minus the appended encrypted
EXE), 1de10h bytes, it skips to the next handle value.

Next, it reads four bytes from offset 0x1de00; the value found there should be equal to the
size of the carrier workbook (this time including the appended EXE).

At this position, in the appended content following the OLE2 document structure, a short
header is stored that contains the full carrier workbook size, the embedded EXE size and the
embedded decoy workbook size. These values are used by the shellcode. The encrypted
EXE content follows.

Organizing the code and structure in this manner makes the carrier/dropper workbook
component and the dropped payload executable completely independent – it is possible to
replace the payload with a new variant without changing a bit in the carrier encrypted
workbook.

Figure 7. Appended header and payload.

Once the hosting workbook is found, the code proceeds with decoding the embedded
executable (using a one byte XOR algorithm with running key plus an additional one byte
XOR with a fixed key), saving it to a file named ‘Winword.exe’ in the %TEMP% directory,
then executing it. At this point, the decoy workbook content is dropped (using the same
algorithm: one byte XOR with running key plus one byte XOR with fixed key, only this key
differs from the one used in decoding the EXE).

Temporary dropper

This file is the dropper and installer for the final payload. It has an initial anti-debug layer.

The address of the GetVersion function is patched in the import table, to contain an internal
function virtual address instead of an imported function address, which is normally expected
at that position. The code around the entry point uses the stored value to redirect execution:

9/19

mov large fs:0, esp

sub esp, 58h

push ebx

push esi

push edi

mov [ebp-18h], esp

call ds:dword_41A188

The execution actually goes to the address stored at dword_41A188, which is the memory
location 00402440.

The program has only one export, LoadLibrary, thus when the operating system loads the
program and resolves the external dependencies, this value, stored within the import table
region, remains intact. The trick completely fools IDA Pro, which can’t be convinced that the
location is an internal position and not an external import. This makes static analysis a bit
more complicated. The necessary imported function addresses are later resolved
dynamically by the initialization code of the dropper.

The major procedures of the dropper program are not called directly; instead, the trojan
builds a function pointer table, and calls to procedures are performed via indexing into this
table, as shown in Figure 8.

Figure 8. Building the function pointer table.

The key procedures are identified by having the following instruction sequence near the
prologue:

10/19

push ebp

mov ebp, esp

push eax

mov eax, 12547908h

pop eax

The value stored in the EAX register is a combination of two elements: 1254 is the marker;
7908 is the numeric ID for the function.

The entry is located by searching backwards for the standard prologue:

push ebp

mov ebp, esp

The procedures are later invoked by calling indexes from the function pointer table (see
Figure 9).

Figure 9. Using the function pointer table.

Winword.exe normally drops three major components into the system:

%PROGRAM FILES%\Common Files\ODBC\AppMgmt.dll – the final payload
(Windows DLL file)

%PROGRAM FILES%\Common Files\DBEngin.EXE – a copy of rundll32.exe (a clean
Windows system file, used for executing the payload)

%PROGRAM FILES%\Common Files\WUAUCTL.EXE – another rundll32.exe (a clean
Windows system file, used for executing the payload).

Additionally, two registry export files named jus*.tmp (with a random number added after jus)
are dropped into %TEMP%. These are the old and new hives of the
HKLM\SYSTEM\CurrentControlSet\Services\AppMgmt registry location – a location at which

11/19

the trojan registers itself in order to execute automatically upon each system boot. Saving
the hives to a file makes it possible to modify the registry in one shot using RegRestoreKey.

Also dropped is a 301,445 byte long jus*.tmp file, which is a CAB archive containing the
payload DLL.

The execution flow takes a different route if the presence of running security products is
detected. The following process names are checked: KVMonXP.exe, RavMonD.exe,
RsTray.exe, ccsvchst.exe, QQPCTray.exe, zhudongfangyu.exe, 360sd.exe, 360Tray.exe,
zatray.exe, bdagent.exe, ksafetray.exe, kxetray.exe and avp.exe. However, not all of the
security processes are checked at the same time – only a couple of selected ones are
checked before each major operation.

As an example, if zatray.exe, RsTray.exe or RavMonD.exe is running, then AppMgmt.dll is
not dropped and instead, the 400MB vbstdcomm.nls is created (the large size is due to an
enormous amount of junk appended at the end of the file). Finally, a VBScript file is created
and executed with the help of a dropped copy of wscript.exe (both files are saved to the
%TEMP% folder, as lgt*.tmp.vbs and lgt*.tmp.exe, respectively). An encrypted copy of
Winword.exe is created in %CommonProgramFiles%\ODBC\odbc.txt, using a one byte XOR
algorithm with key 0xCC. Vbstdcomm.nls, which serves as a backup installer, takes the
encrypted copy of Winword.exe, decodes it and simply executes.

The dropper registers AppMgmt.dll as a service. This is not achieved by creating a new
service entry, rather by taking over the role of an already installed service, AppMgmt,
redirecting the service DLL from the clean library to the dropped malware payload:

HKLM\SYSTEM\CurrentControlSet\Services\AppMgmt\Parameters: ServiceDll

%SystemRoot%\System32\appmgmts.dll -> C:\Program Files\Common
Files\ODBC\AppMgmt.dll

In addition, the start up mode is changed from auto to demand in the location:

HKLM\SYSTEM\CurrentControlSet\Services\AppMgmt: Start

Then it changes the error control settings in the registry key
HKLM\SYSTEM\CurrentControlSet\Services\AppMgmt:ErrorControl from normal (this would
mean that if the driver fails to load, the start up process proceeds, but a warning is displayed)
to ignore (in this case if the driver fails to load, start up proceeds, and no warning is
displayed). The change is designed to avoid raising suspicion, should start up fail for any
reason.

Finally, it executes the dropped DLL by executing net start AppMgmt.

12/19

Payload

We have identified five different versions of the final payload. Two of them were replicated
from the exploited workbooks detailed earlier; the other three were found when we were
digging through our sample collection searching for samples with similar characteristics.

The main characteristics of the five variants are summarized in Table 1 shown below
(detailed descriptions of the columns are provided later in this section).

(Click here to view a larger version of Table 1.)

This DLL is built from the LAME MP3 encoder source [2]. The full library has been compiled,
and in addition, a couple of malicious exports have been added to the code:
lame_set_out_sample and lame_get_out_sample.

https://www.virusbulletin.com/uploads/images/figures/2014/02/Lame-Table1-large.jpg

13/19

Figure 10. Additional malicious imports.

Note that the names of the additional exports are strikingly similar to the legitimate exports,
lame_set_out_samplerate and lame_get_out_samplerate, which are present in the LAME
source – thus it is not very obvious that the additional exports belong to something
completely different.

One of the extra exports, lame_get_out_sample, is missing from newer versions of the
malware. However, the function that would invoke this export is still present in the code.
Clearly, the code was not cleaned up properly when the export was removed.

14/19

The backdoor contains many encrypted strings, one of which serves as an internal version
number. In Table 1 we list the version numbers as they appear in the code. Collected
information suggests that the most widely distributed was version 2.3(UDP), making its
rounds in the wild in early December 2012.

Table 1 also lists the date when we first saw each particular backdoor variant – either arriving
in our collection, reported in cloud look ups or seen elsewhere on the Internet. Additionally,
the compilation date is listed, as taken from the PE header.

An interesting quirk comes from the usage of the LAME source: one of the original source
functions, beVersion(), inserts the compilation date into the data section of the executable.

Figure 11. Compilation date in code.

This provides an independent method of determining the creation date of the variant aside
from the PE time stamp. There was no trick, however – the two dates matched in all cases.

It is notable that there is always a large gap between the compilation date and the date of the
first observation of each variant. There are several possible reasons for this:

Small-scale targeted attacks don’t provide much telemetry information; the smaller the
number of targets, the slimmer our chances of finding out about their infection.

The trojan looks very similar to a real LAME encoder library; infected victims are
reluctant to submit it for analysis.

There may be an intentional delay (some sort of testing period) in the release process
of the malware.

15/19

The backdoor uses different approaches for handling C&C communication. Earlier versions
used the standard Windows socket communication functions (send, recv) to exchange data
with the C&C server. The newer versions linked the UDT data transfer library (available from
udt.sourceforge.net) for communication. The versioning of the variants suggests that some
time around March 2012, the code forked into a socket communication branch (TCP) and a
UDT powered communication branch (UDP).

The backdoor features all the basic functionality that is expected from a piece of malware of
its class. It is able to:

Create screenshots

Get drive type (FAT, FAT32, NTFS, CDFS) and free space

Enumerate files and directories and send the list to the server

Rename files

Create directories

Delete files.

The last character of the ModuleFileName (without extension) is checked on execution: if it is
not of one of the expected values – ‘T’, ‘t’ (executed via net.exe), ‘R’, ‘r’, ‘N’, ‘n’ (executed via
DBEngin.EXE), ‘2’ (rundll32.exe), ‘L’ or ‘l’ – it builds and injects a simple piece of code to
load AppMgmt.dll properly.

For this purpose, it creates a new suspended process (with command line:
c:\windows\system32\svchost.exe), calls GetThreadContext on it, and gets EAX from the
CONTEXT structure, using the fact that in the case of a suspended process the EAX register
always points to the entry point of the process. Then it writes the starter code to this entry
point and resumes the thread. The suspended thread is not visible in the process list at that
point. This way, the trojan can escape analysis, if not executed in a natural form, and still
execute.

Configuration data is stored in a file named DbTrans.db, XOR encrypted with key 0x58.

The string constants (API names, DLL names, process names) are all stored in encrypted
form using a strong encryption algorithm. The strings are stored aligned (Unicode strings to
0x90 bytes, ASCII strings to 0x38 bytes boundary), decrypted in eight byte chunks using the
DES ECB algorithm, and referenced by IDs that index into this name pool. The encrypted
strings contain padding bytes at the end, where zeros are encoded.

16/19

The strings are decrypted on the fly before being used and filled with zeros after use. This
way there are no visible strings in the memory that would give away more information about
the internals of the backdoor.

There are three nearly identical encryption functions (and accompanying encrypted string
tables and encryption keys) in all variants: one is for the Unicode strings, one for the ordinary
ASCII constants, and a third one for the Windows API function names (also stored as ASCII
strings) that are used in the code. We found that only the encryption keys were different for
the three cases. The following key seeds remain the same throughout the variants:

For ASCII strings: 82 C5 D3 59 2B 38 00 00

For Unicode strings: 5E 97 CC 42 8E CD 00 00

For API function names: 5B 5F CB 8D E5 F5 00 00

In the last version, the two ASCII functions are merged into a single function.

The C&C addresses are hard coded into the backdoor, and protected with a simple byte wise
XOR (key:0x58) encryption. This is an interesting choice, given that all other string constants
are protected with a string DES algorithm – perhaps the server addresses are changed more
frequently (indeed, there is a minimal overlap between the different versions’ C&C
addresses) than the authors are comfortable with re-encrypting the strings – but no evidence
was found for it in the few samples we have found.

The string constants of the code are referenced by IDs and decrypted on the fly. However,
there are strings that are never used in the code. These could belong to an earlier or internal
version, and simply have not been cleaned up from the string pool, as illustrated in this
example:

17/19

push 9 ; ,lame_set_out_sample

call Get_String_A

push 0Ah ; ,

call Get_String_A

push 1Eh ; DBEngin.exe

call Get_String_A

push 8 ; EXPL.EXE

pop eax

call Get_String_W

push offset s_expl_exe

push [ebp+var_254]

call StrCpyW

push 8

pop eax

xor ecx, ecx

call set_mem

push ebx

push 2

call CreateToolhelp32Snapshot

Some of these strings could be internal configuration options for the development
environment (I suspect these are access details to an internal server):

kazafei

192.168.1.98

80

Other strings provide status information about the current operation of the backdoor:

Client RecvData Complete

A File Search Task has start already !!!

File Search Task Success

File Search Task Failed, Please Check

Upload Client Failed

Upload Client Success

Delete File Success

Delete File Failed

Rename File Success

Rename File Failed

Create Folder Success

Create Folder Failed

A few constants indicate undocumented or debug functionality:

X:\Windows\System32\rundll32.exe

X:\Windows\msacm32.drv

MagicMutex

D:\Resume.dll

D:\delete.dll

D:\delete2.dll

18/19

Conclusion

When looking into APT attack scenarios, one has to be extra careful. Often we see that clean
programs and libraries are dropped onto systems to hide the operation of malicious
applications [3]. But sometimes, what looks to be a genuine MP3 encoder library, and even
works as a functional encoder, actually hides malicious additions buried deep in a large pile
of clean code. One has to be very thorough when it comes to targeted attacks, and one
cannot afford to make any assumptions.

Bibliography

[1] Baccas, P. When is a password not a password? When Excel sees “VelvetSweatshop”.
http://nakedsecurity.sophos.com/2013/04/11/password-excel-velvet-sweatshop/.

[2] LAME (Lame Aint an MP3 Encoder). http://sourceforge.net/projects/lame/.

[3] Szappanos, G. Targeted malware attack piggybacks on Nvidia digital signature.
http://nakedsecurity.sophos.com/2013/02/27/targeted-attack-nvidia-digital-signature/.

Latest articles:

Cryptojacking on the fly: TeamTNT using NVIDIA drivers to mine
cryptocurrency

TeamTNT is known for attacking insecure and vulnerable Kubernetes deployments in order
to infiltrate organizations’ dedicated environments and transform them into attack
launchpads. In this article Aditya Sood presents a new module introduced by…

Collector-stealer: a Russian origin credential and information extractor

Collector-stealer, a piece of malware of Russian origin, is heavily used on the Internet to
exfiltrate sensitive data from end-user systems and store it in its C&C panels. In this article,
researchers Aditya K Sood and Rohit Chaturvedi present a 360…

Fighting Fire with Fire

In 1989, Joe Wells encountered his first virus: Jerusalem. He disassembled the virus, and
from that moment onward, was intrigued by the properties of these small pieces of self-
replicating code. Joe Wells was an expert on computer viruses, was partly…

Run your malicious VBA macros anywhere!

Kurt Natvig wanted to understand whether it’s possible to recompile VBA macros to another
language, which could then easily be ‘run’ on any gateway, thus revealing a sample’s true
nature in a safe manner. In this article he explains how he recompiled…

https://nakedsecurity.sophos.com/2013/04/11/password-excel-velvet-sweatshop/
https://sourceforge.net/projects/lame/
https://nakedsecurity.sophos.com/2013/02/27/targeted-attack-nvidia-digital-signature/
https://www.virusbulletin.com/virusbulletin/2022/04/cryptojacking-fly-teamtnt-using-nvidia-drivers-mine-cryptocurrency/
https://www.virusbulletin.com/virusbulletin/2021/12/collector-stealer-russian-origin-credential-and-information-extractor/
https://www.virusbulletin.com/virusbulletin/2021/06/fighting-fire-fire/
https://www.virusbulletin.com/virusbulletin/2021/04/run-your-malicious-vba-macros-anywhere/

19/19

Dissecting the design and vulnerabilities in AZORult C&C panels

Aditya K Sood looks at the command-and-control (C&C) design of the AZORult malware,
discussing his team's findings related to the C&C design and some security issues they
identified during the research.

Bulletin Archive

Copyright © 2014 Virus Bulletin

https://www.virusbulletin.com/virusbulletin/2021/04/dissecting-design-and-vulnerabilities-azorultccpanels/
https://www.virusbulletin.com/virusbulletin/archive

