
1/4

The Dexter Malware: Getting Your Hands Dirty
trustwave.com/Resources/SpiderLabs-Blog/The-Dexter-Malware--Getting-Your-Hands-Dirty/

A very interesting piece of malware that targets Point ofSale systems has recently surfaced
in the malware community. As a guy whofrequently reverses malware that targets card data
(aka. Track data), thiscaused me to take notice. Before I jump into the really interesting bits
of themalware, I'd like to offer a few links to those that have already taken a lookat this stuff.
Seculert specificallywere the ones that originally discovered, and named, the Dexter
malware.

http://blog.seculert.com/2012/12/dexter-draining-blood-out-of-point-of.html

http://volatility-labs.blogspot.com/2012/12/unpacking-dexter-pos-memory-dump.html

So if you either haven't gotten a chance to read the abovearticles, or simply would like a
refresher, here's what the malware does in anutshell.

Injects itself into iexplore.exe
Ensures the iexplore.exe process restarts in theevent that it is manually stopped
Ensures persistence via writes to the 'Run'registry key
Scrapes track data through a very common method
Has a command and control structure with aremote host

That last bullet in particular really caught my eye. I can'tremember the last time I saw a
piece of malware that targeted Point of Salesystems that had a nice C&C structure to it.
And that is where our storyreally begins…

https://www.trustwave.com/Resources/SpiderLabs-Blog/The-Dexter-Malware--Getting-Your-Hands-Dirty/
http://blog.seculert.com/2012/12/dexter-draining-blood-out-of-point-of.html
http://volatility-labs.blogspot.com/2012/12/unpacking-dexter-pos-memory-dump.html


2/4

So in looking at the underlying assembly of the malware, itbecomes apparent that this
sample is planning on talking to as many as sevendifferent domains. It's also apparent that
it's going to communicate over HTTP,via a POST request. Looking at the traffic that gets
generated, we seesomething similar to the following:

Now you might be thinking to yourself, "Geez, that's a lotof …stuff". And you'd be right. So
lets break down that nice blob of datathat's being sent over the wire. In total, we see the
following ten differentvariables:

page
ump
unm
cnm
query
spec
opt
view
var
val

I'm going to focus on the last variable ('val') first, mainly because it's the easies to decode,
and because it's one of the mostimportant. We see that 'val' has a value of 'ZnJ0a2o=',
which I'm sure you'veall guessed by now is Base64 encoded. Once decoded, we see this
value change to'frtkj'. You might be thinking that this is also garbage, but it is, in fact, akey
that is used to encode the remaining text in the POST request.Specifically, we see the
following occur when each variable's data is decoded:

1. The data is Base64 decoded

http://10.10.0.46/images/slblog-03-02-2018-10-57-10/spiderlabs/28cddbe1-c581-4e1d-9426-f87bc269682b.html;%20charset=utf-8


3/4

2. Each character in the decoded string is xoredsequentially against each character of
the key we previously identified. InRuby, it looks something like this:

"A".xor("f").xor("r").xor("t").xor("k").xor("j")

This results in the original content.

Know how this works, we can whip up a quick script to decodethe entire string.

We can now easily determine when a number of the variable discoveredactually contain.

page: Mutex string
ump: Track data
unm: Username
cnm: Hostname
query: Victim OS
spec: Processor type
opt: Unknown
view: List of all running processes on thevictim
var: Some unique string. Appears to be constantfor this sample
val: Random key that changes every time themalware restarts

So at this point we can see how the malware is communicatingoutbound to its master.
However, that's only half of the puzzle. How is themalware receiving commands?

Well, the answer to that question comes in the form of theresponse Cookie. Specifically, the
malware will set the 'response' cookie usingthe same technique (only in reverse) that we
just witnessed. So basically, theserver takes the key from before, XORs each byte of the
string against eachcharacter in the key, and Base64 encodes it. Dexter will then parse this
data,and look for one of the following variables:

update- (Updates the malware with the specifiedargument)
checkin: (alters the delay between times themalware attempts to make POST
requests to the master host)
scanin: (alters the delay between times the malware scrapes memory for trackdata)
uninstall (completely removes the malware)
download- (downloads and execute the specified argument)

http://10.10.0.46/images/slblog-03-02-2018-10-57-10/spiderlabs/dca499e3-2e35-42ac-9547-41aafd065bc5.html;%20charset=utf-8


4/4

I should point out that each variable has to start with thecharacter '$' in order for the
malware to look at it. We can see how thesevariables are checked in the following
decompiled code:

So at this point we can get a pretty clear picture of howthis malware operates over the wire.
The details of how this malware has gottenon these victim machines is still unclear, but
please ensure that you aretaking the necessary precautions to protect your system, with a
specialemphasis on Point of Sale boxes. Because really, nobody wants to becomeDexter's
next victim.

http://10.10.0.46/images/slblog-03-02-2018-10-57-10/spiderlabs/567b2247-0ad5-4abe-9f8c-e886feb778a9.html;%20charset=utf-8

