Rovnix bootkit framework updated

=l welivesecurity.com/2012/07/13/rovnix-bootkit-framework-updated/

July 13, 2012

Changes in the threatscape as regards exploitation of 64-bit systems, exemplified by the
latest modifications to the Rovnix bootkit.

13 Jul 2012 - 11:05AM

Changes in the threatscape as regards exploitation of 64-bit systems, exemplified by the
latest modifications to the Rovnix bootkit.

We have been tracking the activity of the Rovnix bootkit family since April 2011. Rovnix was
the first bootkit family to use VBR (Volume Boot Record) infection (NTFS bootstrap code)
for loading unsigned kernel-mode drivers on x64 (64 bit) platforms. The reason for exploring
further is the desire of the Rovnix developers to bypass antivirus detection. The payload of
the first samples in the wild blocked internet connection for Russian users and forced them
to send an SMS to a premium number in order to get their connection unblocked (Hasta La
Vista, Bootkit: Exploiting_the VBR).

These variants with the internet blocking payload stopped using the bootkit component
during the summer of 2011. At that time the Rovnix framework was sold to Carberp
developers responsible for the botnet Hodprot/Origami (Evolution of Win32Carberp: going
deeper). The Carberp developers used droppers incorporating bootkit framework only up to
the end of 2011. We don’t have information about other sales of the Rovnix bootkit
framework. But we only have information relating to a really small percentage of infections
with Rovnix based bootkit code. A few days ago we got some interesting samples and quick
analysis revealed similar VBR modifications to the Rovnix.B family. After unpacking the
dropper we found a typical component for providing the next steps for installation of the
Rovnix bootkit's BkSetup.dll module. The compilation timestamp of BkSetup.dll module
looks fresh and is dated 24/06/2012: certainly it's possible to fake a timestamp, but up to
now developers had not changed the date on BkSetup.dll).

Field Mame | Data Y alue | D ezcription
Machine 014Ch i3EE
Murber of Sections
Time Date Stamp
Puointer ko Syrbal Table

Mumber of Symbols 00000000k

Size of Optional Header 0E0R

Characteristics 0102k %'
Magic (10Bh FEZ2
Linker % erzsion 1009k 9.0

1/8

https://www.welivesecurity.com/2012/07/13/rovnix-bootkit-framework-updated/
https://www.welivesecurity.com/2011/08/23/hasta-la-vista-bootkit-exploiting-the-vbr
https://www.welivesecurity.com/2011/11/21/evolution-of-win32carberp-going-deeper
https://www.welivesecurity.com/wp-content/media_files/127.png

There is also a version information structure to be found in the resource section of
BkSetup.dll filled as follows:

Child Type: StringFileInfo
Language /Code Page: 103371200
FileDescription: Ek3etup Library
FileVerzion: 2, 4, 0,0
Internallame: EkSetup
LegqalCopyright: Copyright (C)] 2011
OriginalFilename: BkSetup.dll
Productlame: BkSetup Library
ProductVersion: 2, 4, 0,0

The file version has been changed to 2.4: previously, Carberp used version 2.1 of
BkSetup.dll and stored the information in the debug string sent to the C&C as debugging
information.

The base functionality of BkSetup.dll is centred on the process of infection and setting up
the hidden storage partition. A call graph of the main BkSetup.dll routines looks like this:

A new sample with a new version of the Rovnix bootkit framework is indirect evidence of
renewed sales activity and in the near future we may possible be able to disclose details of
the relationship between Rovnix and other malware families. And now we will go deeper
into the technical details of the Rovnix.D modification.

Polymorphic bootstrap code

Since Rovnix.B the modified bootstrap code has used polymorphic code in order to bypass
static antivirus signature detection. Originally, polymorphic decryption code was detected in
Carberp samples incorporating bootkit code. The following figure shows the basic workings
of the polymorphic decryption code.

2/8

https://www.welivesecurity.com/wp-content/media_files/219.png
https://www.welivesecurity.com/wp-content/media_files/320.png
https://www.welivesecurity.com/wp-content/media_files/424.png

~ Polymorphic
decryptor

BLER L
——
Encrypted
rmalicious ! Basic block 2 = —‘-
|
Compressed

VBR
e
i H
original b
VER A Hasic block N —-—-_
b

A simple trick of polymorphism based on permutations of the basic code blocks always
results in the malware’s getting control of the decrypted malicious VBR code. The basic
code blocks look like this:

[polymorphic code from Rovnix.B]

The reason for using polymorphic code is to bypass static signature detections by antivirus
engines: this code can only be detected generically using emulation. Emulation is a
technique closely related to sandboxing where the code is executed in a safe virtual
environment in order to analyse it dynamically. The differences between the Rovnix.D and
Rovnix.B versions are presented in this flow graph:

3/8

https://www.welivesecurity.com/wp-content/media_files/515.png
https://www.welivesecurity.com/wp-content/media_files/613.png

[Rovnix.D variant (left) and Rovnix.B variant (right)]

The place where the encrypted malicious VBR is stored has been changed too, and after
execution of the polymorphic code, control is transferred to the decrypted malicious VBR
code. The different placement of the encrypted malicious VBR looks like this:

E——— .
“TIR —— —

4/8

https://www.welivesecurity.com/wp-content/media_files/9-21.png
https://www.welivesecurity.com/wp-content/media_files/813.png

We also found changes to the function for decrypting and reading the malicious unsigned
driver from raw sectors in the hard drive. These sectors are not used for general hidden
storage, but only as a location for storing the malicious driver, which injects the payload into
specified user-mode processes on the infected machine. Differences can be seen in the

following figure:

[Rovnix.D variant (left) and Rovnix.B variant (right)]

All these changes are directed towards bypassing antivirus detections and do not represent
fundamental changes in the general Rovnix bootkit framework structure.

5/8

https://www.welivesecurity.com/wp-content/media_files/7-1.png

Changes in hidden file storage

The structure of the hidden file system looks similar to the previous Rovnix modification and
has already been described in previous blog posts (Rovnix Reloaded: new step of
evolution). However insignificant changes were found in the file system initialization code. A
strange function call was detected with the ability to read the file INJECTS.SYS from hidden
storage.

This curious function extracts one or two paths from the file INJECTS.SYS to files on the
standard file system. The function code is presented in the figure below:

Control flow never gets to execution of this code because the condition always receives
NULL and control is never transferred to this code. In my opinion this modification in
Rovnix.D is used for tests, and we aren’t seeing many detections in the wild. Rovnix.D
seems to be a transitional version in preparation for something else, but at this moment we
don’t have a clear understanding of what that might be.

6/8

https://www.welivesecurity.com/2012/02/22/rovnix-reloaded-new-step-of-evolution
https://www.welivesecurity.com/wp-content/media_files/1111.png
https://www.welivesecurity.com/wp-content/media_files/129.png

Payload

The payload module includes functionality for downloading and executing additional
modules from the C&C server. This module does not provide hooks and other malicious
modifications to system memory, and is not generally detected by most common antivirus
engines.

The C&C domain is rtttt-windows.com

The payload module works in multithreading mode and can communicate with the malicious
driver. For synchronization reasons the payload generates the mutex:
Global<Generated_string>. The call graph for the main thread looks like this:

Lo
i
The payload module can also send an encrypted buffer to the malicious driver to be written
to hidden storage and injection into processes. Before this Rovnix has not used any
functionality for multiple injects, and provided only one payload module. Rovnix.D can use

multiple payloads and can be used to provide a botnet for rent, and at the end of the rental
period the payload will be changed.

Conclusion

At this moment changes can be seen in the landscape of complex threats for the x64
platform. The Sirefef (ZeroAccess) family has been migrated to user-mode in its latest
modifications (ZeroAccess: code injection chronicles). Olmarik/Olmasco (TDL4 and MaxSS
modification) does not account for a large percentage of infections in the wild and has
stopped evolving (The Evolution of TDL: Conquering x64). Why are rootkits/bootkits for the
64 bit platform dying? In my opinion the ways in which x64 systems can be infected are
severely limited, and the search for something new requires ample time and considerable
experience on the part of the developer. Most bootkit infections have used MBR-
modification, but this method is pretty old and by this time most common antivirus engines
provide checks for a modified MBR. The Rovnix family used other ways to infect with
modification of the VBR, but a constant stream of new modifications necessitates the
provision of a great deal of debugging information to the C&C. The complexity of
development and debugging on multiple platforms is one reason for the high price of the
Rovnix bootkit framework. For example the fully-featured builder costs $60.000 including
basic support for half a year. This price is only for the bootkit package and excludes the cost
of exploits for escalating privilege in order to get access allowing modifications deep into the
system.

7/8

https://www.welivesecurity.com/wp-content/media_files/132.png
https://www.welivesecurity.com/2012/06/25/zeroaccess-code-injection-chronicles
http://go.eset.com/us/resources/white-papers/The_Evolution_of_TDL.pdf

In future, complex stealth technologies will mostly be used in targeted attacks, because the
cost of buying and using them is not commensurate with the anticipated profit for typical
cybercriminals. We now have less than ten families of x64 bootkits and their activity in the
wild is also decreasing.

SHA1 hashes for the Rovnix.D droppers mentioned are:

o C1C0CC056D31222D3735E6801ACBA763AC024C5B
o 764B4F0202097F2B41A2821D30A7424490BF3A42

Special thanks to my colleagues Pawel Smierciak and Maxim Grigoryev.
Aleksandr Matrosov, Security Intelligence Team Lead

13 Jul 2012 - 11:05AM

Sign up to receive an email update whenever a new article is published in
our Ukraine Crisis — Digital Security Resource Center

Newsletter

Discussion

8/8

https://www.welivesecurity.com/category/ukraine-crisis-digital-security-resource-center/

