
1/5

Intro. To Reversing - W32Pinkslipbot
blog.opensecurityresearch.com/2011/12/intro-to-reversing-w32pinkslipbot.html

By Michael G. Spohn.

To follow along, download the bundle of source files
(http://www.opensecurityresearch.com/files/PinkslipBotJScript.zip) or the individual files will be referenced when
first talked about.

Background

A couple of months ago, a colleague sent me a file to analyze. He recovered it from a host compromised by a
variant of the W32/Pinkslipbot malware family (aka Qakbot, Akbot, Qbot). The file was found in the \Windows\Temp
folder and was scheduled to run every four hours by the Windows scheduler.

Analysis of the file revealed it was not a portable executable (PE) binary. It appeared to be some form of
obfuscated script. Whatever it was, I knew it was some form of executable because the scheduler was able to
execute it. After a couple of hours of investigative work, I was able to figure out what the script was and how it
works.

Even though reverse engineering of malware is considered an art only performed by people with deep knowledge
of assembly language, this is simply not true. Sure, analysis of complex malware binaries requires advanced skills.
However, in this case, anyone with basic scripting skills and a little tenacity can reverse engineer this script. Let’s
get started.

Initial Analysis

The original script file appears to be randomly named (kxoe4.zbz), is 6,677 bytes long, and contains 212 lines of
script code. (The file listing can be found in Appendix A.) When you look at the listing, you encounter quite a mess.
As you examine it closer, you can see the footprints of some form of Java script. The tell-tale signs include the
Java keywords ‘function’, ‘var’, ‘switch’, break’, and ‘case.’ There also appears to be C style comments delimited by
‘/*’ and ‘*/.’ Most of the text in the file is obfuscated.

Since the file appears to contain obfuscated Java script, the approach I took to figure out what this script does
consists of five steps:

1. Organize (beautify) the code to make it more readable.
2. Identify the script entry point.
3. Determine the de-obfuscation algorithm(s).
4. Decrypt the script contents.
5. Document what the script does.

Obfuscation Algorithm

The first step in our process is to organize the file contents to make it more readable. This is easily done in any text
editor. (My favorite editor is Notepad++). There are three code listings you can refer to:

Fire up your editor and load the “pretty”, or “commented” versions to make following along easier. Going forward,
line numbers refer to contents of Listing_2.txt.

http://blog.opensecurityresearch.com/2011/12/intro-to-reversing-w32pinkslipbot.html
http://www.opensecurityresearch.com/files/PinkslipBotJScript.zip
http://notepad-plus-plus.org/

2/5

Now that the script is more readable, it is easy to see the script contains four global variables and nine functions.
The function names and the arguments are obfuscated. Luckily, we only have nine of them to reverse. The
functions are listed below in Table 1.

Table 1 – Script Functions

Script Functions

function svjqxkqL5vb(u45jKF2cnu)

function KiEuqVtyP1A(ERfyC3i)

function s41dk(qqQFVIpO03, yKfNtb)

function o2t84kpEE(AaUg5G)

function tNAaDaVD(S5V8HkvS, tknjLQDR, uQxzc, h162w)

function yU2D2PABJPv(rx1SRpmtJm, UiSt3EtmV)

function zA8QwjCFyA(HlzNb5)

function FiVvczeeGk(QpATGC)

function UK8wMwIhuG(ML2xDT8)

Next, we need to determine the script’s entry point. An entry point is the first function that is called when an
executable starts. Looking through the beautified script listing, I found an interesting entry in line 271.

var ML2xDT8 = new ActiveXObject(s41dk('1fnW+Zjziozk8eDuxg==', 0));

This is the only method in the script that is both global in scope and declares a variable to hold the return value, so
it is most likely the entry point. The function creates a new ActiveXObject and passes its constructor the return
value of function s41dk(). It passes function s41dk() an obfuscated string as the first parameter and a 0 as the
second.

Those of you familiar with the Microsoft scripting environment will recognize the ActiveXObject constructor is part
of Microsoft’s extended Java scripting language JScript. It provides a mechanism for scripts to instantiate and use
ActiveX components.

According to MSDN, the AcitveXObject() function prototype is:

function ActiveXObject(ProgID : String [, location : String])

The first argument takes the form “serverName.typeName” where serverName is the application that hosts the
control; typeName is the name of the object to create. The second parameter is optional and contains the name of
the network server where the object should be created.

This information tells us the script call to ActiveXObject() via the s41dk() function must be a string in the form
serverName.typeName. Accordingly, the '1fnW+Zjziozk8eDuxg==' string passed to s41dk() must be in this format
after de-obfuscation.

As we examine function s41dk(), on line 50 we see it first creates three variables: ERfyC3i, D9fDoV4rR, and UoHfj.
Next, the script determines if some external variable OfI8GieKmf exists. If it does not, an array of eleven hex
values is created and assigned to variable TLqV2oczR. Another variable, OfI8GieKmf is created and initialized to a
value of 11, most likely to store the length of the array.

http://msdn.microsoft.com/en-us/library/6958xykx.aspx

3/5

Next, the script calls function svjqxkqL5vb() passing the string '81728aamz' as a parameter. This is the very first
function at the top of the script. A quick examination of its purpose reveals this function is a ruse that does nothing
useful. It returns the length of a string that is never used by any caller. The function is called seven times in the
script. This is an example of the length malware writers will go to delay and frustrate anyone who attempts to
reverse their code.

Back in the s41dk() function we see it next calls function KiEuqVtyP1A(qqQFVIpO03). Remember, the variable
qqQFVIpO03 is the parameter that contains the obfuscated ActiveXObject information.

Examination of the function KiEuqVtyP1A() on line 12 quickly shows it contains de-obfuscation code. Now we are
getting somewhere. It appears this function is an implementation of the Base64 decoding algorithm defined in RFC
4648. How do we know this? The telltale signs are the string containing the alphanumeric character set terminated
by the ‘+’ and ‘/’ characters and the fact the processing loop terminates on the ‘=’ character. This function simply
accepts and input string and performs the Base64 decoding algorithm on it. It then returns the decoded string.

Returning to the s41dk() function, there is some more de-obfuscation code. Once the decoded Base64 string is
returned from the call to KiEuqVtyP1A(), each character in the string is routed through an algorithm (line 65)
described by the below pseudo code:

hexArr = Array[0x82, 0xaa, 0xb5, 0x8b, 0xf1, 0x83, 0xfe, 0xa2,

0xb7, 0x99, 0x85]

strB64decoded = decoded string from call to KiEuqVtyP1A()

asciiString = fully decoded string

for(int x=0; x< length of strB64decoded; x++)

{

 achar = strB64decoded[x]

 charASC = achar XOR’d with hexArr [x modulus 11]

 append charASC to asciiString

}

return asciiString

In other words, each character in the decoded Base64 string is XOR’d with a hex value in the array hexArr. The
hex value to use is calculated by dividing the zero based index position of the character in the strB64decoded
string by 11 and using the remainder as the index into hexArr.

This type of encoding algorithm is very common in malware. Malware authors prefer to use Base64 encoding since
it is a safe and effective way to transmit ASCII and UNICODE data safely across the Internet. An additional
encoding algorithm similar to the one described above is often used to encrypt the string before it is Base64
encoded.

Reversing

Now that we know the obfuscation uses a two-step XOR and Base64 algorithm, we need to emulate it so we can
decrypt the strings. This is a straightforward task easily accomplished using scripting languages. If you are not a
programmer, you probably have at least some experience with a scripting language.

My scripting language of choice is Python. I wrote a Python script (psbot_decode.py) that contains functions that
encrypts and decrypts Unicode strings using the same algorithm as the malware script. It can also process a file of
encrypted strings to save time. A listing of the script can be found in Appendix C.

Even if you are not familiar with Python, if you spend a few minutes looking at the code you should be able to
understand how it works. If Python is not your thing, then I encourage you to port the functions to your favorite
scripting language.

http://tools.ietf.org/html/rfc3548
http://www.opensecurityresearch.com/files/psbot_decode.tar.bz2

4/5

I created a text file that contains all of the obfuscated strings in the malware script. To do this, I searched the
malware script for all calls to function s41dk() since this is the function that de-obfuscates strings in the script. I ran
the file through my Python script. The results are shown below in Table 2.

Table 2 – De-obfuscated Strings

Obfuscated String De-Obfuscated String

w/n2wrg= ASCII

0Z/js7noiPGZ9vXnxJ2ptsa qgJu58NPSz+jdo5jD2+rgq5G/2MTVxur
c79as2dDllauQ19v1rLmg

S5V8HkvS.open("GET", uQxzc,
false);S5V8HkvS.send(null);

spuHuMW2yJWPoMTA6fHOt8S26/
3Syc/k+tug0a324s/S2v7v6pPgmsfR/u3rwdnmn+yO08Xq8ffcwvOI+Q==

0123456789ABCDEFGHI
JKLMNOPQRSTUVWXTZabcdefghiklmno
pqrstuvwxyz

w+76z7OtrdbF/OTv ADODB.Stream

6t7B+8us0Q== http://

0tja6JTwjQ== Process

1u/42w== TEMP

rM/N7g== .exe

z/ntxr2x0PHS6/Pn2O3Gvcuq9uc= MSXML2.ServerXMLHTTP

z8PW+Z7wkcTDt93P5v3fpdM= Microsoft.XMLHTTP

z+aH87XXxozl7Ouq49jbl9fSgoewvog= ML2xDT8.Run(ImPfT, 0);

p/nM+IXmk/DY9vGn9uHOvNOi3A== %SystemRoot%\TEMP\~

rN7Y+w== .tmp

1fnW+Zjziozk8eDuxg== WScript.Shell

99qFu8Ktnc3at/DjkdH+wbLQy9mi4fe ah6WY7cXB3u388tja5p6
tl8zR9r7x2tr/g+KKx5nw6+TF

up003.com.ua;du01.in;
du02.in;citypromo.info;spotrate.info

4ITQ85Q=

We are making good progress. Now we need to replace the obfuscated strings in the script to understand what the
functions do. A fully commented listing of the beautified malware script with de-obfuscated strings can be found in
bundle.

Documenting

The final step in our analysis is the documentation of the script functions. I replaced all calls to the s41dk() with the
de-obfuscated strings the function would return. Below is a table containing the description of each function.

Table 3 – Function Descriptions

Function Name Function Description

svjqxkqL5vb(u45jKF2cnu) Ruse function. Called 7 times. Return value not used.

http://www.opensecurityresearch.com/files/PinkslipBotJScript.zip

5/5

41dk(qqQFVIpO03, yKfNtb) Decodes Base64 encoded string. Uses standard Base64 decode algorithm.

KiEuqVtyP1A(ERfyC3i) Secondary obfuscation algorithm. Uses XOR, bit-shifting.

o2t84kpEE(AaUg5G) Determines if a file is a PE. (“MZ” in first two bytes.)

tNAaDaVD(S5V8HkvS,
tknjLQDR, uQxzc, h162w)

Downloads a file from the Internet and saves it with a random file name in
%SYSTEM%\Temp folder.

U2D2PABJPv(rx1SRpmtJm,
UiSt3EtmV)

Creates a randomly named filename.

zA8QwjCFyA(HlzNb5) Downloads a file from the Internet and executes it.

FiVvczeeGk(QpATGC) Determines if the passed in filename exists.

UK8wMwIhuG(ML2xDT8) Determines if there is a file in the %SYSTEM%\Temp folder with the same
name as this script plus a .tmp extension.

To complete the documentation of the script, let’s create a list of the scripts actions.

Script entry-point creates a WScript.Shell ActiveX object.
Look for a file named "~" + script name + ".tmp" in %SYSTEM%\Temp. If file exists then exit.
If above file does not exist, loop through a list of 5 hard-coded domain names and try to download a file. Give
the file a random file name and store it in %SYSTEM%\Temp and execute it.
If the Internet file download fails, execute a file named "~" + random name + "b.exe" in %SYSTEM%\Temp
Exit script.

Based on the above action list, this script appears to act as an updater for the Pinkslipbot binaries on a
compromised system. This would explain why the script is executed every four hours as a scheduled job.

Summary

In this exercise, we converted an unreadable mess of a JScript file into a format that unlocked its actions. We
reverse-engineered the script obfuscation algorithm and wrote a simple Python script to emulate it. Using the
Python script, we de-obfuscated the strings in the malware script and documented what each function does.
Finally, we listed the actions of the script.

In this effort, it is interesting to note why the malware authors went to all this trouble for such a simple script. First,
the use of JScript makes sense. It will run on any Windows platform and does not require compilation. Since it is
not a portable executable (PE) and is obfuscated, it can slip by most security countermeasures.

Not only is obfuscation used to defeat the security infrastructure, it can also defeat security analysts. At first glance,
the file contents appear unreadable. Without taking a close look, the file may be ignored because it appears to be
encrypted or a binary file.

Curious and tenacious investigators know better. Through this analysis process, I hope I have convinced you that
you have the skills to reverse-engineer malware if you are willing to spend the time.

