
1/5

September 27, 2011

Debugging Injected Code with IDA Pro
malwarereversing.wordpress.com/2011/09/27/debugging-injected-code-with-ida-pro/

Hello all! Today I wanted to talk about how you go about debugging/analyzing injected
code. In today’s malware environment a lot of malicious code doesn’t sit resident in memory
in the context of it’s own process. Back in the day you could look at task manager and
recognize some weird executable that didn’t belong. Those days are mostly over. The
new(er) malware classes will typically inject malicious code and hook dll’s in legitimate
looking processes (explorer.exe, winlogon.exe, svchost.exe, etc.) to evade detection. This
makes analyzing malware trickier as you need a wider skill set than opening up a bad binary
in IDA. I’m going to shed some light on that process when you run into this type of malware.

First off we need to find some malware that uses code injection. Code injection is usually
done through the WriteProcessMemory API call through Windows. I’ve provided a sample
here which just happens to be the shylock malware that was posted recently at Contagio.
Download to follow along (the password is infected). This executable injects code into the
explorer.exe process of the target machine (xp sp3 os running on virtualbox). This is what
we will be working with if you want to follow along. Now I haven’t done a complete in depth-
analysis on this yet (it’s coming) but I suspect there isn’t any VM breakout that will totally
hose your host OS. If there is well sorry bout that! 😛 You need to also make sure your vm
is accessible from your host machine. I used ‘Host-Only Networking‘ and made sure the
guest was accessible from my host box.

So once you have your vm up (and it has an IP you can reach from your host box). You’ll
need to copy over to the share a file that exists in your IDA Pro file to enable remote
debugging. The file is “win32_remote.exe”. This is a server that allows IDA to connect up to
a port on a remote server debugging to debug across the world or across memory in the
sense of a VM. Now one caveat with this program is that it only allows one debugging
session per server (depending on version, newer versions of IDA support multiple
debugging sessions over the same port). So if you want to debug 2 programs at the same
time (which we will be doing) you need two instances of this running on different ports. You
specify the port with the -p flag and there is NO SPACES after the -p switch so if you want to
set it up on port 1000 you’d run “win32_remote -p1000” from the command line. Tiga also
has posted a video tutorial about remote debugging with IDA. His entire tutorial series is
very good.

Open up a IDA Pro and Run -> Remote Win32 Debugger

https://malwarereversing.wordpress.com/2011/09/27/debugging-injected-code-with-ida-pro/
http://msdn.microsoft.com/en-us/library/ms681674%28VS.85%29.aspx
http://www.mediafire.com/?0vowzbf40gp9s8f
http://www.mediafire.com/?0vowzbf40gp9s8f
http://contagiodump.blogspot.com/
http://www.virtualbox.org/manual/ch06.html
http://www.hex-rays.com/idapro/idadoc/1463.shtml
http://www.woodmann.com/TiGa/
http://www.woodmann.com/TiGa/
http://www.hex-rays.com/idapro/idadoc/1463.shtml

2/5

Make sure your connection/paths are correct.

Click ok and you’ll break at the entry point of the module

https://malwarereversing.files.wordpress.com/2011/09/ida_run_remote_debugger1.jpg
https://malwarereversing.files.wordpress.com/2011/09/ida_run_remote_debugger2.jpg

3/5

Now we’re going to set a breakpoint at WriteProcessMemory() (In IDA that equates to
kernel32_WriteProcessMemory. From here on out it will be referred to as
WriteProcessMemory)

Hit f9 to go and it breaks on WriteProcessMemory() (How did I know how to break here? I
reversed the program roughly to get a feel for the program from the beginning up until this
point.)

Now the code injection routine is a separate link here. shows why we want to break on
WriteProcessMemory(). There are a few basic methods on how to inject code into a process
that is not yours on Windows. Here is a good breakdown describing those methods. Most
of the tactics revolve around WriteProcessMemory system call. This particular piece of
malware uses the third type of injection mentioned in the code project article. Before this
specific function was reached the malware took a snapshot of the system state and iterated
through the processes until it found explorer.exe then called this function. So the short

https://malwarereversing.files.wordpress.com/2011/09/ida_debug1.jpg
http://msdn.microsoft.com/en-us/library/ms681674%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms681674%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms681674%28VS.85%29.aspx
https://malwarereversing.files.wordpress.com/2011/09/ida_debug3.jpg
http://msdn.microsoft.com/en-us/library/ms681674%28VS.85%29.aspx
http://pastebin.com/wzMMxF8q
http://msdn.microsoft.com/en-us/library/ms681674%28VS.85%29.aspx
http://www.codeproject.com/KB/threads/winspy.aspx
http://msdn.microsoft.com/en-us/library/ms681674%28VS.85%29.aspx

4/5

version of the disassembly is that it opens the target process, allocates some memory inside
the process, writes memory that was allocated (repeats 3 times), then starts a remote thread
to execute this new code, wait for thread to exit then cleanup handles. The reason 3
sections of memory are mapped into the target process is there is a loader there that
reconstructs a dll in memory that is allocated inside Explorer. This happens all before the
exit status code is returned from the thread and the code is successfully injected.

Let’s fire up another IDA instance and use the Attach -> Remote Win32 Debugger and put in
the port for the second server that was different than the first. Hit ok then we should see a
process listing and let’s choose our injected process (explorer.exe) from the menu. If you
took note of the injected code locations from CreateRemoteThread structure.

HANDLE WINAPI CreateRemoteThread(
 __in HANDLE hProcess,
 __in LPSECURITY_ATTRIBUTES lpThreadAttributes,
 __in SIZE_T dwStackSize,
 __in LPTHREAD_START_ROUTINE lpStartAddress,
 __in LPVOID lpParameter,
 __in DWORD dwCreationFlags,
 __out LPDWORD lpThreadId
);
 __in LPTHREAD_START_ROUTINE lpStartAddress,

lpStartAddress [in]
A pointer to the application-defined function of type LPTHREAD_START_ROUTINE to be
executed by the thread and represents the starting address of the thread in the remote
process. The function must exist in the remote process. For more information, see
ThreadProc.

We can mark this location with a breakpoint once we attach to explorer.exe (before the
thread is started but after the memory was written). Then we hit run in the shylock.exe
(injector process) and then we should have a breakpoint hit in explorer.exe and sure enough
we do. We can continue on reversing from here but let’s dump this segment and save it so
we can annotate our debugging sessions and build on this previous knowledge. The way we
can do this in IDA is take a memory snapshot. We have to View -> Open Subviews ->
Segments so that we can view a memory map. Noting our addresses from
WriteProcessMemory we need to change those segments to Loader segments. Next up go
to Debugger and take memory snapshot and choose only Loader Segments. If you notice in
our column our only dump will be of the three sections we marked ‘Loader’ segment. If you
don’t mark them as Loader segments IDA will ignore them and exclude from putting them
into the database/idb. Here you have it and that’s how you dump injected code from any
process with IDA Pro. Hope you enjoyed reading this article.

References:

[1] – Tiga’s IDA video tutorials

http://msdn.microsoft.com/en-us/library/windows/desktop/ms682437%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms686736%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms681674%28VS.85%29.aspx
http://www.hex-rays.com/idapro/idadoc/514.shtml
http://www.woodmann.com/TiGa/

5/5

[2] – CodeProject Code Injection methods

[3] – Contagio malware dump

[4] – IDA Docs Page

[5] – Virtualbox Networking Doc

~ by malwareninja on September 27, 2011.

http://www.codeproject.com/KB/threads/winspy.aspx
http://contagiodump.blogspot.com/
http://www.hex-rays.com/idapro/idadoc/
http://www.virtualbox.org/manual/ch06.html

