
1/4

Blog Staff September 13, 2011

Mebromi: the first BIOS rootkit in the wild
webroot.com//blog/2011/09/13/mebromi-the-first-bios-rootkit-in-the-wild/

By Marco Giuliani

In the past few weeks a Chinese security company called Qihoo
360 blogged about a new BIOS rootkit hitting Chinese computers.
This turned to be a very interesting discovery as it appears to be the
first real malware targeting system BIOS since a well-known proof of

concept called IceLord in 2007. The malware is called Mebromi and contains a bit of
everything: a BIOS rootkit specifically targeting Award BIOS, a MBR rootkit, a kernel mode
rootkit, a PE file infector and a Trojan downloader. At this time, Mebromi is not designed to
infect 64-bit operating system and it is not able to infect the system if run with limited
privileges.

The infection starts with a small encrypted dropper that contains five crypted resource files:
hook.rom, flash.dll, cbrom.exe, my.sys, bios.sys. The goal of these files will be presented
later in this analysis.

The infection is clearly focused on Chinese users, because the dropper is carefully checking
if the system it’s going to infect is protected by Chinese security software Rising Antivirus
and Jiangmin KV Antivirus. To gain access to the BIOS, the infection first needs to get
loaded in kernel mode so that it can handle with physical memory instead of virtual memory.

Many of you may recall the old CIH/Chernobyl infection, the infamous virus discovered in
1998 that was able to flash the motherboard BIOS, erasing it. Even CIH needed to gain
kernel mode access to reach the BIOS, though at the time the virus was exploiting a privilege
escalation bug in Windows 9x operating system which allowed it to overwrite the Interrupt
Descriptor Table with its own payload from user mode, then triggering the overwritten
interrupt handler and its malicious code is executed in kernel mode. Mebromi does not use
such kind of privilege escalation trick anymore, it just needs to load its own kernel mode
driver which will handle the BIOS infection. To do so, it uses two methods: it could either
extract and load the flash.dll library which will load the bios.sys driver, or it stops the
beep.sys service key, overwriting the beep.sys driver with its own bios.sys code, restart the
service key and restore the original beep.sys code.

The bios.sys driver is the code which handle the BIOS infection. To read the BIOS code, it
needs to map the physical memory located at physical memory address 0xF0000, this is
where the BIOS ROM usually resides. Once read, the driver verifies if the BIOS ROM is
Award BIOS, by checking the presence of the string: $@AWDFLA. If found, the driver tries to
locate the SMI port that will be used by the rootkit to flash the BIOS ROM.

https://www.webroot.com//blog/2011/09/13/mebromi-the-first-bios-rootkit-in-the-wild/
http://webrootblog.files.wordpress.com/2011/09/bios_ioctl.jpg
http://bbs.360.cn/4005462/251096134.html


2/4

If the BIOS ROM matches the string, the rootkit saves a copy of the BIOS to the file
C:bios.bin and pass the next step to the user mode component of the infection. The dropper
extracts two files: cbrom.exe and hook.rom. Cbrom.exe is a legitimate tool developed by
Phoenix Technologies, used to modify the Award/Phoenix BIOS ROM binaries. Hook.rom is
the rootkit ISA BIOS ROM that is added to the BIOS binary, containing the rootkit infection.
The dropper executes cbrom.exe with the /isa switch parameter, passing the hook.rom file.
Before actually injecting the malicious ISA ROM, the dropper checks the BIOS ROM code
looking for the “hook rom” string, used as a marker of the infection. If found, it means that the
BIOS is already infected and it doesn’t need to be infected again.

After that the bios.bin file has been modified, the bios.sys driver send to the BIOS SMI port
the command 0x29, used to erase the BIOS flash, and then the command 0x2F used to write
the new BIOS ROM code to the BIOS ROM.

The BIOS is now infected, and the dropper goes to its next step: infecting the Master Boot
Record. The infection is 14 sectors long and the original MBR is stored to the sector 7. To
avoid potential startup issues, the infected MBR stores a copy of the original MBR’s partition
table. Finally the dropper extracts the my.sys driver on the root of the C: drive. My.sys is a
kernel mode rootkit that hijacks disk.sys’s IRP major functions, by redirecting the
IRP_MJ_READ/WRITE and IRP_MJ_DEVICE_CONTROL native functions. It is used to hide
the infection on the disk. Even if the BIOS infection doesn’t succeed, the rootkit does infect
the MBR.

At the next system startup, after the BIOS POST phase, the malicious code injected inside it
prepares the full MBR infection (all the first 14 sectors are stored inside the malicious BIOS
rom, 7168 bytes in total) and checks the MBR code of the hard drive looking if the infection is
already present. To do it, the BIOS malicious code checks for the presence of the string “int1”
at the offset 0x92. If the string is not found, the BIOS malicious rom will overwrite all the first
14 sectors of the hard drive, thus restoring the MBR infection.

http://webrootblog.files.wordpress.com/2011/09/bios_infect.jpg
http://webrootblog.files.wordpress.com/2011/09/bios_infected.jpg


3/4

The system startup procedure continues and the control now passes to the malicious master
boot record. Here the malicious payload analyzes the original MBR partition table and looks
for the active partition, checking if it’s using a NTFS or FAT32 file system. The malicious
MBR code contains indeed NTFS/FAT32 parser routines, used to get inside the file
system to look for winlogon.exe or wininit.exe file. When found, the malicious code contains
a file infection payload, able to inject malicious code inside the specified file and hijack the
entry point of it. Before infecting the file, the MBR malicious code checks if it is already
infected, by looking for the string “cnns” at the offset 0x50 from the beginning of the PE file.
This is the infection marker. If the string is not found, the infection stores a crypted payload –
about 600 bytes of code – inside winlogon.exe or wininit.exe and hijacks the PE entry point
to the beginning of it, saving the original entry point at the offset 0x60.

The job of the MBR infection ends here, waiting for the Windows startup which will load the
 patched executable. When loaded, the payload self-decrypt its malicious code and loads in
memory the my.sys driver. Then it tries to download an additional infection from the (now
unavailable) URL address: http://dh.3515.info:806/test/91/calc[removed].

The concept behind Mebromi is not new. In fact we must recall the IceLord BIOS rootkit
published in 2007, a public proof of concept able to target Award BIOS rom, using an
approach very similar to the Mebromi one – or should we say that Mebromi is more than just
inspired by the IceLord rootkit?

Storing the malicious code inside the BIOS ROM could actually become more than just a
problem for security software, giving the fact that even if an antivirus detect and clean the
MBR infection, it will be restored at the next system startup when the malicious BIOS
payload would overwrite the MBR code again. Developing an antivirus utility able to clean
the BIOS code is a challenge, because it needs to be totally error-proof, to avoid rendering
the system unbootable at all. The job of handling with such specific system codes should be
left to the developers of the specific motherboard model, who release BIOS updates along
with specific tool to update the BIOS code.

http://webrootblog.files.wordpress.com/2011/09/bios_marker.jpg
http://webrootblog.files.wordpress.com/2011/09/bios_pe_infection.jpg


4/4

On the other hand, although this kind of infection is potentially one of the most persistent
infections known out there in the wild, it will hardly become a major threat because of the
level of complexity needed to achieve the goal. While a kernel mode infection or a MBR
infection could still work in a generic way among all the PC out there – and they still have a
huge available free space to play with, a BIOS-based rootkit needs to be fully compatible
with all major BIOS rom out there, it should be able to infect all the different releases of
Award, Phoenix, AMI BIOS’s out there; a level of complexity that is simply unasked for
writing a good persistent infection (e.g. TDL rootkit, various Rustock releases,
ZeroAccess rootkit among all). In fact, why is Mebromi only targetting Award BIOS rom?
Perhaps because there was already a known proof of concept that is 5 years old targeting
Award BIOS ROM available online.

Are BIOS rootkits a real threat? Yes, we can consider Mebromi the first real BIOS rootkit
incident discovered in the wild – let’s consider IceLord BIOS rootkit more a proof of concept.
Should we be concerned about BIOS rootkits? Well, while we try to discover whether our PC
is infected by an unknown and super-stealth BIOS rootkit, let’s try and look if there is a more
“humble” kernel mode rootkit which is already infecting our PC, allowing a remote attacker to
silently own our system.

About the Author

Blog Staff

The Webroot blog offers expert insights and analysis into the latest cybersecurity trends.
Whether you’re a home or business user, we’re dedicated to giving you the awareness and
knowledge needed to stay ahead of today’s cyber threats.

https://www.webroot.com/blog/author/webroot-blog-staff/

