
1/30

AmrThabet September 6, 2011

Stuxnet Malware Analysis Paper
codeproject.com/articles/246545/stuxnet-malware-analysis-paper

AmrThabet
Rate me:

Please Sign up or sign in to vote.

4.95/5 (51 votes)

9 Sep 2011CPOL29 min read
This article will focus on Stuxnet’s windows infection methods and spreading methods. The
tricks were used by stuxnet and the evidences behind the criminals of stuxnet.

Download the Article in PDF - 2.17 MB

Table Of Contents

1. Introduction

https://www.codeproject.com/articles/246545/stuxnet-malware-analysis-paper
https://www.codeproject.com/script/Membership/View.aspx?mid=5879897
https://www.codeproject.com/script/Membership/LogOn.aspx?rp=%2farticles%2f246545%2fstuxnet-malware-analysis-paper
http://www.codeproject.com/info/cpol10.aspx
https://www.codeproject.com/KB/Articles/StuxnetMalware/Stuxnet_Malware_Analysis_Paper.pdf

2/30

Stuxnet is not only a new virus or worm but it's a new era of malware. This virus changed the
meaning of malware and their goals. You hear about a virus annoying people or stealing
banks or credit cards, but that's the first time you hear about virus damages buildings,
destroys machines or kills people and that's Stuxnet.
Stuxnet has gained a lot of attention from malware researchers and media in the last year.
It's created to sabotage Iran's nuclear program.

This complex threat uses up to four zero-day vulnerabilities in windows OS and includes
many tricks to avoid being detected by the behavioral-blocking antivirus programs. It
damaged the Iranian nuclear reactor and its machines by infecting the PLCs (Programmable
Logic Controller) that control the machines there. That makes it modify the control program
which changes the behavior of the machine.

Here we will talk about the technical details about stuxnet and the experience that I got from
analyzing this malware. We will talk about how stuxnet works and the stuxnet life cycle. But
here we will not talk about the SCADA systems and how stuxnet infects them and we will
take a hint on the vulnerabilities that are used by stuxnet.

2. Payload

This worm was created mainly to sabotage the Iranian Nuclear Program. Once installed on a
PC, Stuxnet uses Siemens' default passwords to gain access to the systems that run the
WinCC and PCS 7 programs which control and modify the code of the PLCs (programmable
logic controller) which control the machines themselves

Stuxnet operates in two stages after infection, according to Symantec Security Response
Supervisor Liam O'Murchu. First it uploads configuration information about the Siemens
system to a command-and-control server. Then the attackers are able to pick a target and
actually reprogram the way it works. "They decide how they want the PLCs to work for them,
and then they send code to the infected machines that will change how the PLCs work,"
O'Murchu said.

It managed to infect facilities tied to Iran's controversial nuclear programme before re-
programming control systems to spin up high-speed centrifuges and slow them down

3. Suspects

Israel is an obvious suspect. Israel considers a nuclear Iran to be a direct existential threat.
But, until now, there's no real evidence says that Israel who really creates this worm. There
are some theories said that there are evidences on Israel as the creator depending on some
dates and words found inside the malware and also there's an analysis from the industrial
control-systems maker "Siemens"� reportedly backs speculation that Iran may have been
the target of Stuxnet's attack and that Israel may have been involved.

3/30

A report by the New York Times suggested Stuxnet was a joint US-Israeli operation that was
tested by Israel on industrial control systems at the Dimona nuclear complex during 2008
prior to its release a year later, around June 2009. The worm wasn't detected by anyone until
a year later, suggesting that for all its possible shortcomings the worm was effective at
escaping detection on compromised systems.

But these evidences aren't real evidences in the court and the wormâ€˜s still a perfect crime.

4.Technical Details

4.1.Stuxnet Live Cycle

This is the live cycle of stuxnet virus on windows OS. We will describe every step in this
cycle beginning by WTR4132.TMP File and that's the main dropper of stuxnet worm.

4.2. Main Dropper (~WTR4132.TMP)

This File is a dynamic link library file loaded into Explorer.exe (we will describe the loading of
it in the booting mechanism). It begins the execution by searching for a section in it named
".stub"� section.

4/30

This section contains the main stuxnet DLL file. And this DLL contains all stuxnet's functions,
mechanisms, files and rootkits.

And that's the MZ File inside .stub section:

This Section (".stub"�) includes also the configuration data of stuxnet which is so important
on the spreading mechanism, updating mechanism and many other things.

After finding this section, it loads stuxnet DLL file in a special way. First, it allocates a
memory buffer for the DLL file to be loaded. Then, it patches 6 ntdll.dll APIs with these
names:

1. ZwMapViewOfSection
2. ZwCreateSection
3. ZwOpenFile
4. ZwClose
5. ZwQueryAttributesFile
6. ZwQuerySection

To force these APIs to make .stub section like the file which you need to open with
ZwOpenFile and to read from this section as it's a file on the harddisk. These patches make
LoadLibraryA load a DLL file not from the harddisk (as usual) but from a place in the
memory.

5/30

It calls LoadLibraryA with the DLLName like KERNEL32.DLL.ASLR.XXXX to load the Main
DLL File as I described above and at then end, it calls to Function #15 in the Main Stuxnet
DLL.

4.3. Main Stuxnet DLL

4.3.1. Escalating the Privileges and Injecting Into a New Process

When the main DLL begins the execution. It unupx itself (as the DLL is upxed) and then
checks the configuration data of this stuxnet sample and checks the environment to choose if
it will continue or exit from the beginning.

It checks if the configuration data is correct and recent and then it checks the admin rights. If
it's not running on administrator level, it uses one of two zero-day vulnerabilities to escalate
the privileges and run in the administrator level.

CVE-2010-2743(MS-10-073) "“Win32K.sys Keyboard Layout Vulnerability
 CVE-xxxx-xxxx(MS-xx-xxx) "“Windows Task Scheduler Vulnerability

These two vulnerabilities allow the worm to escalate the privileges and run in a new process
("csrss.exe"� in case of Win32K.sys) or as a new task in the Task Scheduler case. It makes
also some other checks like checking on 64bits or 32bits and so on. After everything goes
right and the environment is prepared to be infected by stuxnet, it injects itself into another
process to install itself from that process. The injection begins by searching for an Antivirus
application installed in the machine.

Depending on the antivirus application (AVP or McAfee or what?), stuxnet chooses the
process to inject itself into. If there's no antivirus program it chooses "lsass.exe"�

You will see the processes that stuxnet could choose in this Figure:

6/30

It doesn't search for that process in the task manager to inject itself into, but it creates a new
process (using CreateProcess) of the chosen application in the suspended form like that:

ASM

ESP ==> > 0006F4F8 |ModuleFileName = "C:\WINDOWS\\system32\\lsass.exe"
ESP+4 > 00000000 |CommandLine = NULL
ESP+8 > 00000000 |pProcessSecurity = NULL
ESP+C > 00000000 |pThreadSecurity = NULL
ESP+10 > 00000001 |InheritHandles = TRUE
ESP+14 > 0800000C |CreationFlags =
CREATE_SUSPENDED|DETACHED_PROCESS|CREATE_NO_WINDOW
ESP+18 > 00000000 |pEnvironment = NULL
ESP+1C > 00000000 |CurrentDir = NULL
ESP+20 > 0006F13C |pStartupInfo = 0006F13C
ESP+24 > 0006F730 \pProcessInfo = 0006F730.

After creating this process, it injects itself by a special way. This special way is to unload the
program from its memory (ex. unload lsass.exe module from its memory) and load another
PE File from stuxnet DLL resources in the same place of the previously unloaded module
(lsass.exe for example).

Before loading this new PE File, stuxnet makes some modifications to the file by adding new
section (in the beginning) named ".verif"�. This section makes the PE File's size equal to
the size of the previously unloaded module. And at the place of the entrypoint of the
unloaded module, stuxnet writes a "jmp"� instruction to the entrypoint of this PE File.

7/30

The last step, stuxnet copies the .stub section and the main DLL to the memory of the
infected process and writes on .bin section the pointer to this memory buffer.

At the end, stuxnet resumes the main thread of this infected process. The PE file reloads the
main stuxnet DLL and calls to Function #16.

4.3.2. Main Stuxnet DLL: Installing Stuxnet into the Infected Machine

The Function #16 begins by checking the configuration data and be sure that everything is
ready to begin the installation. And also, it checks if the there's a value in the registry with
this name " NTVDM TRACE "� in

SOFTWARE\Microsoft\Windows\CurrentVersion\MS-DOS Emulation

And then, it checks if this value equal to "19790509"�. This special number seems a date
"May 9, 1979"� and this date has a historical meaning (by Wikipedia) "Habib Elghanian was
executed by a firing squad in Tehran sending shock waves through the closely knit Iranian
Jewish community"�

8/30

After this test, Stuxnet installs itself with writing 6 files in the Windows directory 4 encrypted
files:

C:\WINDOWS\inf\oem7A.PNF
C:\WINDOWS\inf\oem6C.PNF
C:\WINDOWS\inf\mdmcpq3.PNF
C:\WINDOWS\inf\mdmeric3.PNF

And 2 device drivers:

C:\WINDOWS\system32\Drivers\mrxnet.sys
C:\WINDOWS\system32\Drivers\mrxcls.sys

After that, it installs the device drivers into the registry to be sure that they will run every time
the computer boots.
It forces them to be loaded in the beginning before most of windows system applications
(and that's will be explained later).

9/30

After the installation, it loads the mrxnet driver by calling ZwLoadDriver . It calls to this
function after adjusting its privileges by " AdjustTokenPrivileges "� to add the
SeLoadDriverPrivilege to its privileges.

At the end, it modifies the Windows Firewall (Windows Defender) setting to avoid being
stopped by this firewall. It some values in the key:

SOFTWARE\Microsoft\Windows Defender\Real-Time Protection

And the values are:

EnableUnknownPrompts

EnableKnownGoodPrompts

10/30

ServicesAndDriversAgent

It sets them all to zero and disables the firewall for stuxnet.

Now the installation ends and now we will talk about the spreading mechanisms

4.4. Spreading Mechanism

4.4.1. The USB Drives Infection

For infecting USB Flash memory, Stuxnet creates a new hidden window " AFX64c313 "�
and get notified of any new USB flash memory inserted to the computer by waiting for
" WM_DEVICECHANGE "� Windows Message. After getting notified of a new drive added to
the computer (USB Flash Memory), stuxnet writes 6 files into the flash memory drive:

Copy of Shortcut to.lnk
Copy of Copy of Shortcut to.lnk
Copy of Copy of Copy of Shortcut to.lnk
Copy of Copy of Copy of Copy of Shortcut to.lnk

And 2 executable files (DLL files):

~WTR4141.tmp
~WTR4132.tmp

These malformed shortcut files use vulnerability in Windows Shell named:

CVE-2010-2568(MS-10-046) -Windows Shell LNK Vulnerability

This vulnerability is not a buffer-overflow vulnerability but it's due to a bad way for windows to
load icons for LNK files which creates the vulnerability.

These shortcuts are special shortcuts for an unknown type of files named CPL Files. These
files are the Control Panel applications like datetime.cpl in windows directory (you can test it)
and many of them in windows directory.

You can create a shortcut similar to these shortcuts by choosing Control Panel then Switch to
classical view then right click on any application of them and click "create shortcut"� as
what you see in the picture:

11/30

If you try to compare this shortcut with the malformed shortcut by stuxnet you will see that:

They are very similar (the white spaces are the similar places). Maybe the differences are in
the end of the shortcut.

If we analyze the shortcut, we will see that all shortcuts contain the following sections:

.LNK File Format

1. Header

2. Shell Item Id List

3. File Location Info

4. Description

5. Relative Path

6. Working Directory

7. Command Line Arguments

8. Icon Filename

9. Additional Info

In our Malformed Shortcut, it has only the first 2 sections. The first section is like this:

12/30

Stuxnet's Shortcut Header

Magic 4C 00 00 00

GUID 01 14 02 00 00 00 00 00 C0 00 00 00 00 00 00 46

Shortcut flags 0x0000001 : Shell Item ID List present

Target File flags 00 00 00 00

Creation Time 00 00 00 00 00 00 00 00

Last access time: 00 00 00 00 00 00 00 00

Modified time 00 00 00 00 00 00 00 00

File length 00 00 00 00 (the target is not a file)

Icon Number 00 00 00 00

Show Window 01 00 00 00 == 1 (Normal Window)

Hot Key 00 00 00 00

Reserved 00 00 00 00

Reserved 00 00 00 00

This header is exactly the same in the CPL Shortcut that you create before. The next Section
is the Shell Item ID List.

It's hard to explain this section but every object in windows (like a folder, a file, the control
panel and so on) has a PIDL. I don't have any idea PIDLs but it's an ID with reference to this
object.

The Shell Item ID List begins by an unsigned short represent the size of the whole Section
(in the Original CPL File the size == size_of_whole_file "“ size_of_header).

After that, this unsigned short followed by a size of an ID and then the ID of an item in the list
then the next size and item and so on until reach the end of this section. This section ends
by an item its size equal to zero.

These IDs could represent a file like that:

13/30

Or represent a virtual object like Control Panel like in this malformed shortcut.

In the malformed shortcut, this section begins with the pid of the Control Panel and then
some other pids until reach an item contains the path and the filename of stuxnet DLL
("~WTR4141.TMP"�)

The path is like that:

\\.\STORAGE#RemovableMedia#7&364cf31c&0&RM#{53f5630d-b6bf-11d0-94f2-
00a0c91efb8b}\~WTR4141.tmp

You will ask me, so why there are four shortcut files?

Because every file of them contains a different form of the path to wtr4141.tmp file to ensure
that stuxnet is compatible with all versions of windows OS that have this vulnerability

The paths are these:

Windows7:

\\.\STORAGE#Volume#_??
_USBSTOR#Disk&Ven_____USB&Prod_FLASH_DRIVE&Rev_#12345000100000000173&0#
{53f56307-b6bf-11d0-94f2-00a0c91efb8b}#{53f5630d-b6bf-11d0-94f2-
00a0c91efb8b}\~WTR4141.tmp

Windows Vista:

\\.\STORAGE#Volume#1&19f7e59c&0&_??
_USBSTOR#Disk&Ven_____USB&Prod_FLASH_DRIVE&Rev_#12345000100000000173&0#
{53f56307-b6bf-11d0-94f2-00a0c91efb8b}#{53f5630d-b6bf-11d0-94f2-
00a0c91efb8b}\~WTR4141.tmp

Windows XP, Windows Server 2003 and Windows 2000:

\\.\STORAGE#RemovableMedia#8&1c5235dc&0&RM#{53f5630d-b6bf-11d0-94f2-
00a0c91efb8b}\~WTR4141.tmp

These paths force Explorer.exe to load stuxnet and execute its code.

The Explorer calls to an API named "Shell32.LoadCPLModule"� to load the icon for this
shortcut which calls to LoadLibraryA API which executes the main function of wtr4141.tmp.

That's the infection mechanism for Stuxnet using this vulnerability.

4.4.2. Spreading via Network

Stuxnet spreads via Network using one of vulnerabilities:

14/30

CVE-2008-4250(MS-08-067) "“Windows Server Service NetPathCanonicalize()
Vulnerability
CVE-2010-2729(MS-10-061) "“Windows Print Spooler Service Vulnerability

The first vulnerability is not a zero-day vulnerability, it's already known. This vulnerability was
used before by Conficker. In this vulnerability, stuxnet looks for C$ and Admin$ shares on
remote systems. Then, it copies itself as a file named "DEFRAGxxxxx.TMP" in the first
writable directory found on the share.

And then, it tries to execute a command:

rundll32.exe "DEFRAGxxxxx.TMP",DllGetClassObjectEx

The second vulnerability is a zero-day vulnerability. This vulnerability was first described by
Carsten Kohler in Hackin9 Security Magazine 04-2009 in an article named "Print Your
Shell"�

This vulnerability wasn't used in the wild until Stuxnet. This vulnerability allows a guest user
account to communicate to a machine with a shared printer and writes a file to the system
directory in it.

The windows APIs for printing allows to choose the directory that you wish to copy your file
to and with an API named " GetSpoolFileHandle "� you can get the file handle of the
newly created file in the target machine and then you can easily with ReadFile & WriteFile
APIs you can copy your file into the target machine.

For stuxnet, it copies 2 files into the target machine:

Windows\System32\winsta.exe
Windows\System32\wbem\mof\sysnullevnt.mof

The first file is the stuxnet dropper and the second is a Managed Object Format file. This file
(under some conditions) executes winsta.exe the stuxnet dropper.

4.5. Updating Mechanism

4.5.1. Updating via Internet

Stuxnet updates itself via Internet by establishing a HTTP connection to 2 malformed
websites:

www.mypremierfutbol.com
www.todaysfutbol.com

It sends an encrypted data like that:

15/30

http://www.mypremierfutbol.com/index.php?data=data_to_send

This data contains the IP, the Adaptor name and description and some other data related to
the infected machine and stuxnet. After that it receives the newer version of stuxnet (in an
encrypted form) begins by the imagebase then a flag and at the last the Executable Image

4.5.2. Updating via Peer to Peer Connection

After Stuxnet infects a machine, it creates a RPC server and listen to any connections comes
from the any PC on the Network.

In the other PCs in the network, stuxnet establish a connection with this RPC Server.

This way allows stuxnet to update itself in the isolated PCs (from the Internet) but has in its
network a PC has the ability to connect to the internet. This way is to suitable while infecting
companies as there are some inside PCs haven't the ability to connect directly to the
internet.

4.6. Rootkits

4.6.1. User-Mode Rootkit (~WTR4141.TMP)

This file is a DLL File. It's loaded by the LNK Vulnerability. This file not only loads the Main
Stuxnet Dropper (~WTR4132.TMP) but also it works as a user-mode rootkit to hide stuxnet
files in the flash memory.

It firstly hooks the File Management APIs: (FindFirstFileW , FindNextFileW ,
FindFirstFileExW , ntQueryDirectoryFile , zwQueryDirectoryFile)

It hooks them by modifying the import table of the main process (Explorer.exe) and all loaded
modules (searches for them in the TEB Thread Environment Block) by changing the address
of these functions to the address of another functions inside the rootkit.

16/30

These functions call to the original functions (windows APIs) and then modify their outputs to
hide stuxnet files.

They check the output if it contains .LNK files with a specific size (4171 bytes) or contains a
file named ~WTRabcd.TMP (as a+b+c+d = 10)

17/30

This rootkit is only used once while infecting a PC but after that stuxnet installs another
rootkit named "MRxNet"� and it's a kernel-mode rootkit.

4.6.2. Kernel-Mode Rootkit (MRxNet)

MRxNet is a simple filesystem filter created to hide the files that was created in the USB
flash memory (.LNK & TMP files) like in the user-mode rootkit. I reversed this driver manually
into C++ using IDA Pro. You can download it code from My Blog: http://www.amrthabet.co.cc

 Or from the attachment files with this article

http://www.amrthabet.co.cc/

18/30

But this rootkit doesn't modify the addresses in the import table, but it adds itself to the driver
chain of these drivers

\\FileSystem\\ntfs
\\FileSystem\\fastfat
\\FileSystem\\cdfs

These drivers are the main drivers for handling the files and folders in your machine. When
MRxNet adds itself to the driver chain, it receives the requests (I/O Request Packets ISPs) to
these drivers before these drivers receive them.

Receiving these requests allows MRxNet to modify the input to these drivers. And by using
this trick MRxNet hides a directory named:

{58763ECF-8AC3-4a5f-9430-1A310CE4BE0A}

By deleting its name from the input request (ISP) to these drivers. I don't know what this
name represents it seems something like a GUID.

But the main goal of MRxNet is to modify the output of these drivers, so MRxNet adds to the
request an IOCompletionRoutine. This routine is executed by the last driver executed in the
chain after the result prepared (the reply to the request) and needed to be sent to the user
again.

This function was created by Windows to modify the output of any driver and that's what
MRxNet does.

MRxNet modifies the output like the user-mode rootkit and deletes the entries that seem
stuxnet files as what you can see in the figure:

19/30

MRxNet contains a strange string in its data (seems a debug message before):
b:\\myrtus\\src\\objfre_w2k_x86\\i386\\guava.pdb

This strange string contains a word "myrtus"� and this word represents "MyRTUs"� or
represents a Hebrew word.

It could lead to the criminals behind this attack (Israel) or it could be a false positive "¦ but no
one know.

4.7. Loading Mechanism

4.7.1. ~WTR4141.TMP

This file (as we said before) is loaded by LNK Vulnerability. This file loads the Main Stuxnet
Dropper by a known way. It calls to LoadLibraryA to load it and LoadLibraryA executes the
main Entrypoint for this dropper to load and install stuxnet.

4.7.2. MRxCls Loader Driver

MrxCls is a very complex project. It includes many features and abilities to load a program
secretly without the attention of any Antivirus application specially the behavioral antiviruses.

This virus seems a separate project, wasn't created by the creators of Stuxnet worm. It
seems that it was created by another department in the organization that creates Stuxnet.

 This driver wasn't modified along with the versions of stuxnet and also it contains many
features that are not used by stuxnet worm.

This organization is not only an organization for programming but also it has spies and
thieves in other companies that make it steal some certifications from big companies like
Realtek Semi-Conductor Co-Op. This driver is signed with Realtek as a product from this
company as you can in this image.

20/30

That's what makes us sure that this virus is not a game from some virus writers but it's a
planned crime.

Here we will talk about the technical details of the driver, how it works and the internal
structure of it.

First we will talk about the input of the driver and then we will talk about how this driver deals
with it.

4.7.2.1. The Input

MrxCls takes the parameters from the registry from a key name:

"HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\MRxCls"�

It reads the " Data "� value in this key as the parameter of the driver. This data contains an
encrypted data. After decrypting it, we found this:

21/30

This data contains the name of some system processes and filenames for stuxnet files. This
data tells the driver the filename of the stuxnet file and the process that stuxnet needs to
inject its file in. This data is organized as follows:
First the Header and its size is dynamic.

Header

Signature = 0 (4 bytes)

Pointer to The body (the end of Header) (4 bytes)

Reserved (4 bytes)

Number of Injections (4 bytes)

After that there's an array of elements defined by the Number of Injections in the header.
Every element contains the name of the infected process, the dll file to inject into this
process, the flags and the key to decrypt the virus.

All stuxnet files are encrypted but with a key equal zero
The structure of these elements is like that:

22/30

First it begins with the details of the infection and then followed with the Unicode strings of
the process name and the stuxnet filename.

The Elements

Reserved (4 bytes)

The Exported Function To call in the injected dll (2 bytes)

Flags (2 bytes)

Key (4 bytes)

Reserved (4 bytes)

Then the Unicode strings like that:

Size of the process name unicode string (4 bytes)

Process name (variable size)

The Size of the stuxnet filename string (4 bytes)

Unicode string of the stuxnet file (variable size)

And that's repeated for every element in the array.

The Flags in The Elements Header contain 2 bits. The first bit describes if the file (that needs
to be injected) is encrypted or not (and always it's encrypted).
And the second bit describes if the infected process will contain the decrypted stuxnet file (
To be loaded by a built-in PE loader) or will only contain the filename of the stuxnet file to be
loaded by LoadLibraryW in the user-mode (and that's never used)

So, Stuxnet worm writes an input data to the driver with this structure contains this
information:

services.exe: \SystemRoot\inf\oem7A.PNF (stuxnet main dll) and call to Export 1
S7tgtopx.exe: \SystemRoot\inf\oem7A.PNF and call to Export 2 (SCADA infection)
CCProjectMgr.exe: SystemRoot\inf\oem7A.PNF and call to Export 2
explorer.exe: \ SystemRoot\inf\oem7m.PNF and call to Export 2

Stuxnet also always sets the flags equal "11"� or 3 and that means that the stuxnet file is
encrypted and needs to be decrypted and that the driver must read and decrypt it and then
allocate memory in the infected process equal the size of the file to copy the file in. after that
in the user-mode, the file will be loaded by a built-in PE loader that's injected in the process
memory beside the injected file.

23/30

All the infection process will be described in the next sections but that's a brief.

4.7.2.2. Initialization

First, stuxnet creates a registry key and add some values to it for registering the MrxCls
driver to be loaded on every start.
This key is " SYSTEM\CurrentControlSet\Services\MRxCls "�. It then adds the
" Data "� value that contains the parameters of the driver and makes it load as a boot
driver and that makes it load before many service applications and drivers.

When it loads, it begins by decrypting a part from its data with size 0x278 bytes and gets the
following data:

..................\REGISTRY\MACHINE\SYSTEM\CurrentControlSet\Ser
vices\MRxCls..Data......
..
.....................................0??\Device\MRxClsDvX.......
..
.............??Â»

After that it gets the parameters form "Data"� value, decrypts it and saves it as an element
in a generic table.

Also it checks the " InitSafeBootMode "� and checks for " KdDebuggerEnabled "�. If the
kd debugger is enabled, it will end. And then, it creates a new device by calling
" IoCreateDevice "� API and creates a new driver named " \Device\MRxClsDvX "�.

It then gets some functions like " RtlGetVersion "� and " KeAreAllApcsDisabled "�
with a function named " MmGetSystemRoutineAddress "� (not GetProcAddress).

And at the end it calls to " PsSetLoadImageNotifyRoutine "� to register a function to be
called every time a process or a module is loaded in the memory (including services.exe and
kernel32.dll that will be used in the driver).

Now we will talk about the NotifyRoutine and the stages of injecting stuxnet files into a
system process.

4.7.2.3. Stage One : Injecting data in kernel-mode

Every time a process or a module is loaded in the memory, this process is called given three
parameters: The name of the module, the ProcessId and the ImageInfo.

It begins by checking the loaded module with "kernel32.dll"� (and we will talk about it later)
and if it's not kernel32, it parses the registry data (that's loaded and decrypted before) and
loops on the elements of this data searching for the name of the process that needs to inject
stuxnet file into and compare it with the loaded process's name.

24/30

When it found a process is needed to inject stuxnet file into. It loads the stuxnet file into the
process's memory and decrypts it. After that, it copies a junk of data (contains code) into the
process's memory and then it writes "MZ"� and "PE"� and some other data into this junk
of data.

This junk of data seems that it's two PE files (was created separately before) and was
deleted from them some common marks of a PE file (e.g. MZ, PE, 0x14C, 0xE0 and so on).
These bytes prove that this is a PE file so the author of MrxCls deleted them and wrote a
code to write them again in their places again (And that's surely a way to disguise them and
hide the meaning of these junk data). Not only that but also he deleted the name of all
sections.

Then, the driver writes in the process's memory the pointer to this place, pointer to the
beginning of the MZ header (there's 0x101C bytes before it, remember that because we'll
talk about it again in stage three) and the size of this PE module in specific places in memory
inside the MZ module.

After that it jumps on the process PE module. It begins by parsing its PE and gets the
entrypoint of the process's module and then, it checks that there's no relocables between the
entrypoint and the entrypoint + 0xC (0xC is the size of the overwritten code at the entrypoint
so it checks that to be sure there won't any problem on overwriting the entrypoint).

Then, it searches for a snippet of code in the process "Ntoskrnl.exe"� or the process
"Ntkrnlpa.exe"�. And this code snippet is:

For Windows 2000 or lower:

ASM

mov eax,77
lea edx,dword ptr [esp+4]
int 2E
retn 14

Or in Windows XP or later:

ASM

push 104
call loc_1
???
loc_1:

mov eax,0
lea edx,dword ptr [esp+4]
pushfd
push 8
call ZwAllocateVirtualMemory
retn 14

25/30

So, - as you can see - these snippets of code calls to ZwAllocateVirtualMemory. So the driver
calls to one of them to call to ZwAllocateVirtualMemory given the parameters that change the
memory permissions of the process entrypoint to entrypoint+0x0C from READ_ONLY to
COPY_ON_WRITE (it seems a way to disguise the call to ZwAllocateVirtualMemory with
these parameters to avoid the antiviruses).

At the end, it creates a buffer with size equal to the size of stuxnet file plus 0x28 bytes and
then copy stuxnet file into this buffer (after 0x28 bytes) and writes some important data to the
user-mode code (stage 3) in this 0x28 bytes with the following structure:

Kernel-Mode to User-Mode Parameters

Reserved (8 bytes)

Pointer to stuxnet file (buffer +28) (8 bytes)

Size of the stuxnet file (8 bytes)

the Exported function (8 bytes)

2nd bit in the flags in the data (about using a PELoader or LoadLibraryW) (8 bytes)

Then, it creates a new element in the generic table with the following data (that will be
exported to the stage 2):

The Generic Table Element

ProcessId

InjectedMemory at "MZ" + 0x2B8

InjectedMemory at "MZ" + 0x560 (the Entrypoint of the injected buffer)

Address of Entrypoint

At last, it writes the place of this buffer (including stuxnet file) into a specific place in the
copied PE module (the junk of data that copied to the process's memory previously).

4.7.2.4. Stage Two : Creating kernel32 Import and Overwriting the Entrypoint

As we said in the previous stage, the notify routine begins by checking the loaded module
with "kernel32.dll"�. If not equal, it jumps to the stage 1. But if equal kernel32.dll, it jumps to
the stage 2.

Because of it's the stage 2. It begins by checking that the stage 1 was passed and gets the
results of this stage. It searches in the generic table for an element begins with the processId
(the prcoessId that's the kernel32 module was loaded in) to get the generic table element

26/30

with the structure that's in table 3-3-2.

Then, it creates an import table for the user-mode and writes them in the place that's in the
2nd element in the generic table element (InjectedMemory at "MZ" + 0x2B8). It gets 10
functions ?VirtualAlloc, VirtualFree, GetProcAddress, GetModuleHandle, LoadLibraryA,
LoadLibraryW, lstrcmp, lstrcmpi, GetVersionEx, DeviceIoControl). It gets these functions
using checksums written inside the driver.

Then it saves the first 0xC bytes (12 bytes) after the import table by some bytes and then it
modifies the entrypoint with the following:

ASM

mov eax, 0
call eax

And then it modifies the immediate of "mov eax,0"� with 3rd element of the generic table
buffer (InjectedMemory at "MZ" + 0x560) and that's the entrypoint of the injected code. The
InjectedMemory at "MZ" + 0x2B8 becomes like that:

InjectedMemory at "MZ" + 0x2B8

00: Imagebase

08: VirtualAlloc

10: VirtualFree

27/30

18: GetProcAddress

20: GetModuleHandle

28: LoadLibraryA

30: LoadLibraryW

38: lstrcmp

40: lstrcmpi

48: GetVersionEx

50: DeviceIoControl

58: Ptr to the beginning of the memory (before 101C from MZ)

60: Ptr to the InjectedMemory at MZ

68: 8A0 Size

70: Unknown

78: The EntryPoint of the process

At the end, it exits the notify routine to begin the stage 3 of injecting stuxnet file in a process
in the user-mode.

4.7.2.5. Stage Three : Loading and Executing Stuxnet in The User-Mode

I begin reversing this part by injecting these data (including the import table) into an
application (I choose windbg as the infected process with stuxnet) and begin reversing this
part using Ollydbg.

This crafted code begins by creating a new MZ header (or writes the missing data into a
modified PE module) by writing the missed bytes like "MZ"� or "PE"� and so on "¦ in the
injected memory at the 0x101C bytes to become the 2nd MZ Header in the injected memory.

And then, it gets the address of some functions and creates an array with these functions like
in the figure:

28/30

The 0xF90 is the size of the 2nd MZ Header in the injected code. Then, the crafted code
loads both of these injected modules (with these PE headers) into new allocated memories
inside the virtual memory of the infected process using a built-in PE Loader.

This PE loader has the ability to fix the relocables and loading the headers and the sections
in the correct place (but it's a simple PE loader at last)

After that it calls to the entrypoint of the 1st Module. This module begins by saving SHE and
then loads Stuxnet File by using LoadLibraryW or its PEloader by checking the 2nd bit in the
flags in the data at the beginning of stuxnet buffer (in table 3-3-1).

After Loading Stuxnet, it calls the chosen exported function in the stuxnet module (which also
written in the first 28 bytes in the stuxnet buffer which described in Table 3-3-1).

At the end, it rewrites the modified entrypoint with the original code which already saved in
memory (check the Table 3-4-1).

29/30

At last, it calls to DeviceIoControl which sends an Io request packet to mrxcls driver to reset
again the permissions of the entrypoint to the entrypoint+0xC to its original state (Read-Only)
and then calls to the entrypoint to make the process to run normally.

5. Conclusion

Stuxnet takes the attention of media because of its complexity, its political goals and the
criminals behind it.

Stuxnet is the most sophisticated worm ever seen in public until now. It contain 4 zero-day
vulnerabilities and one used before, a vulnerability in WinCC OS and not only that but also it
has three rootkits and the most interesting feature in it that it infects the PLC

This worm changes the meaning of malware and creates a new era for malware researchers.

I hope you enjoyed from this long article. I'm waiting for your feedback.

6. References:

1."W32.Stuxne Dossier"� by Symantec
2."Stuxnet Under the Microscope"� by ESET
3."The MRXCLS.SYS Malware Loader"� at http://www.geoffchappell.com/viewer.htm?
doc=notes/security/stuxnet/mrxcls.htm

License

This article, along with any associated source code and files, is licensed under The Code
Project Open License (CPOL)

Share

About the Author

AmrThabet

Software Developer (Senior)

http://www.geoffchappell.com/viewer.htm?doc=notes/security/stuxnet/mrxcls.htm
http://www.codeproject.com/info/cpol10.aspx
https://www.codeproject.com/Members/AmrThabet
https://www.twitter.com/Amr_Thabet

30/30

Ireland

Amr Thabet (@Amr_Thabet) is a Malware Researcher with 5+ years experience in reversing
malware, researching and programming. He is the Author of many open-source tools like
Pokas Emulator and Security Research and Development Framework (SRDF).

Use Ctrl+Left/Right to switch messages, Ctrl+Up/Down to switch threads,
Ctrl+Shift+Left/Right to switch pages.

