Agent.btz - A Threat That Hit Pentagon

B blog.threatexpert.com/2008/11/agentbtz-threat-that-hit-pentagon.htmi

According to this publication, the senior military leaders reported the malware breach incident that affected the
U.S. Central Command network, including computers both in the headquarters and in the combat zones.

The threat involved into this incident is referred as Agent.btz. This is a classification from E-Secure. Other
vendors name this threat mostly as Autorun. Some of the aliases assigned to this threat might seem confusing.
There is even a clash with another threat that is also detected as Agent.btz by another vendor — but that's a
totally different threat with different functionality. This post is about F-Secure-classified Agent.btz — the one that
was involved into the aforementioned incident.

At the time of this writing, ThreatExpert system has received and processed several different samples of this
threat — further referred as Agent.btz. All these builds exhibit common functionality.

Agent.btz is a DLL file. When loaded, its exported function DIIEntryPoint() will be called automatically. Another
exported function of this DLL, InstallM(),is called during the initial infection stage, via a command-line parameter
for the system file rundll32.exe.

Infection Vector

The infection normally occurs via a removable disk such as thumb drive (USB stick) or any other external hard
drive. Once a removable disk is connected to a computer infected with Agent.btz, the active malware will detect
a newly recognized drive. It will drop its copy on it and it will create autorun.inf file with an instruction to run that
file. When a clean computer recognizes a newly connected removable drive, it will (by default) detect autorun.inf
file on it, it will then open it and follow its instruction to load the malware.

Another infection vector: when a clean computer attempts to map a drive letter to a shared network resource that
has Agent.atz on it and the corresponding autorun.inf file, it will (by default) open autorun.inf file and follow its
instruction to load the malware. Once infected, it will do the same with other removable drives connected to it or
other computers in the network that attempt to map a drive letter to its shared drive infected with Agent.atz —
hence, the replication.

The autorun.inf file it creates contains the following command to run rundli32.exe:
rundli32.exe .\\[random_name].dll,InstallM
Functionality

When Agent.btz DLL is loaded, it will decrypt some of the strings inside its body. Agent.btz file is not packed. The
strings it decrypts are mostly filenames, APl names, registry entries, etc.

After decrypting its strings, Agent.btz dynamically retrieves function pointers to the following kernel32.dll APlIs:
WriteProcessMemory(), VirtualAllocEx(), VirtualProtectEx(). It will need these APlIs later to inject malicious code
into Internet Explorer process.

Agent.btz spawns several threads and registers window class "zQWwe2esf34356d".
The first thread will try to query several parameters from the values under the registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\StrtdCfg

1/4

http://blog.threatexpert.com/2008/11/agentbtz-threat-that-hit-pentagon.html
http://www.latimes.com/news/printedition/front/la-na-cyberattack28-2008nov28,0,1970897.story
http://www.f-secure.com/v-descs/worm_w32_agent_btz.shtml
http://vil.nai.com/vil/content/v_149448.htm
http://www.threatexpert.com/report.aspx?md5=b1009c175ed7ecdb132318840fd4ef3c
http://www.threatexpert.com/reports.aspx?find=update/img0008/

Some of these parameters contain such details as time out periods, flags, or the name of the domain from which
the additional components can be downloaded.

The first thread will spawn 2 additional threads. One of them will wait for 5 minutes, and then it will attempt to
download an encrypted binary from the domain specified in the parameters.

For example, it may attempt to download the binaries from these locations:
http://biznews.podzone.org/update/img0008/[random digits].jpg

or

http://worldnews.ath.cx/update/img0008/[random digits].jpg

The downloaded binary will be saved under the file name $1F.dll into the temporary directory.

Once the binary is saved, Agent.btz signals its threads with "wowmgr_is_loaded" event, saves new parameters
into the registry values under the key "StrtdCfg", loads Internet Explorer process, decrypts the contents of the
downloaded binary, injects it into the address space of Internet Explorer and then spawn a remote thread in it.

At the time of this writing the contents of the binary is unknown as the links above are down. Thus, it's not known
what kind of code could have been injected into the browser process. The only assumption can be made here is
that the remote thread was spawned inside Internet Explorer process in order to bypass firewalls in its attempt to
communicate with the remote server.

Installation

Agent.btz drops its copy into %system% directory by using a random name constructed from the parts of the
names of the DLL files located in the %system% directory.

It registers itself as an in-process server to have its DLL loaded with the system process explorer.exe. The
CLSID for the in-process server is also random - it is produced by UuidCreate() API.

This threat may also store some of its parameters by saving them into the values nParam, rParam or id under
the system registry key below:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Crashimage

On top of that, Agent.btz carries some of its parameters in its own body — stored as an encrypted resource
named CONFIG. Agent.btz locates this resource by looking for a marker OXxAA45F6F9 in its memory map.

File wmcache.nld

The second spawned thread will wait for 10 seconds. Then, it'll save its parameters and some system
information it obtains in an XML file %system%\wmcache.nld.

The contents of this file is encoded by XOR-ing it with the following mask:
1dM3uu4j7Fw4sjnbcwlDget4F7Jyuli4m5Iimnxl1pzxl6as80cbLnmz54cs5Ldn4ri3do5L6gs923HL34x2f5cvd0fk6c1a0s

Below is the decoded fragment of the XML file, provided as example:

<?xml version="1.0" encoding="unicode"?>
<Cfg>

<Ch>

<add key="Id" value="3024688254" />

2/4

<add key="PVer" value="Ch 1.5" />

<add key="Folder" value="img0008" />

<add key="Time" value="29:11:2008 18:44:46" />
<add key="Bias" value="4294967285" />

<add key="PcName" value="%ComputerName%" />
<add key="UserName" value="%UserName%" />
<add key="WinDir" value="%windir%" />

<add key="TempDir" value="%temp%" />

<add key="WorkDir" value="%system32%" />
<add key="Cndr" value="0" />

<add key="List" value="">

<add key=" 0" value="2" />

</add>

<add key="NList" value="">

</add>

</Ch>

</Cfg>

Besides the basic system information above, Agent.btz contains the code that calls GetAdaptersinfo() and
GetPerAdapterinfo() APls in order to query network adapter’s IP and MAC address, IP addresses of the network
adapter’s default gateway, primary/secondary WINS, DHCP and DNS servers. The collected network details are
also saved into the log file.

File winview.ocx
The second spawned thread will log threat activity into the file %system32%\winview.ocx.

This file is also encrypted with the same XOR mask. Here is the decrypted example contents of that file:

18:44:44 29.11.2008 Log begin:

18:44:44 Installing to C:\WINDOWS\system32\[random_name].dll

18:44:44 Copying c:\windows\system32\[threat_file_name].dll to C:\WINDOWS\system32\[random_name].dll (0)
18:44:44 ID: {7761F912-4D09-4F09-B7AF-95F4173120A6}

18:44:44 Creating Software\Classes\CLSID\{7761F912-4D09-4F09-B7AF-95F4173120A6}

18:44:44 Creating Software\Classes\CLSID\{7761F912-4D09-4F09-B7AF-95F4173120A6}\InprocServer32\
18:44:44 Set Value C:\WINDOWS\system32\[random_name].dll

18:44:44 Creating SOFTWARE\Microsoft\Windows\CurrentVersion\ShellServiceObjectDelayLoad\

18:44:44 Native Id: 00CD1A40

18:44:44 Log end.

The thread will be saving its parameters and system information into the aforementioned encrypted XML file in
the loop — once in every 24 hours.

File mswmpdat.tlb

The original thread will then attempt to start 2 processes: tapi32d.exe and typecli.exe — these attempts are
logged. Whenever Agent.btz detects a newly connected removable disk, it will also log the device details into the
same log file %system%\mswmpdat.tlb.

The contents of this log file is encrypted the same way — here is the decrypted fragment of it:

3/4

18:44:45 29.11.2008 Log begin:

18:44:45 Creating ps C:\WINDOWS\system32\tapi32d.exe (2)
18:44:45 Creating ps C:\WINDOWS\system32\typecli.exe (2)
18:44:45 Log end.

19:02:48 29.11.2008 Log begin:

19:02:49 Media arrived: "D:" Label:"" FS:FAT SN:00000000
19:02:49 Log end.

It is not clear what these 2 files are: tapi32d.exe and typecli.exe - the analyzed code does not create them. It is
possible however that the missing link is in the unknown code it injects into Internet Explorer which can
potentially download those files.

Files thumb.db

When Agent.btz detects a new drive of the type DRIVE_REMOVABLE (a disk that can be removed from the
drive), it attempts to create a copy of the file %system%\1055cf76.tmp in the root directory of that drive as
thumb.db.

In opposite, if the newly connected drive already contains file thumb.db, Agent.btz will create a copy of that file in
the %system% directory under the same name. It will then run %system%\thumb.db as if it was an executable
file and then delete the original thumb.db from the connected drive.

The analyzed code does not create 1055¢f76.tmp, but if it was an executable file downloaded by the code
injected into Internet Explorer (as explained above), then it would have been passed into other computers under
the name thumb.db. Note: an attempt to run a valid thumb.db file, which is an OLE-type container has no effect.

Files thumb.dd and mssysmgr.ocx

Agent.btz is capable to create a binary file thumb.dd on a newly connected drive. The contents of this file starts
from the marker OxAAFF1290 and is followed with the individual CAB archives of the files winview.ocx
(installation log), mswmpdat.tlb (activity log), and wmcache.nld (XML file with system information).

When Agent.btz detects a new drive with the file thumb.dd on it (system info and logs collected from another
computer), it will copy that file as %system%\mssysmgr.ocx.

This way, the locally created files do not only contain system and network information collected from the local
host, but from other compromised host (or hosts) as well.

4/4

