Rustock.C — Unpacking a Nested Doll

B blog.threatexpert.com/2008/05/rustockc-unpacking-nested-doll.html

Rustock.C employs a “Mestad Doll Principle”

Unpacking Rustock.C is a challenging task. If you are tired of boring crosswords or Sudoku
puzzles and feel like your brain needs a real exercise, think about reversing Rustock.C -
satisfaction (or dissatisfaction, depending on the result) is guaranteed.

Rustock.C employs a “Mested Doll Principle”

Rustock.C story began a week ago — when one AV vendor has publicly disclosed the new
details about the latest variant of Rustock. As soon as the sample of Rustock.C has been
obtained, many researchers started their journey into the center of the rootkit.

First quick look at the driver code reveals a simple decoder. In spite of being simple, it is still
a good idea to debug it to see what exactly it produces on its output.

In order to debug a driver, different malware researchers prefer different tools — in our case
let’s start from WinDbg configured to debug a VMWare session running in debug mode. For
more details of this set up, please read this article.

The very first question one might ask is how to put a breakpoint into the very beginning of the
driver code?

Some researchers would hook lopLoadDriver() in the kernel to intercept the code before it
jumps into the driver, in order to step in it by slowly tracing single instructions.

1/7

http://blog.threatexpert.com/2008/05/rustockc-unpacking-nested-doll.html
http://4.bp.blogspot.com/_teq8tr511YQ/SDBgXRnY4GI/AAAAAAAAAG4/ZXqCzf6JWHA/s1600-h/nested_doll.jpg
http://www.drweb.com/upload/6c5e138f917290cb99224a8f8226354f_1210062403_DDOCUMENTSArticales_PRDrWEB_RustockC_eng.pdf
http://silverstr.ufies.org/lotr0/windbg-vmware.html

A simple known trick however, is to build a small driver (and keep it handy) with the first
instruction being “int 3”. Once such driver is loaded, the debugger will pop up with the Debug
Breakpoint exception. Stepping out from that place leads back into the kernel’s
lopLoadDriver() function — right into the point that follows the actual call to the driver. Now,
the actual call instruction address is known - a new breakpoint needs to be placed in it.

With the new breakpoint in place, it is time to load Rustock.C driver in the virtual environment
controlled by the debugger. Once loaded, the debugger breaks at the call instruction in
kernel's lopLoadDriver(). Stepping into the driver, placing a new breakpoint at the end of its
decoder and letting it run until it hits that breakpoint allows to unpack the code that was
hidden under that decoder.

The first-layer decoder reveals us a code with a myriad of fake instructions, blocks of code
that do nothing, random jumps from one place to another — a huge maze created with only
one purpose — to complicate threat analysis by obfuscating and hiding the truly malicious
code.

Tracing that code within debugger might be easier with the disassembly listing of that code in
the user mode.

One way to get that listing is to reconstruct the driver as a PE-executable by resetting the
DLL bit in its PE-header characteristics and changing its subsystem from Native (0x01) to
Windows GUI (0x02) to make debugger happy to load it. Another way is to reconstruct a
normal PE-executable by building and compiling an Assembler program that includes the
top-level Rustock’s decryptor followed by a large stub of encoded data simply copied from
the original driver code.

Buidling a PE-executable equivalent of the Rustock.C driver helps to study the code behind
the first-layer decoder. Such program can now be loaded into a user-mode debugger, such
as OllyDbg, the first-layer decoder can now be debugged in the user mode to unpack the
code behind it. Once unpacked, the entire process can be dumped and reloaded into the
disassembler.

At this point of analysis, the code behind the first-layer decoder reveals interesting
occurrences of DRx registers manipulations, IN/OUT instructions, “sidt/lidt” instructions, and
some other interesting code pieces - for example a code that parses an MZ/PE header:

00011COA cmp word ptr [eax], ‘ZM’
00011759 mov bx, [eax+3Ch]
00011E31 cmp dword ptr [eax+ebx], 'EP’

The code in general now looks like “spaghetti” — and still, it’s just a second-layer decryptor.
The picture below shows you its execution flow — every grey “box” in it represents a stand-
alone function:

2/7

L. Y

g e i i L e g i e e G e e B . e i S

L

]
r
1

4
1
5
I
1

I

L = e == =l T - - ==
B e ey e — R =
i ..;_;.._-.L'-...,_..-_?_i....;__-..; = e i ARy
- I_;_I‘.,; == et et S s e I_-;.l . d ' e e
s s i 1, [| o] —— ! [=
Emimis | | ESEs
===

== | T

o T e e = :
_.I-__.-_.----.,-F"--

-
Ferthon Lo wscgies| Sptsp
- i

Placing the breakpoints for all the “interesting” instructions in the driver code is a good idea.
The addresses need to offset by a difference between the driver’s entry point reported with a
kernel debugger and the entry point of the driver’'s PE-executable equivalent, as reported by
the user mode debugger.

With the new breakpoints in place, the code will firstly break on the instruction that searches
for an MZ-header of the ntkrnlpa.exe:

cmp word ptr [eax], ‘ZM’

In order to find the image base of ntkrnlpa.exe, Rustock.C looks up the stack to find the
return address inside ntkrnlpa.exe. It rounds that address up and starts sliding it backwards
by the amount of the section alignment until it reaches the image base of ntkrnlpa.exe.

Once the start of ntkrnlpa.exe is found, the driver then parses its PE-header, locates and
parses the export table.

Previous variants of Rustock contained explicit imports from ntkrnlpa.exe. This time,
Rustock.C obtains kernel’s exports dynamically, by parsing its memory image — the same
trick was widely used by the user-mode malware in the past, when the kernel32.dIl's exports
were dynamically obtained during run-time by using the hash values of the export names.

The fragment of Rustock’s second-layer decryptor below parses kernel's export table:

3/7

http://2.bp.blogspot.com/_teq8tr511YQ/SDBhVxnY4JI/AAAAAAAAAHQ/b_Ikjz80usc/s1600-h/maze.gif

~=-ntag<rnl axa’s Fapart Tabde: RVA

“spaghethi®-umps

L b

w':-"ue:l [T =|| Provias 1 Hed | stonias I

abp

Now that it knows kernel exports, the driver calls ExAllocatePoolWithQuotaTag() to allocate
228,381 bytes in the non-paged pool (tagged as “Info@”).

The rootkit code then copies itself into that pool and jumps in it to continue its execution from
that place.

During the execution, Rustock.C repeats the same trick again — it allocates another 278,528
bytes in the non-paged pool, copies itself into it and transfers there control. This way, the
code of the driver "migrates" from one memory location to another. While the "abandoned"
areas preserve the severely permutated code, and thus, not easily suitable for scanning, the
addresses of the newly allocated areas in the non-paged pool cannot be predicted. Thus,
even if the infected driver and its address range in the kernel are established, it is still not
clear where the final "detectable" form of Rustock.C code is located.

Following memory allocation tricks, Rustock employs “lidt/sidt” instructions to patch IDT.
Executing “lidt” in WinDbg might crash the operating system in the virtual machine.
Therefore, “lidt” instruction needs to be skipped (by patching EIP with the address of the next
instruction).

Another set of instructions that are better to be skipped with the debugger, are DRx-registers
manipulations. By zeroing the debug registers Dr0-Dr3 and the debug control register DR7,
the rootkit might attempt to cause trouble for Softlce — any suspicious instructions need to be
skipped for safety reasons.

Following that, Rustock.C driver reads the configuration of devices on a PCI bus by using
IN/OUT instructions with the PCI_CONFIG_ADDR and PCI_CONFIG_DATA constants. It
then starts a few nested loops to read certain data from the devices attached to a PCI bus.

47

http://3.bp.blogspot.com/_teq8tr511YQ/SDBgnBnY4HI/AAAAAAAAAHA/x75pRElOYG8/s1600-h/exports.gif
http://2.bp.blogspot.com/_teq8tr511YQ/SDBhNxnY4II/AAAAAAAAAHI/A8M6887hFpg/s1600-h/enum_exports.gif

The read data is then hashed with the purpose of creating a footprint that uniquely identifies
hardware of the infected host.

Debugging the Rustock.C driver is easier if the successful code execution path is saved into
a map (e.g. a hand-written one). Every successfully terminated loop should be reflected in
that map. The relative virtual addresses recorded in it allow skipping long loops when the
code is analysed again from the beginning — they should be considered “the milestones” of
the code flow. If a wrong move crashes the system — the virtual machine needs to be
reverted to a clean snapshot, debugger restarted, and the entire debugging process
repeated by using the successful “milestones” from the map.

The map of the execution “milestones” should tell what to skip, when to break, what to patch,
where to jump — in order to navigate the code successfully through all the traps that the
authors of Rustock has set against emulators, debuggers, run-time code modifications, etc.

Whenever the driver attempts to access data at a non-existing address, the code needs to
be unwound backwards to establish the reason why the address is wrong. In most cases,
following the logics of the code helps to understand what values should replace the wrong
addresses.

For example, at one point of execution, Rustock.C driver crashes the session under WinDbg
by calling the following instruction while the contents of ESI is not a valid address:

mov esi, dword ptr [esi]

In order to “guide” the code through this crash, the driver needs to be re-analysed from the
very beginning to check if this instruction is successfully called before the failure and if it
does, what the valid contents of ESI is at that moment of time.

As stated above, the PE-executable equivalent of the driver loaded into the user-mode
debugger and disassembler helps to navigate through the code, search instructions in it,
search for the code byte sequences, place comments - a good helper for the kernel
debugging.

The code of Rustock.C debugged at this stage is a 2nd-layer decryptor that will eventually
allocate another buffer in the non-paged pool where it will decrypt the final, but still,
ridiculously permutated “spaghetti” code of the driver — this time, with the well-recognizable
strings, as shown in the following dumps:

5/7

ooon
m3aoon
o300
0300
ke []
0300
300

3 paoo
3 0300
& D300

o300
@300
[k [u]x)
Q300
0300
[[u]
o300
L300
300
o300
o300
ooan
oag0
ECT2

5 750

ooon

TedD
GFOD
SCon

S300 7

&non
4578
41a7
anFo
T46S

G469 7

Fe0n
4300
4100
S07Z
TIEF
Ga7e
GO0
Tl
BETZ
BETZ
G5TE
1940
1E84
Lo
-1
BIGE
TH74
GEQD
GYEL
BCZE
&500
800
FH00
200
Fa00
4000
&L00
BEOD
7400

6300
4000
&800
Tioo
GFOD
Ef£E
an74
ooz
anzs

aonoo
7oA
oon2
SADD
BODA
2804
Boba
2405
DEDS
IEDE
7402
JE07
B4DT
2a0a
KEDD
aAna
FE09
aAlh
FEDA
5402
aooa
FC31
S8a0
FOEL
6173
aooa

oo
D3ao
0300
0300
Daaon
0300
0300
0300
0300
o3ao
0300
0300
D3ao
0300
0300
D3aon
0300
0300
0300
0300
oooo
onan
EEVE
ElGZ
EDSF
[liali]

SaEpE
aoon
Fap2
AL
DAanR3
4204
(i L |
4205
EnDS
Sela
pilul]
4Ch7
BER7?
4408
acna
1803
AERY
LADLA
AR
adp2
Jooo
FCoa
2300
aF?4
SCE4
aoen

Fa200
EFO0
Taon
ZUDU

o047
WibE]
ooon

0300
onao
0300
0300

D3an ¥

0300
0300
03an

0300 F

03ao

0300 £

0300
03ao

0300 5
0300 o
03aon :

0300

0300

0300
0300
ooao

anan 5

aoan
ECT2
7269
ooan

ECo0 £

300
G200
500
S0oo
THe3
EHZT

Ak

oG
TrO0

500 &
oooo =

soon

T DO4E

4EE4

o ECEF
550
E3EH
7274
BCEF

GEGY 51
Ty s

EEGh
Do48
7469
T26E
on7eE
i T2
Thol
7400

E300 7

EEQD

£500
€300
7500

ECO0 &

Se0n
EFO0

EFQD 3

Fron

800 E

2800
» ES45
onz2
ooy
oozo

00 0300 1ADB OF00).o Dol
HADZ D300 AZDI 0200, ... ¢%....... .
1CE3 0300 3203 0Z00 (0w vwvrunrnanraniandius
9003 0300 903 0F0OH. .. 2. . 3. .00 L. as
1e0d 0300 2end 0300 -

BEDA 0300 A4D4 0300 :...H...h

ECDA 0200 FADA 0200
8405 0300 AGDS 0F0Q|....5...8.. .

0406 0300 DEDE OF00 | ocuiaviuncinanianiannins
B5DE 0300 92D O200 ™. % .. Mo Jeoaenanan
0407 0300 LEDT OF00 .. cubeuianrvorrariannrns
7407 0300 BEDT OF00 (& .. 6.0 Lo..™oat, .
FaD? 0300 0DsDE O=00).. e . . -
6308 0F00 7306 0300|...D...f...h...ﬁ...
Dabi 0300 ESpE 03001.. . .
4a0T 0300 5C0% 0F00) ..

Cop% 0300 CELG 0300

q0D& 0200 B00E 0200

DODA OF00 EODE OZ00(]..ovevraernoriarianasas
op: 0300 Ccaéba 0300 ‘...T...H...(...D.......
0ooo oodo 0200 0E00 | ..o e ieeen e Bo ol
137E AEBE FOAS 3E4A ?.-..1......RSDSB“.-u.-J
BS77 G072 BFGR G563 .. .8M.n"....EZr-HewProjec
B3EH ZE&R3 5CE4 TIZET tn\:pamhnt\:uctn*t ATl
7064 5200 0000 O0Qa vur\eum_\drlvur.pﬂb.....
0000 0000 D000 QB00 | ..o c e i e as
7300 7400 &S00 GDOD |Tov.e.r. .. .S y.5.T.&.H.
7200 G500 ADOD 3300 |R.o.s.t.%, 5.9 .8.0.0.8.3.
6400 GCO0 GCOD 0000 2.w.n.t.d. 0. 1., .d. 1010,
GFO0 GEO0 F400 0000~ G.y.=cteamRasotoa.
G000 000D ZEP4 65M0|l.m.s.g.e.Plactih.. . tox
BFEE OOZE ¥4p5 ¥E74 |t_ExRslscExcepticom. taxt
43E1 494 4954 0074 .FROE..... ' OASH.IHIT.t
000 N0ZE G461 7461 e.p.bi.pa. 8.8, .. E6ta
0073 0079 0073 D000, ctmet.n.d. i S . 0508,
G100 7200 FO0D 2E0D | ndis. v w808 T
AFO0 4300 AB00 0000 |s.v.s. . RLULGS.T.0.CLHE.
5000 4900 5000 SFO00|T.C.F.I.P...T.C.F.I.P._.
6373 SZES ATET FIEV4 (W.AH.A.R.P.. _HdisRajist
BST2 BSET AAT3 P45 (arPretocol HNdisDeregiate
GCEF 6361 7465 4275 | rProtorol Hdishllocatedy
G542 7566 6663 FZE0 ffer.BHdishllocsteduffeorP
061 GIER 6574 DOME |ool.bdishllocateFscket.H
M50 BFEY BC4% FE00 |disAl lecatePacketPoealEx.
B4E3 734D 5265 BTET |HdisFreaPackat .MdisHRagl
734F FOES GE4] A46] (atarMinipart HdiaOpaniuda
G170 7465 7200 4E64 | ptar.Hdisllosshdaptear . Hd
6163 6BES 7449 BEGS |1=IH opySecdPerPacketInf
AIEF G070 6065 P46 o HdisINCopySendlomplote
BE¥I 5363 BOEL bAYS | PerPacketlzfo HdisEohady
B5E1l F3E5 5370 B96E |leWorkltem. KFRalessaSpin
6545 TEES GET4 N0ZE |Leck . Felnitial izeEvsann..
GC47 G574 5665 FE73 | text.mtoskrnl RtlGetVers
TOTE T4ZE TITA P00 |ion.k=.sys ovideoprt sy,
GCEC 00GE 746F 7368 (emilib.sws . hal .dll.ntosk
aF00 BCOD 0000 SC00|rnl.exe.f.wv.o v.oo.l. ..~
SCO0 4DO0 6100 BZ200(R.a.g.l.s.t.r Y.~ H.a.c.
700 ASOD ADOD SCOQ|(B.i.n.e. % B0 8.0.@.8. .
BEO0 GEDD 7400 FZ00|C.u.r. ¢, e85 0.0 8,0, 0,0,
7200 TEOD 900 BI00 m.l.E.et v Blearvaiao,
7300 7400 7200 M00|s.s.. ~Bamagallsitaoray.
SC00 5300 P00 P00 _M.s.c.h.zonoeln By,
B500 BECD ¥400 4200 |t.e.m. . Cu.r.r.e.n.t.C.
7400 SCCD 4300 RFOD ja.n.t.r.o.l.8.4.t.%.C.a.
GO0 GSOD 4200 GE0D|s-t.&.o.l.%.5.4.7.0,B.0.
G100 6COD 000D 4000 o.t.>~ M. i.z.1.m.a.l. . M.
2000 4300 &F00 P2001.c.romao.fok. JCioar.
a0l P00 AECD 2000 |p.M.1.c.riowsoldfitl. o
4000 6300 6300 Y200 |W.i.n.d.ow.a . M1 oo,
2000 5T00 6900 REDD |a.s.o.f .t . R.j. W.i.m.
0023 E645 BI0S E64S |d.o.w.e, .{.R.]....E...E
el 0067 0065 0050 ...E Elms.g.e.P
4070 0000 0053 0074 .8t calfar o P LBt
0000 0025 0OFF DO¥3) ...t Toy.poe. . Howes
B4ED B4AED HZED HIED | .%.% =

6/7

http://3.bp.blogspot.com/_teq8tr511YQ/SDBiqBnY4RI/AAAAAAAAAIM/DpxP7-D4KC8/s1600-h/dump1.gif
http://2.bp.blogspot.com/_teq8tr511YQ/SDBiLxnY4OI/AAAAAAAAAH4/Aho_9ZcOzxA/s1600-h/dump2.gif

161
0E0a
oeoa
anna
O0EF
ODE4
an?3
O0EF
&CO00
2661
4501
GFRE
7757
Ea
G174
G961
G361
GREF
726D
TIES
SATT
&5E1
BEOD
G148
FES
G500
FFFF
5000
GADD
2500
2500
3000
5000
5000
TIP3
FF5
anna
aood
GEFZ
GFG3

PS: Special thanks to Frank Boldewin for exchanging his tips and ideas with me.

El0%
LBOZ
oooe
na0E
on74
oovE
on7e
CDEF
ETET
FCA4
ShTT
NSA
7269
ELE3
B854
G400
e
EEQD
E174
El&4
4372
Fek

TIGS

E1FF

250 7
7200 7
EFEF F

4200

E500 &

3000
000
ZEQO
G400

E500 &

0043

FR4E

00D
000
ESG1
4164

1809
ooz
aoca
ag0a
anso
aDEd
anz3
o074
2EE1
2BEL
5175
7752
T4E3
T4Ea
GET2
A7
aFE2
SATT
GUEF
ans&
G5EL

naa0 7

ulifuly]

Doog o

OAsC
on7a
OOvE
onan
anse
=11 [y
5507
B5F2

ESG] &

SHEY

E9FZ 747

E5E1]
AFT0

ERSS &

5365

EES
TISd B
7465 3
r2ak
BAG3S §

FFCE
=]

EOD &

416831
F3ao
T400

3400 5
400 5

SA00

F000
Toao 1
I GE&S
1447

onan
Qa0

4CEF &

GBETE

onio
oool
ooa9
onFe
o073
o7z
0053
il iy
1303
[L3F
kLT
BATZ
TE61
Bl
SATT
SAGG
oosa
THAS
G561

! ED&T

6572
41578
ZE&S
B195
Ed472
ES00
4831
4E00
S0an
a0
Zhao
a0
a0
T
GYEF
ooao
onan
Qoo
4059
EFFF

1010
oion
a=0g
73
o7
oova
T
o7l
49E1
4TEL
T4ES
7475
A4
ADES
465
T2E5
7744
GET4
a400
GEE1
0T
aoE?
TEES
1F47
2573
7300
oooo
a100
2500
2500
2500
4400
a400
RIEE
6E43
aooo
noon
oo
8272

FFEF

mal
ansn
osag
onz4
Q&%
oosc
anzs
Qa0
ACO0
SCAL
elqy
ELGD
GEAD
elal
TIED
GlE4
E5&C
Qnag
ShTT
Tda5
GF&3
LR
OnFF
B12E
F3a0
ZEQN
aoan
e000
3000
2000
z0aon
G500
&L00
T3iro
GF&E
ooao
anan
gan
El7Z
4E42

niol

q012
jif={ul:]
NoEs
0oED
oozs
noT4
DOEE
43E1
qEE1L
HEEL
4DES
GE72
2T
GIEE
D05k
a17se
7753
5265
5072
6373
BCEF
FFFF
7465
2EE4
ASON
B1E0
500
2EON
2E00
2EDD
FEON
Jall
BET2
7465
aooo
noon
0043
7941
qa61

orng
G120
aosn
O0RD
0033
[x] o
O06S
TALE
EIFRA
G309
BFI2
EDRF
Fe00
[l
GBL74
T4
4578
G574
T35
EF&3
7300
BTOF
FF3iE
TET4
BLY4
TEIO
4681
6400
800
3400
IE00
BE00
&200
T441
TET4
aoog
oo
T265
ooaT
EEA1

nanz
nozn
Loso
nas2
noz2
oar3
Jilal=1
36
4381
4651
Hal:31
TITH
aR877
FTF43
6554
7570
BSE3
496E
BOES
BST3
SR
BEZE
D4z
004D
B100
RSON
D299
4FO0
sa00
Sa00
5300
6300
baoo
AeRd
0OEF
aooo
noon
6174
BSTd
4351

oona| ...

2000

sond | ...

Qn6E
Qse

Oo2E | .

a5z

T2GE | .

OZ6F
CEFA
TGS
0053
5072
TIaS
BETL
GIED
TEF4
GEGE
460
TI00
+372
BEFD
&ID1
GIES
TI00
anno
4781
6200
2000
2000
ZE00
G200
G500
TIRS
FFFF
oooo
anno

6354).

S07E
ulelif]

E. ZwuerySystoninformatl
o ZHReadVirtual Mamory .2
wEriteVirtus lMenory . Zubr
otectVirtus i Hanory . Swlre
ateThiwod EvTorninateThs
wad.. ZwipenTaresd Zulupli
catalbjact . InlalayEtacut
inn, ZedatEvent EndetInfe
rmationThroad . ZmRosumaTh
rand . DWTare: nateFrocass.
IwCrmatall=arProcess . Zulr
oatoThroadEx winlomon . ox
O EmTViceE e, .., L 0wl
sH. ?F .. 3, Ltext Hell
sarFrobefddress. .dats.s.
LU N e T
PTTET . P R A N
R - O R I R
BT T | P 6
O O N N
H.O,. .46 - KDL 30KUE,
Doeod oo Dmaw, oo ,e,
“JTooop..osablaov.youe.
= AL AL, . CTranapertiddre
s=.Connectionlontext. . ..
-
sesiasianiassssormateT
hread . LozdL: braryh. BatPr
ocfddress, ,, . HBH, ., .H, ..

7/7

http://4.bp.blogspot.com/_teq8tr511YQ/SDBiWRnY4PI/AAAAAAAAAIA/r8urEhczJ3g/s1600-h/dump3.gif
http://www.reconstructer.org/

