
1/10

A Case Study of the Rustock Rootkit and Spam Bot
usenix.org/legacy/event/hotbots07/tech/full_papers/chiang/chiang_html/index.html

In this paper we present a case study of the steps leading up to the extraction of the spam
bot payload found within a backdoor rootkit known as Backdoor.Rustock.B or Spam-
Mailbot.c. Following the extraction of the spam module we focus our analysis on the steps
necessary to decrypt the communications between the command and control server and
infected hosts. Part of the discussion involves a method to extract the encryption key from
within the malware binary and use that to decrypt the communications. The result is a better
understanding of an advanced botnet communications scheme.

In this analysis we examine a backdoor rootkit known as Backdoor.Rustock.B [7] or Spam-
Mailbot.c [8] but hereafter referred to simply as rustock. While work has been done to
deobfuscate the malware and study the rootkit [7,9], little information is available about the
functionality of the spam bot that is contained within rustock. We are particularly interested in
the communications between the command and control (C&C) server and infected hosts
since they provide a glimpse into an advanced botnet communications scheme. The
remainder of this paper presents a case study of the steps necessary to extract and reverse
engineer the spam bot component.

First, we provide some information gleaned from observing the network traffic produced by
the bot. Then, we walk through the three phases of deobfuscation leading to the extraction of
the spam bot component. Next, we describe the reverse engineering of the spam bot leading
up to the extraction of the session encryption key from memory that makes it possible to
decrypt the C&C communications between client and server. Finally we summarize a sample
decrypted C&C communication session between client and server.

The key exchange phase is similar in all C&C sessions we observed. The HTTP POST from
the client contains a 96-byte encrypted payload and is sent to the login.php page on the
server. This is followed by a response from the server containing a 16-byte payload.

https://www.usenix.org/legacy/event/hotbots07/tech/full_papers/chiang/chiang_html/index.html
https://www.usenix.org/legacy/event/hotbots07/tech/full_papers/chiang/chiang_html/index.html#symantec1
https://www.usenix.org/legacy/event/hotbots07/tech/full_papers/chiang/chiang_html/index.html#mcafee1
https://www.usenix.org/legacy/event/hotbots07/tech/full_papers/chiang/chiang_html/index.html#symantec1
https://www.usenix.org/legacy/event/hotbots07/tech/full_papers/chiang/chiang_html/index.html#boldewin1

2/10

The instruction phase of the C&C communications consists of a variable number of HTTP
POSTs from the client and corresponding responses from the server. The size of the
payloads contained within these packets is also variable and therefore assumed to be
dependent upon the variable nature of the underlying C&C instructions.

In addition to the information we gained through observation of the network traffic the people
at Symantec helped us recognize that the encryption algorithm used to encrypt the data was
RC4.

As shown in Figure 2 , the malware contains four main components: the initial
deobfuscation routine, the rootkit loader, the rootkit, and the spam module.

Figure 2: Overview of the lzx32.sys malware. In our analysis we break it down into four
parts: A. The first deobfuscation routine, B. The rootkit loader which contains the second
deobfuscation routine, C. The rootkit containing the third deobfuscation routine, and D. The
spam module.

IDA Pro 5.0 Standard Edition [10], an interactive disassembly tool is used to study the code.
A useful plug-in to the disassembly tool called idax86emu [11] is also employed to
deobfuscate the malware. The plug-in tool emulates the x86 CPU instruction set and can

https://www.usenix.org/legacy/event/hotbots07/tech/full_papers/chiang/chiang_html/index.html#ida1
https://www.usenix.org/legacy/event/hotbots07/tech/full_papers/chiang/chiang_html/index.html#idax86emu1

3/10

modify the disassembly as it walks through the obfuscated code.

Using the emulator, we follow the deobfuscation routine to address 0x000114AF. At this
address, the deobfuscated code looks different and makes more sense than the code prior to
running through deobfuscation, see Figure 3 . This is the beginning of the rootkit loader.

Figure 3: View of the disassembled code at the rootkit loader's entrypoint before and after
deobfuscation.

After a careful study of the code contained within the rootkit loader, we learn it takes the
following steps:

Searches for the ntoskernl.exe image in memory and imports the functions:
ExAllocatePool, ZwQuerySystemInformation, ExFreePool, and stricmp.

Using these imported functions, the malware allocates a chunk of memory of about 34k
(0x8800 bytes) and deobfuscates the memory chunk starting at address 0x00011926 into
the allocated memory. The deobfuscation routine used at this stage (DOBF Routine 2 in
Figure 2) can be recognized by the parameters passed to the function; they are the
address of the encrypted 0x8800 bytes embedded in the binary and the address of the
0x8800 bytes of newly allocated memory. The deobfuscation routine is called at
0x00011593. The deobfuscated memory turns out to be another PE executable, which is
then mapped back to location 0x00011926. This executable is the embedded rootkit
component that we will discuss in section .

4/10

Using the PE header of the embedded rootkit component starting at 0x00011926, the
rootkit loader sets up the import tables by using the strings table located within the
deobfuscated rootkit component. Some example function names are ZwEnumerateKey,
ZwCreateKey, and ZwQueryKey. These functions will be used by the rootkit component
later to hide itself. The rootkit loader then does any necessary relocation using the relocation
section of the embedded binary.

Since the rookit component is now decoded and mapped into the malware, its PE header
is no longer needed. Therefore, in an attempt to defeat RAM forensics, the rootkit loader
deletes the MZ and PE signatures bytes from the decoded rootkit executable from memory
before passing control to the embedded rootkit binary.

The rootkit loader now jumps to 0x00011D92, the entry point of the rootkit component,
which will be discussed next.

A pointer to an object representing the original malware driver file, i.e. lzx32.sys. It
appears that this object is created by the Windows operating system when driver files are
loaded into memory as a service.

The registry path pointing to the registry key that loaded the malware driver file into the
operating system. This path is Unicode encoded.
Knowing that the first argument is a pointer to the file object representing the original
malware driver file is key in understanding how a modular component can be loaded and
executed by the rootkit component.

After storing the two arguments in global variables, a system thread is created. This thread
has the following functionality:

Creates a handle to the rootkit kernel driver named: \BaseNamedObjects\
{DC5E72A0-6D41-47E4-C56D-024587F4523B} (Since this handle name is hard-coded
into the binary, it may serve as a way to detect the presence of the rootkit module).

Checks whether the loaded malware driver file is stored in an Alternate Data Stream
(ADS).

Deletes all sub-keys in the hive:
HKLM\system\CurrentControlSet\Enum\Root\Legacy_lzx32.sys

Replaces the registry functions to hide the registry key created to load the malware at
boot.

Creates a notify routine using PsSetCreateProcessNotifyRoutine which gets called
for all process activity. This notify routine creates at most two threads to inject the spam
component into the services.exe process. By doing this, the malware ensures its survivability.

The rootkit then replaces the ZwQuerySystemInformation, and
ZwTerminateProcess functions.

The same routine that injects the spam component discussed in step 5 is called at this
point to start the spam component. This routine will be discussed in detail next.

5/10

The spam component is encrypted and appended to the original driver file lzx32.sys. The
rootkit uses the first argument to extract this encrypted executable. One way to detect the
presence of the appended component is to parse the PE header of the original malware
driver file. By so doing, one will notice that there is additional data past the end of the PE
executable. To extract and decrypt the appended data, the rootkit takes the following steps:

Reads the last four bytes of the original file, this is the size of the encrypted and
compressed executable, we will call it bot_compressed_size.

Moves the file pointer back by bot_compressed_size + 4, and reads in four bytes
that represent the xor key.

Reads in the next four bytes after the xor key, this is the uncompressed size of the
appended file, we will call it bot_uncompressed_size.

The xor key is then used to xor-decrypt the data four bytes at a time, starting from the
byte after bot_uncompressed_size.

Allocates and uses a memory chunk of size bot_uncompressed_size, the xor-
decrypted data is then deobfuscated using deobfuscation routine 3 (DOBF Routine 3 is the
same as DOBF Routine 2).
The resulting file is another PE executable that is the modular spam bot component. To
properly extract this module, it is important to use the size variables detailed above. Using
the wrong sizes results in an incomplete spam module.

It was previously mentioned that the spam module is injected into the services.exe
process, this is another step taken by the malware to thwart detection. The rootkit
component follows these steps to inject the module into the services.exe process:

Finds the process ID of services.exe by using the ZwQuerySystemInformation
API function to return all system thread and process information and searching the returned
results. Once found the process ID is stored in a global variable.

Creates another copy of the services.exe process.
Sets up networking capabilities by hooking the tcpip.sys, wanarp.sys, and

ndis.sys driver functions.
Extracts, decrypts, and deobfuscates the spam module as described above.
Maps the spam module into non-paged allocated memory.
Calls KeAttachProcess to switch the memory context to the services.exe process.
The rootkit then sets up an asynchronous procedural call that provides a method to run

the spam module code.
The RC4 encryption algorithm consists of two main parts, the key-scheduling algorithm, and
the pseudo-random generation algorithm [12]. To generate the keystream the two algorithms
make use of an internal state consisting of two parts, a permutation of all 256 possible bytes,
and two 8-bit index pointers. By comparing the two functions found within the assembly code
with a C code implementation of RC4 [13], we are able to determine that the assembly
functions are direct implementations of the two algorithms that make up RC4. Additionally,
the struct stored in global memory is the secret internal state consisting of a 256 byte char

https://www.usenix.org/legacy/event/hotbots07/tech/full_papers/chiang/chiang_html/index.html#schneier1
https://www.usenix.org/legacy/event/hotbots07/tech/full_papers/chiang/chiang_html/index.html#rc41

6/10

array and two index pointers into the array. The function containing the key-scheduling
algorithm is called once during login.php. This function initializes the internal state
variable and stores it in the global struct. The session key itself is not stored in global
memory and is therefore difficult to extract. Fortunately, having the internal state variables is
as good as having the original key generated by the infected host.

The code snippet in Figure 4 is from the IDA pro disassembly and shows the instructions
leading up to the storage of the global struct containing the state variables. We have named
the global struct g_prepped_session_key.

Figure 4: Disassbled code for the routine that stores the prepared session key in a global
struct. The hex equivalent of the first 4-bytes of the highlighted code is used to generate a
signature that will be used later to extract the prepared key.

The instruction jz short loc_405CE4 is the instruction that precedes the code that
prepares the session key and stores it in global memory. Converting this instruction and
subsequent instructions to hexadecimal results in a unique signature 0x74 0x11 0xA1
0x64 that we will use later to search and extract from memory the internal state variables
used to decrypt the encrypted network communications.

We used Microsoft's User Mode Process Dumper [14] to dump the memory space of the
services.exe process to a file. Timing of the memory dump is critical since it must occur
after the key exchange and instruction phases of the C&C session but before the next key
exchange. Because the client typically initiates another C&C session with the server every

https://www.usenix.org/legacy/event/hotbots07/tech/full_papers/chiang/chiang_html/index.html#userdump1

7/10

few minutes it is important to keep track of the various sessions and the corresponding
memory dumps. In order to prevent the possibility of the state variable being overwritten one
could use a remote kernel debugger to break execution after the C&C session has
completed rather than dumping the memory. The disadvantage of this method is that it
affects the timing of subsequent C&C sessions and could be noticed by the server.

Once we have a memory dump and a corresponding network capture of the C&C session,
we load the memory dump into Microsoft's windbg [15]. The log file shown in Figure 5
enumerates the steps we took to extract the key. First, we locate the signature isolated in the
previous section (0x74 0x11 0xA1 0x64). Next, we disassemble several instructions
starting at the memory address we just found. The mov instruction at address 0x00d35cd3
loads a pointer to the struct containing the RC4 state variables, so to find the key we simply
dereference the pointer. Finally we dump the state variables to a file.

Figure 5: windbg log file with comments. This shows how to extract the RC4 state variables
from memory.

https://www.usenix.org/legacy/event/hotbots07/tech/full_papers/chiang/chiang_html/index.html#windbg1

8/10

To decrypt the captured C&C session we use the global struct we have extracted from the
memory dump containing the state variables. We modify the C code implementation of
RC4 [13] to read the key-scheduling state variables from disk rather then generating a new
instance. For us to decrypt the communication we need to apply the RC4
encryption/decryption function (pseudo random generation algorithm) to the POST message
from the client followed by the response from the server. This keeps the state variables
synchronized and allows us to decrypt both sides of the communication. Each exchange
consisting of a POST to data.php and reply from the server can be decrypted separately
since the state variable is copied from the global struct to the stack each time.

One thing to note is that the first fourteen bytes of the client message are ignored when
encrypting the message. This was noticed during the static analysis of the spam module. In
order to keep the state variables synchronized, we also must ignore the first fourteen bytes
of the message.

Table 1 is a summary of a sample C&C session we decrypted and consists of seven data
exchanges. The client initiates the conversation by sending the "kill.txt" string for which the
server responds with a list of processes to terminate and files to delete from the client. Some
examples of processes are CAPP.exe, syswire.exe, Ravmond.exe. Some examples of
files are m_hook.sys, comdlj32.dll, and secure32.html. Web searches for the
processes and file names indicate that these are other malicious programs that the client
may be infected with. This provides a way to eliminate other infections that may conflict with
this bot.

Table 1:Summary of decrypted C&C communications between the infected client and the
server.

https://www.usenix.org/legacy/event/hotbots07/tech/full_papers/chiang/chiang_html/index.html#rc41

9/10

Message Message Contents or Summary

Client 1 "kill.txt"

Server 1 Server response specifies processes to terminate and files to delete from
the client

Client 2 Information about the client

Server 2 Information for the client about the client and file names to create or request
for subsequent communications with the server

Client 3 "neutral.txt"

Server 3 List of domain names to query for mail servers to use

Client 4 "unlucky.txt"

Server 4 List of SMTP server responses that indicate failure

Client 5 "tmpcode.bin"

Server 5 Binary data that specifies the formatting of spam message to be sent by the
client

Client 6 "tmpcode.bin"

Server 6 Binary data including spam content

Client 7 "-"

Server 7 List of target email addresses

Ken Chiang, Levi Lloyd
Sandia National Laboratories
Livermore, CA 94550
kchiang@sandia.gov llloyd@sandia.gov

Next, the client sends information about itself to the server including bandwidth, OS version,
SMTP availability (if outbound TCP/25 is allowed), if it is a virtual machine, and if it is
blacklisted on a DNS blacklist. The server responds with additional information including the
client's external IP address, machine name, task id that the server assigns to the client for a
given spamming job, whether an update of the client is available, and names of additional
command strings that the client can use for subsequent communications. An example of the
command strings are "filesnames=neutral.txt" and "unluckystrings=unlucky.txt".

http://10.10.0.46/mailto:kchiang@sandia.gov
http://10.10.0.46/mailto:llloyd@sandia.gov

10/10

The next packet sent by the client is "neutral.txt", this request results in a list of domain
names from the server. The client puts these domain names in a double-linked list and
queries them for the presence of mail servers.

The fourth client request in this session is "unlucky.txt". This request results in a list of error
messages that an SMTP server could return. Some examples are "Please use your provider
SMTP" and "your mail rejected"

In the fifth and sixth exchange, the client sends the request string "tmpcode.bin" and the
server responds with binary code and spam content that is used by the client to generate
spam messages that are dynamic in nature to bypass spam filters.

Finally, in the last session, the client send a single dash ("-") to which the server responds
with a list of email addresses where spam messages will be sent.

Based on our observation that the starting address of the deobfuscated code changed
between versions of lzx32.sys as well as different obfuscation techniques we conclude
that the outer most binary packer/obfuscator was changed. It is likely that the reason for this
is that the authors of the code were attempting to avoid antivirus detection as well as to
increase the amount of time that it takes to deobfuscate the code. Our technique for
deobfuscation was not affected much by the different techniques since we step through the
code using an emulator.

Our analysis of the C&C communications indicates ordinary spam bot functionality. Aside
from this functionality the spam module also has the ability to download and execute
arbitrary code. This could be used for other nefarious purposes. In addition, the modular
design of the rootkit and embedded spam module makes it easy to update the spam module.
During our experiments, we observed multiple updates to the spam module. These updates
were confined to changes of C&C server domain names and search terms used to build the
spam, but it indicates that it would be simple for those controlling the botnet to update the
module with other features.

Future work is also needed to better understand the details of the rustock rootkit. Since our
focus was on getting to the spam module, we did not do a detailed analysis on the rootkit
itself. Further details can be found in [9]. One element of the rootkit that needs more analysis
is the alternative behavior exhibited when the malware driver detects that it is not stored in
an ADS.

Additional work should be done to automate the key extraction and C&C decryption. One
way to do this would be to continually monitor the network traffic from an infected client.
Anytime a post to login.php is seen, a remote procedure call could be initiated to the
infected host to dump the memory space of the services.exe process. Given the network
captures and memory dumps it would be easy to write a script to extract the key from the
dumps and decrypt the C&C communications in a way similar to our method.

https://www.usenix.org/legacy/event/hotbots07/tech/full_papers/chiang/chiang_html/index.html#boldewin1

