Maelstrom: EDR Kernel Callbacks, Hooks, and Call
Stacks

() pre.empt.dev/posts/maelstrom-edr-kernel-callbacks-hooks-and-callstacks

Introduction

To recap the series so far, we've gone from looking at the high level purposes and intentions
of a Command and Control Server (C2) in general to designing and implementing our first
iteration of our implant and server. If you've been following along, you might think you've
written a C2...

This is a common mindset. In our experience, getting to this point does not require much
sophistication. All of our previous work could easily be achieved (and has been achieved!)
using C#, Python, Go, in an evening's worth of frenetic caffeine-fuelled typing. Leading
features of C2s can often be linked to pretty old solved concepts and patterns from software
engineering, such as thread management, handling idle processes, and ensuring correction
execution and program flow.

But as we found when writing our various C2s, and as numerous other offensive developers
have found when writing their own implants and servers, once you have the code working
and you can get a pingback, you stop running your implant on your development computer
and try it on a second computer. This is where the questions start creeping in. Questions like
"Why can't I access remote files?", "Why can I make outbound requests over this protocol,
but not this?", "Why does this command just fail with no explanation", and for the cynical
self-doubter with enough imposter syndrome "Why isn't Defender stopping me from doing
this?".

This, personally, is the post we were looking forward to writing. It's going to be a discussion,
with a few examples, of increasing common behaviours within environments with active
endpoint protection. In 2022, implants face far more scrutiny - the implant and C2 operator
must to be prepared to face or evade this scrutiny, and the defender must be aware of how it
works so that it can be used to the best of its ability.

Whilst writing this, we also want to clear up the 'it avoids <insert company here> EDR'
tweets. Just because the implant is able to execute, doesn't mean that Endpoint Protection is
blind to it - it can mean that, but we want to demonstrate some techniques these solutions
use to identify malicious behaviour and raise the suspicion of an implant.

In a nutshell, proof of execution is not proof of evasion.

Objectives

1/52

https://pre.empt.dev/posts/maelstrom-edr-kernel-callbacks-hooks-and-callstacks/

This post will cover:

e Setting up The Hunting ELK

e Reviewing three ways EDRs can detect or block malicious execution:
o Kernel Callbacks
o Hooking
o Thread Call Stacks

By the end of this post, we will have covered how modern EDRs can protect against malicious
implants, and how these protections can be bypassed. We will move from having an implant
which technically works to an awareness of how to write an implant which actually starts to
work, and can achieve the goals of an operator.

As we've said many times, we are not creating an operational C2. The output from this series
is poorly written and riddled with flaws - it only does enough to act as a broken proof-of-
concept of the specific items we discuss in this series to avoid this code from being used by
bad actors. For this same reason, we are trying to avoid discussing Red Team operational
tactics in this series. However, as we go on, it will become obvious why blending in with the
compromised users typical behaviour will work. This is something that xpn has discussed on
Twitter:

Find Confluence, read Confluence.. become the employee!

— Adam Chester (@_xpn_) January 22, 2022

If your implant has been flagged by EDR, querying NetSessionEnum on every AD-joined
computer to find active sessions is probably not typical user behaviour. You likely will not
know your implant has been flagged until it stops responding. From here, it's a race until

your implant is uploaded to VirusTotal and you have to go back to the drawing board.

We will be referring to the following programs a lot during this blog:

The Hunting ELK (HELK): HELK is an Elastic stack best summarised by themselves:

The Hunting ELK or simply the HELK is one of the first open source hunt platforms with
advanced analytics capabilities such as SQL declarative language, graphing, structured
streaming, and even machine learning via Jupyter notebooks and Apache Spark over an ELK
stack.

This project was developed primarily for research, but due to its flexible design and core
components, it can be deployed in larger environments with the right configurations and
scalable infrastructure.

PreEmpt: A pseudo-EDR which has the capability to digest EtwTi, memory scanners,
hooks, and so on. Although, this is not public but code will be shared when necessary.

2/52

https://github.com/Cyb3rWard0g/HELK
https://twitter.com/_xpn_
https://twitter.com/_xpn_/status/1484970081046126594?ref_src=twsrc%5Etfw
https://blog.compass-security.com/2022/05/bloodhound-inner-workings-part-2/
https://virustotal.com/
https://github.com/Cyb3rWard0g/HELK
https://www.elastic.co/
https://mez0.cc/projects/preempt/

These two tools will allow us to generate proof-of-concept data when required.

Important Concepts

Similar to Maelstrom: Writing a C2 Implant, we want to have a section dedicated to clearing
up some topics we feel need some background before moving on.

What do we mean by Endpoint Detection and Response

Endpoint Detection and Response (EDR) software goes by a number of different acronyms,
and there may well be distinctions between different companies programs and their
functionality. For the sake of simplicity, we are call all programs that are limited to scanning
files on disk statically "anti-virus", and all programs that go further and scan device memory,
look at the behaviour of programs while they are running, and responding to threats as they
happen "EDR"s. These may be called various names, including XDR, MDR, or just plain AV.

Throughout this series, as we have done so far, we will be sticking with "EDR".

A good overview of this is CrowdStrike's post "What is Endpoint Detection and Response
(EDR)":

Endpoint Detection and Response (EDR), also referred to as endpoint detection and threat
response (EDTR), is an endpoint security solution that continuously monitors end-user devices
to detect and respond to cyber threats like ransomware and malware.

Coined by Gartner’s Anton Chuvakin, EDR is defined as a solution that “records and stores
endpoint-system-level behaviors, uses various data analytics techniques to detect suspicious
system behavior, provides contextual information, blocks malicious activity, and provides

remediation suggestions to restore affected systems.”

Because it's relevant to this post, the next section will look at EDR architecture and
comparing EDR behaviours across the various vendors. Without going hugely off-topic, we
won't look at a number of also relevant areas, such as how Anti-Virus works, how disk-based
protection may work to also stymie your implant execution (if you're still running on disk),
and how AV and EDR actually goes about scanning files and their behaviours while they are
doing so. Turns out, that's like, a whole field of study.

Common EDR Architecture

When discussing endpoint protection, it may help to be somewhat familiar with their
architecture. The Symantec EDR Architecture looks something like this:

3/52

https://pre.empt.dev/posts/maelstrom-the-implant/
https://www.crowdstrike.com/cybersecurity-101/endpoint-security/endpoint-detection-and-response-edr/
https://www.gartner.com/reviews/market/endpoint-detection-and-response-solutions
https://pre.empt.dev/posts/maelstrom-edr-kernel-callbacks-hooks-and-callstacks/Symantec%20EDR%20architecture

9 sl v @- Sandbox) SRl Sy Are
= Achrarsary” o e
Web Email Cynic Intelligence Feed DeepSight
Security.Cloud Security.Cloud Symantec
Cloud
{Reputation,
| A
Web Convieted Telemgtry) vz fi
Mahvare convietions EDR £mail metadata Analyze file
-
>
4 Via Frequent Live Update
° ® ® antent updbte via Live Update
Analyze file
[B
. . Environment Samrch
U
o Remediation Reques! -4—————— servicenow
. . Symantec EDR ————————3EF Conviction§ d—|_
REQULATON qUEnes, - 5
_ e ——— splunk>
Wetwork traffic NDC pings, Public ARl
SONAR pings
v ¥ [| Custom Enterprise
Environment Search, v integration
- | 1 Remediation Request
. @ ——SEP Convidtion——— W
Nﬁ._,.t"
Mo"n.omd Symantec End point Symantec
device Protection Bump for commands .
Environment Search Endpoint
Zearch command Protection
Manager
Key
@ 4 Endpoint acthity recorder data Red lines denote EDR:Network functionality
Searm et Blue lines denate EDR:Endpoint functionality
Orange lines denote EDR:Roaming functionality
Violet lines denctes commaon functionality

A similar approach can be seen for Defender for Endpoint. Essentially, a device with the
product installed will have an agent which can consist of several drivers and processes, which

gather telemetry from various aspects of the machine. Through this post and the next, we will
go over a few of those.

As an aside, in a Windows environment, Microsoft inherently have an edge here. While this is

currently aimed at "Large Enterprise" customers (or at least, we assume, given their price point
for Azure!), Microsoft's Defender and new Defender MDE can both access Microsoft's
knowledge of ... their own operating system, but also influence the development of new
operating system functionality. Long-term, it wouldn't be a surprise to see Microsoft Defender
MDE impact the EDR market in a similar way that Microsoft Defender impacted the anti-virus
market.

The general gist of all EDR is that telemetry from the agent is sent to the cloud where it's run
through various sandboxes and other test devices, and its behaviour can be further analysed
by machine and human operators.

4/52

https://docs.microsoft.com/en-us/microsoft-365/security/defender-endpoint/onboarding-endpoint-manager?view=o365-worldwide
https://azure.microsoft.com/en-gb/pricing/details/defender-for-cloud/

For the excessively curious reader, the following links go in to more detail about specific
vendor approaches to EDR architecture:

Briefly Reviewing and Comparing EDR Behaviour at a High Level

Without going hugely off-topic, just as how not every red team assessment is a red team, not
every EDR is an EDR.

The following "Gartner Magic Quadrant”, from Gartner's May 2021 Report roughly maps out
the EDR landscape. It's worth noting that CrowdStrike's hire of Alex Ionescu (a maintainer
for the Kernel in ReactOS) demonstrates that the current best-in-class EDR's heavily leverage
knowledge of internal Windows functionality to maximise their performance:

5/52

https://www.gartner.com/en/research/methodologies/magic-quadrants-research
https://www.gartner.com/reviews/market/endpoint-detection-and-response-solutions
https://www.crowdstrike.com/blog/author/alex-ionescu/
https://twitter.com/aionescu
https://reactos.org/

Microsoft
® @ CrowdStrike
® TrendMicr
@ SentindOne
@ Mcifee
ESET @ ® sophos
Frebye @ VMware Carbon Black
£
@ Cisco
Broadoom (Symantec)
4
.. Cybereason
@ BleckBerry (Cylance) ®
o L L Fortinet
|_
8 Check Point Software Technobgies
L
><
(V0]
E Panda Sa:unty.
-
'—
=
)
<
COMPLETENESS OF VISION > As of May 2021 © Gartner, Inc
Gartner

Source: Gartner (May 2021)

With so much of EDR functionality relying on implementing the methods we will discuss
here such as custom-written direct behaviours like kernel callbacks and hooking, being able
to quickly implement new Microsoft Windows features and develop your own custom ways of
reliably interacting with and interrupting malicious processes seems to be the distinguishing
feature of a modern EDR from its peers.

Another metric that EDR Vendors tend to use, especially because the reports are made so
public, is the Mitre Enginuity. The Attack Evaluations is described as thus:

6/52

https://mitre-engenuity.org/
https://mitre-engenuity.org/attackevaluations/

The MITRE Engenuity ATT&CK® Evaluations (Evals) program brings together product and
service providers with MITRE experts to collaborate in evaluating security solutions. The Evals

process applies a systematic methodology using a threat-informed purple teaming approach to

capture critical context around a solution’s ability to detect or protect against known adversary
behavior as defined by the ATT&CK knowledge base. Results from each evaluation are
thoroughly documented and openly published.

For example, with SentinelOne, their results can be seen in: SentinelOne Overview. The

overview goes through APT scenarios and marks whether or not the technique was detected
and can be used as a tracker for its "effectiveness". However, some have expressed feelings
online that this is not a thorough way to determine the effectiveness of the product.

When looking at EDRs from a purchasing perspective, there are a few methods of
determining effectiveness and we wanted to briefly highlight them here. The main thing to
consider is that some vendors do not necessarily provide more functionality than an anti-
virus. As with any product, ensure that you purchase the right solution for your businesses
needs.

User-land and Kernel-land

When discussing the kernel and user-land model, the following architectural image familiar
to any Computer Science graduate will be used:

Least privileged

Most privileged

Device drivers

Applications

A big majority of user activity will occur at ring 3, User Mode, surprisingly the Kernel
operates within Kernel Mode.

7/52

https://attackevals.mitre-engenuity.org/methodology-overview
https://sentinelone.com/
https://attackevals.mitre-engenuity.org/enterprise/participants/sentinelone?view=overview&adversary=wizard-spider-sandworm

For more information on this, see Windows Programming/User Mode vs Kernel Mode. A
worthwhile note is that cross-over between user mode and kernel mode can and does

happen. The following definitions from the previous link summarise the differences between
these layers:

e Ring 0 (also known as kernel mode) has full access to every resource. It is the mode in
which the Windows kernel runs.

e Rings 1 and 2 can be customized with levels of access but are generally unused unless
there are virtual machines running.

e Ring 3 (also known as user mode) has restricted access to resources.

Again, to save this post from being longer than it already is, see the Overview of Windows
Components documentation for more detail on the following diagram. However, its simply
showing the Windows architecture from processes, services, etc, crossing over to the Kernel.
We will cover more on this shortly.

8/52

https://en.wikibooks.org/wiki/Windows_Programming/User_Mode_vs_Kernel_Mode
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/overview-of-windows-components

Environment

System Processes Services Applications
Subsystems
_ [
cor‘-l;frr::‘:: r C E I o dows
r SvcHost.exe I
Task M
LSASS WinMgt.exe o 0s/2
_ Explorer
Winlogon Spoolsv.exe
User
Session Services.exe application POSIX
i Subsystem DLLs Windows DLLs
NTDLLDLL

User mode

Kernel mode

System
threads

I

System Service Dispatcher

Windows
USER,
GDI

Graphics
drivers

(Kernel mode callable interfaces)
I/O Mgr =9
w =2 a3 v | 2= ¥
08| 28 | 85 |838| 35 |§.8| 358 [of%
Device & 355 Qa2 F8 5535|268 g_ 2|la5 |=22
File Sys.] B B R (R) R 2z 3
Drivers =R
Kernel

Hardware Abstraction Layer (HAL)

Reprinted, by permission, from Inside Microsoft Windows 2000, 3rd Edition (ISBN 0-7356-1021-5). © 2000 by David A Solomon and

Applications that use the WinAPI will traverse through to the Native API (NTAPI) which

Hardware interfaces (buses, |/O devices, interrupts,

interval timers, DMA, memory cache control, etc.)

Mark E. Russinovich. All rights reserved.

operates within Kernel Mode.

As an example, API Monitor can be used to look at the calls being executed:

9/52

https://en.wikipedia.org/wiki/Native_API

CreateThread (NULL, 0, 0x000001e0¢7f30000, NULL, 0, NULL)

60 |onasaorapm |1 | oreendightexe 0x00000000000.. | |o.0003487
|61

9:14:54.978 PM 1 KERNELBASE.dII IQueryinformationActivationContext (1, NULL, NULL, 1, 0x000000822 STATUS_SUCCESS 0.0000010
‘62 9:14:54.978 PM 1 KERNELBASE.dII CreateThreadEx (0x00 8, THREAD_ALL_ACCESS, NULL, G. 0.0003426
‘63 9:14:54.978 PM 1 green-light.exe WaitForSingleObject (0x000 8, INFINITE)
1

|64 9:14:54.978 PM

2‘---[lt\':althrSmg\eomecl (Ox0

0c8, FALSE, NULL)

The above shows CreateThread being called and then, subsequently, NtCreateThreadEx
being called shortly after.

When a function within KERNEL32.DLL is called, for example CreateThread , it will make
a subsequent call to the NTAPI equivalent in NTDLL.DLL. For example, CreateThread calls
NtCreateThreadEx. This function will then fill RAX register with the System Service Number
(SSN). Finally, NTDLL.dII will then issue a SYSENTER instruction. This will then cause the
processor to switch to kernel mode, and jumps to a predefined function, called the System
Service Dispatcher. The following image is from Rootkits: Subverting the Windows Kernel, in
the section on Userland Hooks:

Usar process calls) FindMextFila
FindMexiFile in
karnal32_dll

'

NiQueryDirectoryFile
in nitdil.dil
SYSENTER or INT 2E

Usgerland

.
‘
i
i

Kernel 4
KiSystemSarvice

!

NitCQueryDirectoryFile
in ntoskrnl.exea

Drivers

A driver is a software component of Windows which allows the operating system and device
to communicate with each other. Here is an example from What is a driver?:

10/52

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createthread
https://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FNT%20Objects%2FThread%2FNtCreateThread.html
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/x64-architecture
https://web.archive.org/web/20210618080941/http://qcd.phys.cmu.edu/QCDcluster/intel/vtune/reference/vc311.htm
https://www.oreilly.com/library/view/rootkits-subverting-the/0321294319/
https://flylib.com/books/en/1.242.1.47/1/
https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/what-is-a-driver-

For example, suppose an application needs to read some data from a device. The application
calls a function implemented by the operating system, and the operating system calls a function
implemented by the driver. The driver, which was written by the same company that designed
and manufactured the device, knows how to communicate with the device hardware to get the
data. After the driver gets the data from the device, it returns the data to the operating system,

which returns it to the application.

In the case of Endpoint Protection, there are a few reasons why drivers are useful:

* The use of Callback Objects which allows for a function to be called if an action occurs.
For example, later on we will see the usage of PsSetLoadImageNotifyRoutine which is
the call-back object for DLLs being loaded.

e Access to privileged information from Event Tracing for Windows Threat Intelligence
which is only accessible from the Kernel with an ELAM Driver.

Hooks

DISCLAIMER: Before moving on, we highly recommend watching REcon 2015 - Hooking
Nirvana (Alex Ionescu) Please come back to this post after.

Another common feature of EDR's are the Userland Hooking DLLs. Typically, these are

loaded into a process on creation, and are used to proxy WinAPI Calls through themselves to

assess the usage, then redirect onto whichever DLL is being used. As an example, if
VirtualAlloc was being used, the flow would look something like this:

11/52

https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/callback-objects
https://pre.empt.dev/posts/maelstrom-edr-kernel-callbacks-hooks-and-callstacks/PsSetLoadImageNotifyRoutine
https://www.youtube.com/watch?v=pHyWyH804xE

PROGRAM.EXE!MessageBoxA

e M

jmp EDR.DLL!MessageBoxA Return EDR.DLL!MessageBoxA

Assess WinAPI Call >

Malicious Activity Detected...

v

ALERT

A hook allows for function instrumentation by intercepting WinAPI calls, by placinga jmp
instruction in place of the function address. This jmp will redirect the flow of a call. We will
take a look at this in action in the following section. By hooking a function call, it gives the
author the ability to:

Assess arguments
Allowing Execution
Blocking Execution

This isn't an exhaustive list, but should serve to demonstrate the functionality which we will
be coming across most when running our implants.

Examples of this in use are:

Understanding and Bypassing AMSI: Bypass AMSI by hooking the AmsiScanBuffer
call

RDPThief: Intercept and read credentials from RDP

Windows API Hooking: Redirect MessageBoxA

Import Address Table (IAT) Hooking: Redirect MessageBoxA

Intercepting Logon Credentials by Hooking msvi 0!SpAcceptCredentials: Intercept
and read credentials from msvi_0!SpAcceptCredentials

12/52

https://x64sec.sh/understanding-and-bypassing-amsi/
https://github.com/0x09AL/RdpThief
https://www.ired.team/offensive-security/code-injection-process-injection/how-to-hook-windows-api-using-c++
https://www.ired.team/offensive-security/code-injection-process-injection/import-adress-table-iat-hooking
https://www.ired.team/offensive-security/credential-access-and-credential-dumping/intercepting-logon-credentials-by-hooking-msv1_0-spacceptcredentials

e Protecting the Heap: Encryption & Hooks: Hook RtlAllocateHeap, RtIReAllocateHeap
and RtlFreeHeap to monitor heap allocations
e LdrLoadDIl Hook: Prevent DLLs being loaded

Hunting ELK

To access our kernel callbacks without having to write all of that intimidating logic from
scratch, we will be using [the] Hunting ELK (HELK):

The Hunting ELK or simply the HELK is one of the first open source hunt platforms with
advanced analytics capabilities such as SQL declarative language, graphing, structured
streaming, and even machine learning via Jupyter notebooks and Apache Spark over an ELK
stack. This project was developed primarily for research, but due to its flexible design and core
components, it can be deployed in larger environments with the right configurations and
scalable infrastructure.

We also use the following script is used from Exploring DLL Loads, Links, and Execution to
search through the Sysmon logs:

param (
[string]$Loader = "",
[string]$dll = ""
)
$eventId = 7
$logName = "Microsoft-Windows-Sysmon/Operational"

$Yesterday = (Get-Date).AddHours(-1)
$events = Get-WinEvent -FilterHashtable @{logname=$logName; id=$eventId ;StartTime =
$Yesterday;}

foreach($event in $events)
{

$msg = $event.Message.ToString()

$image = ($msg|Select-String -Pattern 'Image:.*').Matches.Value.Replace("Image:
RV

$imageLoaded = ($msg|Select-String -Pattern
'ImagelLoaded:.*').Matches.Value.Replace("ImageLoaded: ", "")

if($image.ToLower().contains($Loader.ToLower()) -And
$imageLoaded.ToLower().Contains($dll.ToLower()))

{

Write-Host Image Loaded $imageloaded

}

Kernel Callbacks

Kernel Callbacks, according to Microsoft:

13/52

https://mez0.cc/posts/protecting-the-heap/
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-rtlallocateheap
http://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FMemory%20Management%2FHeap%20Memory%2FRtlReAllocateHeap.html
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-rtlfreeheap
https://gist.github.com/bats3c/59932dfa1f5bb23dd36071119b91af0f
https://mez0.cc/posts/exploring-dll-loads/
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/callback-objects

The kernel's callback mechanism provides a general way for drivers to request and provide
notification when certain conditions are satisfied.

Essentially, they allow drivers to receive and handle notifications for specific events. From
veil-ivy/block create process.cpp, here is an implementation of using the

PsSetLoadImageNotifyRoutine Callback to BLOCK process creation:

14/52

https://gist.github.com/veil-ivy/f736ad22dbc388ca88cbf47ef8ebf69e

#include <ntddk.h>

#define BLOCK_PROCESS "notepad.exe"

static OB_CALLBACK_REGISTRATION obcallback_registration;
static OB_OPERATION_REGISTRATION oboperation_callback;
#define PROCESS_CREATE_THREAD (0x0002)

#define PROCESS_CREATE_PROCESS (0x0080)

#define PROCESS_TERMINATE (6x0001)
#define PROCESS_VM_WRITE (0x0020)
#define PROCESS_VM_READ (0x0010)

#define PROCESS_VM_OPERATION (Ox0008)

#define PROCESS_SUSPEND_RESUME (0x0800)

static PVOID registry = NULL;

static UNICODE_STRING altitude = RTL_CONSTANT_STRING(L"300000");

//1: kd > dt nt!_EPROCESS ImageFileName

//+ 0x5a8 ImageFileName : [15] UChar

static const unsigned int imagefilename_offset = 0x5a8;

auto drv_unload(PDRIVER_OBJECT DriverObject) {
UNREFERENCED_PARAMETER(DriverObject);
ObUnRegisterCallbacks(registry);

}

OB_PREOP_CALLBACK_STATUS

PreOperationCallback(
In PVOID RegistrationContext,
Inout POB_PRE_OPERATION_INFORMATION PreInfo

) {
UNREFERENCED_PARAMETER(RegistrationContext);

if (strcmp(BLOCK_PROCESS, (char*)PreInfo->0Object + imagefilename_offset) == 0) {
if ((PreInfo->Operation == OB_OPERATION_HANDLE_CREATE))

{

if ((PreInfo->Parameters->CreateHandleInformation.OriginalDesiredAccess &
PROCESS_TERMINATE) == PROCESS_TERMINATE)
{
PreInfo->Parameters->CreateHandleInformation.DesiredAccess &=
~PROCESS_TERMINATE;

}

if ((PreInfo->Parameters->CreateHandleInformation.OriginalDesiredAccess &
PROCESS_VM_READ) == PROCESS_VM_READ)
{
PreInfo->Parameters->CreateHandleInformation.DesiredAccess &=
~PROCESS_VM_READ,

}

if ((PreInfo->Parameters->CreateHandleInformation.OriginalDesiredAccess &
PROCESS_VM_OPERATION) == PROCESS_VM_OPERATION)

{
PreInfo->Parameters->CreateHandleInformation.DesiredAccess &=
~PROCESS_VM_OPERATION;

}

15/52

if ((PreInfo->Parameters->CreateHandleInformation.OriginalDesiredAccess &
PROCESS_VM_WRITE) == PROCESS_VM_WRITE)
{
PreInfo->Parameters->CreateHandleInformation.DesiredAccess &=
~PROCESS_VM_WRITE;

}

return OB_PREOP_SUCCESS,
}
VOID
PostOperationCallback(
In PVOID RegistrationContext,
In POB_POST_OPERATION_INFORMATION PostInfo

UNREFERENCED_PARAMETER(RegistrationContext);
UNREFERENCED_PARAMETER(PostInfo);

extern "C" auto DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING
RegistryPath) -> NTSTATUS {
UNREFERENCED_PARAMETER(RegistryPath);
DriverObject->DriverUnload = drv_unload;
auto status = STATUS_SUCCESS;
static OB_CALLBACK_REGISTRATION ob_callback_register;
static OB_OPERATION_REGISTRATION oboperation_registration;
oboperation_registration.Operations = OB_OPERATION_HANDLE_CREATE;
oboperation_registration.ObjectType = PsProcessType;
oboperation_registration.PreOperation = PreOperationCallback;
oboperation_registration.PostOperation = PostOperationCallback;
ob_callback_register.Altitude = altitude;
ob_callback_register.Version = OB_FLT_REGISTRATION_VERSION;
ob_callback_register.OperationRegistrationCount = 1;
ob_callback_register.OperationRegistration = &oboperation_registration;
status = ObRegisterCallbacks(&ob_callback_register, ®istry);
if (INT_SUCCESS(status)) {
DbgPrint("failed to register callback: %x \r\n", status);
}

return status;

In this instance, ObRegisterCallbacks is being used to block the creation of notepad .
An Endpoint Protection solution may not use it in this way, but its very likely this type of
callback will be used as telemetry to determine if malicious activity is occurring.

In this section, we are going to discuss PsSetLoadImageNotifyRoutine. This callback is

responsible for exactly what it says: Sending a notification when an image is loaded into a
process. For an example implementation, see Subscribing to Process Creation, Thread

16/52

https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-pssetloadimagenotifyroutine
https://www.ired.team/miscellaneous-reversing-forensics/windows-kernel-internals/subscribing-to-process-creation-thread-creation-and-image-load-notifications-from-a-kernel-driver#code

Creation and Image Load Notifications from a Kernel Driver.

Triggering the callback

To understand how PsSetLoadImageNotifyRoutine works, we need to determine what its
trigger is.

Assuming the following code:

#include <windows.h>
#include <stdio.h>

int main()

{
HMODULE hModule = LoadLibraryA("winhttp.dl1l");
printf("WinHTTP: Ox%p\n", hModule);
return 0;

}

When LoadLibraryA is called, the function registers a callback to notify the driver than this
has happened. In order to see this log in HELK, we use the script we mentioned earlier on.

If we filter for main.exe , which is the above code, we can see the winhttp.dll loaded:

Loaded

LUdUEL
Loaded
Loaded
nel C
nitdll.dll

In Elastic, we can also use the following KQL:

process_name : "main.exe" and event_id: 7 and ImagelLoaded: winhttp.dll

event_original_message holds the whole log:

17/52

https://www.ired.team/miscellaneous-reversing-forensics/windows-kernel-internals/subscribing-to-process-creation-thread-creation-and-image-load-notifications-from-a-kernel-driver#code

Image loaded:

RuleName: -

UtcTime: 2022-04-29 18:50:10.780

ProcessGuid: {3ebcda8b-3362-626c-a200-000000004f00}
ProcessId: 6716

Image: C:\Users\admin\Desktop\main.exe

ImagelLoaded: C:\Windows\System32\winhttp.dll
FileVersion: 10.0.19041.1620 (WinBuild.160101.0800)
Description: Windows HTTP Services

Product: Microsoft® Windows® Operating System
Company: Microsoft Corporation

OriginalFileName: winhttp.dll

Hashes:
SHA1=4F2A9BB575D38DBDC8DBB25A82BDF1ACOC41E78C, MD5=FB2B6347C25118C3AE19E9903C85B451, SHA

Signed: true

Signature: Microsoft Windows
SignatureStatus: Vvalid

User: PUNCTURE\admin

To see what this is doing, we can float through the ReactOS source code:

This is good to get some familiarity with how this would work. However, in Bypassing Image
Load Kernel Callbacks, by batsec, identifies that the trigger is in NtCreateSection call which is
then called in the LdrpCreateDllSection . So, we don't need to spend too much time
debugging to find this.

Spoofing Loads

In the article from batsec, they show that the aforementioned events can be spammed with
the following code:

18/52

https://doxygen.reactos.org/index.html
https://www.mdsec.co.uk/2021/06/bypassing-image-load-kernel-callbacks/
https://twitter.com/_batsec_
https://doxygen.reactos.org/dc/de2/ARM3_2section_8c.html#a401a494e453d85c832f9bd8aa174c405

#include <stdio.h>
#include <windows.h>
#include <winternl.h>

#define DLL_TO_FAKE_LOAD L"\\??\\C:\\windows\\system32\\calc.

BOOL FakeImagelLoad()

{

HANDLE hFile;

SIZE_T stSize = 0;

NTSTATUS ntStatus = 0;

UNICODE_STRING objectName;

HANDLE SectionHandle = NULL;

PVOID BaseAddress = NULL;

IO_STATUS_BLOCK IoStatusBlock;
OBJECT_ATTRIBUTES objectAttributes = { 0 };

RtlInitUnicodeString(
&objectName,
DLL_TO_FAKE_LOAD

)

InitializeObjectAttributes(
&objectAttributes,
&objectName,
OBJ_CASE_INSENSITIVE,
NULL,

NULL

);

ntStatus = NtOpenFile(
&hFile,
0x100021,
&objectAttributes,
&IoStatusBlock,
5,
0x60

);

ntStatus = NtCreateSection(
&SectionHandle,
0xd,
NULL,
NULL,
0x10,
SEC_IMAGE,
hFile

);

ntStatus = NtMapViewOfSection(
SectionHandle,
(HANDLE) 0XFFFFFFFFFFFFFFFF,

exe"

19/52

&BaseAddress,
NULL,

NULL,

NULL,
&stSize,

ox1,
Ox800000,
0x80

)i

NtClose(SectionHandle);

int main()
{
for (INT i = 0; i1 < 10000; i++)
{
FakeImageLoad();

return 0;

The following screenshot is also from that blog post:

mage: Ipaded (rule Imageload)

Operational Hurber of pvesby 12007

Lisegl Dt aned Tiime St Evest 1D Taik Categiory L}
(Flinfamation TADA2021 053302 Sysman 3 Process tereninabed [rule: Process Terminaie)
(Plinfarmaticn 140672001 (23300 Syuman T image loaded (rule: Imageload)
(Einfarmation AR DR Sysman T image Inaded (rules Imageload)
(Hintormation TADAA02T 05 a2 Sysman T image lnaded (rule Imageload)
(Flinfamaticn DA/ 2021 053342 Syamaen T image lnaderl (rule Imagel oarl)
(i)infarmation 06200 (&30 Smman T image Inaded (rule Imagel oad)
(linfarmation T

T 00 Dh A Srmaan

(Plinfarmaticn 1406/ A1 53342 Symon T

e T ———T)
(ilinformation LT 0 ka2 Sysman 7
€

mage lpaded (rule Imasgeload) ¥

Frart 7, fyzmon

General Dbty

image laaded:
Fradwfurrar: -
it T H21-06- 146 15 B2 0074

PeocessGusd: [Selckole- Shdd-B0cT-abo- D0O0M0eT00

Frosuct Micrmnacft® Windoms® Opersting fyviem

Company: Micrsoft Comporation

kg il ehiaeres CALCEXE

Hashen W05 SHACSNIE0SE0FECAT BEDDTIC TIASF, SHA2 S 511050 BDSEEDCOC PO BEGEBESF TIA S IFCIFAR F L EOERA TDTDOL IFEBODA321F, IMPHASH= BEEAASIDOSEA1 1501 JBIFMECDTTA TS
SHha b

Signature: Micrasoft Windeows

Sigrature Haturi: Valid

batsec identified that by making the call to NtCreateSection , the event can be spammed
whilst not actually loading a DLL. Similarly, the spoof can be somewhat

weaponised/manipulated to do other things by updating the LDR _DATA TABLE ENTRY
struct:

20/52

https://www.geoffchappell.com/studies/windows/km/ntoskrnl/inc/api/ntldr/ldr_data_table_entry.htm

typedef struct _LDR_DATA_TABLE_ENTRY {
LIST_ENTRY InLoadOrderLinks;
LIST_ENTRY InMemoryOrderModulelList;
LIST_ENTRY InInitializationOrderModulelList;
PVOID Dl1Base;
PVOID EntryPoint;
ULONG SizeOfImage;
UNICODE_STRING FullDllName;
UNICODE_STRING BaseDllName;
ULONG Flags;
USHORT LoadCount;
USHORT TlsIndex;
union {
LIST_ENTRY HashLinks;
struct
{
PVOID SectionPointer;
ULONG CheckSum;

}i
}
union {
ULONG TimeDateStamp;
PVOID LoadedImports;
}

PVOID EntryPointActivationContext;
PVOID PatchInformation;
} LDR_DATA_TABLE_ENTRY, *PLDR_DATA_TABLE_ENTRY;

In this example, we will use CertEnroll.d11 for no reason at all:

UNICODE_STRING uFullPath;
UNICODE_STRING uFileName;

WCHAR* dllPath L"C:\\Windows\\System32\\CertEnroll.d11l";
WCHAR* dllName = L"CertEnroll.dl1l";

RtlInitUnicodeString(&uFullPath, dllPath);
RtlInitUnicodeString(&uFileName, dllName);

Now we just need to step through the struct and fill out the required information.

Load Time:

status = NtQuerySystemTime(&pLdrEntry2->LoadTime);

Load Reason (LDR_DLL_LOAD REASON):

pLdrEntry2->LoadReason = LoadReasonDynamicLoad;

Because the Loader needs a module base address, we'll just load shellcode for

CALC.EXE here (we'll discuss this part more afterwards):

21/52

https://github.com/processhacker/phnt/blob/461f7b6462bb4c81452757232eaaa41b16be59a4/ntldr.h#L87

SIZE_T bufSz = sizeof(buf);

LPVOID pAddress = VirtualAllocEx(hProcess, 0, bufSz, MEM_COMMIT | MEM_RESERVE,

PAGE_READWRITE);
memcpy (pAddress, buf, sizeof(buf));

Hashed Base Name (RtlHashUnicodeString):

pLdrEntry2->BaseNameHashValue = UnicodeToHash(uFileName, FALSE);

Fill out the rest of the struct:

pLdrEntry2->ImageDll = TRUE;
pLdrEntry2->LoadNotificationsSent = TRUE;
pLdrEntry2->EntryProcessed = TRUE;
pLdrEntry2->InLegacylLists = TRUE;
pLdrEntry2->InIndexes = TRUE;
pLdrEntry2->ProcessAttachCalled = TRUE;
pLdrEntry2->InExceptionTable = FALSE;
pLdrEntry2->0riginalBase = (ULONG_PTR)pAddress;
pLdrEntry2->D11Base = pAddress;
pLdrEntry2->SizeOfImage = 6969;
pLdrEntry2->TimeDateStamp = 0;
pLdrEntry2->BaseDl1lName = uFileName;
pLdrEntry2->FullDl1Name = uFullPath;
pLdrEntry2->0bsoleteLoadCount = 1;

pLdrEntry2->Flags = LDRP_IMAGE_DLL | LDRP_ENTRY_INSERTED | LDRP_ENTRY_PROCESSED |

LDRP_PROCESS_ATTACH_CALLED;

Complete the DdagNode struct:

laues view ouis wsais i
2 Refresh ¢ Options ‘ E8 Find

“rocesses Services Metwork Disk

handles or DLLs 3#* System information | OFE X

Mame PID CPU |/Ototal.. Privateb.. Username Description
v [] spoof-load.exe 4364 540 kE PUNCTURE\admin
e}
General Statistics Performance Threads Token Modules Memory Environment Handles GPU Disk and Metwork Comment
=

Mame Base address Size Description
apphelp.dl 0x7ffa9803... 576 kB Application Compatibility Clie...
CertEnroll.dll 0x150000 6.81kB Microsoft® Active Directory...
kernel32.dl Ox7ffadc3s... 760kB Windows NT BASE APT Clien...
KernelBase.dl Ox7ffadae2... 2.78MB Windows NT BASE API Clien...
locale.nls 0x70000 804 k8
msvert.dil ox7ffash2g... 632kB Windows NT CRT DLL
ntdll.dll 0x7ffa%d0g... 196 ME NT Layer DLL
spoof-load.exe 0x400000 68 kB

finish

22/52

https://pre.empt.dev/posts/maelstrom-edr-kernel-callbacks-hooks-and-callstacks/RtlHashUnicodeString

pLdrEntry2->DdagNode = (PLDR_DDAG_NODE)HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY,
sizeof (LDR_DDAG_NODE));

if (!pLdrEntry2->DdagNode)

{

return -1;

pLdrEntry2->NodeModulelLink.Flink = &pLdrEntry2->DdagNode->Modules;
pLdrEntry2->NodeModulelLink.Blink = &pLdrEntry2->DdagNode->Modules;
pLdrEntry2->DdagNode->Modules.Flink = &pLdrEntry2->NodeModulelLink;
pLdrEntry2->DdagNode->Modules.Blink = &pLdrEntry2->NodeModulelLink;
pLdrEntry2->DdagNode->State = LdrModulesReadyToRun;
pLdrEntry2->DdagNode->LoadCount = 1;

Here is it in action:

launE viEw s wsEis g
2 Refresh {3 Options ‘ @& Find

rocesses Services Network Disk

handles or DLLs z#= System information | = _ﬂ 4

Name PID CPU |/Ototal.. Privateb.. Username Description
v [1] spoof-load.exe 4364 340kE PUNCTURE\admin

I

General Statistics Performance Threads Token Modules Memory Environment Handles GPU Disk and Metwork ~ Comment

Name Base address Size Description
apphelp.dil 0x7ffa9803... 576 kB Application Compatibility Clie...
CertEnroll.dll 0x150000 6.81kB Microsoft® Active Directory...
kernel32.dl Ox7ffadc35... 7s0kB Windows NT BASE API Clien...
KernelBase.dll Ox7ffadae2... 2.78MB Windows NT BASE API Clien...
locale.nls 0x70000 804kB
Window:
mevert.dil O0x7ffash2s... ©832kB Windows NT CRT DLL rtEnroll.dll
ntdll.dll 0x7ffasd0g... 1.96MB NT Layer DLL
spoof-load.exe 0x400000 68 kB

to finish inject)

In the above, CertEnroll.dl1l can be seenloaded in the spoof-load.exe process.

Remember, this is not loaded. The only thing that happened here is that a string for that DLL

was passed in. We then told the loader than the base address of the DLL is that of the
shellcode:

23/52

awnE wiew s wsEis omp
}:";-Refresh .+ Options ‘ 8 Find handles or DLLs %% System information | 0 ;_3 4

rocesses Services Network Disk

Name PID CPU I/Ototal.. Privateb.. Username Description
v [&] spoof-load.exe 6964 448 kB PUNCTURE\admin
[spoof-load.exe (6964) Properties e [m]

General Statistics Performance Threads Token Modules Memory Environment Handles GPU Disk and Metwork Comment

Name Base address Size Description

CertEnroll.dll 0x140000 6.81kB Microsoft® Active Directory...
kernel32.dl Ox7ffadc35... 760kB Windows NT BASE API Clien...
KernelBase.dl Ox7ffagze2... 2.78MB Windows NT BASE API Clien...
locale.nls 0x70000 804k

mevert.di Ox7ffadb29... 632kB Windows NT CRT DLL

nidll.dll 0x7ffa9d0s. .. 1.96 MB NT Layer DLL
spoof-load.exe 03400000 68 kB

Looking at this technique, there are two obvious use cases:

e Tie the implant base address (C2IMPLANT.REFLECTIVE.DLL) to a legitimate DLL
(ADVAP32.DLL) causing it to appear less suspicious

e Remove an IOC Library (WinHTTP.DLL) by loading ADVAPI32.DLL but pointing it to
a WinHTTP.DLL base address.

Bypassing_the Callback

We aren't going to reinvent the wheel here, its explained wonderfully in Bypassing Image
Load Kernel Callbacks. Essentially, to cause the callback to not trigger, a full loader needs to
be rewritten. The conclusion to that research was Darkl.oadLibrary:

In essence, DarkLoadLibrary is an implementation of LoadLibrary that will not trigger
image load events. It also has a ton of extra features that will make life easier during malware
development.

A proof-of-concept usage of this library was taken from DLL Shenanigans.

Let's inspect it:

admin\Desk dar g tem32\winhttp.dll
inhttp.dll

ad from disk!

24/52

https://www.mdsec.co.uk/2021/06/bypassing-image-load-kernel-callbacks/
https://github.com/bats3c/DarkLoadLibrary
https://github.com/mez-0/pantry/tree/main/cpp/dll-shenanigans

Then the above 3 commands are ran:

e dark-loader usesthe LOAD_LOCAL FILE flagto load a disk from disk, as
LoadLibraryA does.

e The Image Load logs are searched for Kernel32 to make sure logs were found.

e winhttp.dll was searched, and nothing returned

To avoid the call to NtCreateSection which was identified to be registering the callback,
the section mapping is done with NtAllocateVirtualMemory or VirtualAlloc , asseen
in MapSections().

Kernel Callback Conclusion

Obviously, PsSetlLoadImageNotifyRoutine is notthe only callback, and there are quite a

few other callbacks readily available. Kernel Callback Functions has a (non-comprehensive!)
list:

e CmRegisterCallbackEx()

e ExAllocateTimer ()

e ExInitializeWorkItem()

* ExRegisterCallback()

* FsRtlRegisterFileSystemFilterCallbacks()
e ToInitializeThreadedDpcRequest()

e ToQueueWorkItem()

e ToRegisterBootDriverCallback()

e ToRegisterContainerNotification()

e TIoRegisterFsRegistrationChangeEx()
e ToRegisterFsRegistrationChangeMountAware()
e ToRegisterPlugPlayNotification()

e ToSetCompletionRoutineEx()

e ToWMISetNotificationCallback()

e KeExpandKernelStackAndCalloutEx()

e KelInitializeApc()

e KeInitializeDpc()

e KeRegisterBugCheckCallback()

¢ KeRegisterBugCheckReasonCallback()
e KeRegisterNmiCallback()

e KeRegisterProcessorChangeCallback()
e KeRegisterProcessorChangeCallback()
* ObRegisterCallbacks()

* PoRegisterDeviceNotify()

* PoRegisterPowerSettingCallback()

* PsCreateSystemThread()

25/52

https://github.com/bats3c/DarkLoadLibrary/blob/047a0b0bf1d655470e0c70e247352bba1a748cbc/DarkLoadLibrary/src/ldrutils.c#L26
https://codemachine.com/articles/kernel_callback_functions.html

e PsSetCreateProcessNotifyRoutineEx()

e PsSetCreateThreadNotifyRoutine()

e PsSetLoadImageNotifyRoutine()

* SeRegisterLogonSessionTerminatedRoutine()
e TmEnableCallbacks()

One that would be powerful would be PsSetCreateProcessNotifyRoutineEx() asthe
notification for process creation would be crippling for system telemetry. At the time of
writing, we are not aware of any research in this space. Although to be totally honest, we
haven't looked.

Hooking_and Process Instrumentation

In this section, we are going to look at some popular, but elementary, hooking techniques.

Hooking Example

Lets look at two examples before looking into some libraries - Manual Hooks in x86 and
NtSetProcessInformation Callbacks.

Manual Hooks (x86)

Using Windows API Hooking as a x86 example (easier to demonstrate), we can adapt the
code to look something like this:

26/52

https://www.ired.team/offensive-security/code-injection-process-injection/how-to-hook-windows-api-using-c++

#include <windows.h>
#include <stdio.h>

#define BYTES_REQUIRED 6

int __stdcall HookedMessageBoxA(HWND hwnd, LPCSTR 1lpText, LPCSTR lpCaption, UINT
uType)

{
printf("\n[HOOKED MESSAGEBOXA]\n");
printf("-> Arguments:\n");
printf(" 1. 1lpText: %s\n", 1lpText);
printf(" 2. 1lpCaption: %s\n", 1lpCaption);
printf(" 3. uType: %ld\n", uType);
return 1;
}
void PrintHexA(char* data, int sz)
{
printf(" ->");
for (int 1 = 0; i < sz; i++)
{
printf("\\x%02hhX", data[i]);
}
printf("\n");
}

int main()

SIZE_T lpNumberOfBytesRead = 0;

HMODULE hModule = nullptr;

FARPROC pMessageBoxAFunc = nullptr;

char pMessageBoxABytes[BYTES_REQUIRED] = {};

void* pHookedMessageBoxFunc = &HookedMessageBoOXxA;

hModule = LoadLibraryA("user32.d11");
if (!hModule)
{

return -1,

pMessageBoxAFunc = GetProcAddress(hModule, "MessageBoxA");
printf("-> Original MessageBoxA: 0x%p\n", pMessageBoxAFunc);

if (ReadProcessMemory(GetCurrentProcess(), pMessageBoxAFunc, pMessageBoxABytes,
BYTES_REQUIRED, &lpNumberOfBytesRead) == FALSE)

{
printf("[!] ReadProcessMemory: %1ld\n", GetLastError());
return -1;

27/52

printf("-> MessageBoxA Hex:\n");
PrintHexA(pMessageBoxABytes, BYTES_REQUIRED);
printf("-> Hooked MessageBoxA: 0x%p\n'", pHookedMessageBoxFunc);

char patch[BYTES_REQUIRED] = { 0 };
memcpy_s(patch, 1, "\x68", 1);

memcpy_s(patch + 1, 4, &pHookedMessageBoxFunc, 4);
memcpy_s(patch + 5, 1, "\xC3", 1);

printf("-> Patch Hex:\n");
PrintHexA(patch, BYTES_REQUIRED);

if (WriteProcessMemory(GetCurrentProcess(), (LPVOID)pMessageBoxAFunc, patch,
sizeof(patch), &lpNumberOfBytesRead) == FALSE)

{
printf("[!] WriteProcessMemory: %ld\n", GetLastError());

return -1,

MessageBoxA(NULL, "AAAAA", "BBBBB", MB_OK);

return 0;

}

Lets walk through this...

First off, MessageBoxA isin User32.dll so we load that:

hModule = LoadLibraryA("user32.d11");
if (!hModule)
{

return -1,
}

Next, we need the address of USER32!MessageBoxA :

pMessageBoxAFunc = GetProcAddress(hModule, "MessageBoxA");

With that address, the bytes can now be read:

if (ReadProcessMemory(GetCurrentProcess(), pMessageBoxAFunc, pMessageBoxABytes,
BYTES_REQUIRED, &lpNumberOfBytesRead) == FALSE)

{
printf("[!] ReadProcessMemory: %ld\n", GetLastError());

return -1;

28/52

This will read the first 6 bytes of the function call which will later be updated to hold a push
to the new function, resultingina jmp .

The bytes:

\X8B\XFF\Xx55\x8B\XEC\x83

Now, the patch needs to be built. This is done like so:
char patch[BYTES_REQUIRED] = { 0 };
memcpy_s(patch, 1, "\x68", 1);

memcpy_s(patch + 1, 4, &pHookedMessageBoxFunc, 4);
memcpy_s(patch + 5, 1, "\xC3", 1);

The hex produced from this:

AX68\x12\x12\xBD\x00\XC3

Using defuse.ca to disassemble this, the above can be translated into Assembly:

0: 68 12 12 bd 00 push 0xbd1212
5: c3 ret

Note that 0x00BD1212 being pushed is the address of the function we want to jump to
INSTEAD of the USER32 ! MessageBoxA call:

void* pHookedMessageBoxFunc = &HookedMessageBoOXxA;

At this point, the patch is prepared. It's going to replace the first 6 bytes with a push to the
new address.

The next thing is to actually write this new address in:

if (WriteProcessMemory(GetCurrentProcess(), (LPVOID)pMessageBoxAFunc, patch,
sizeof(patch), &lpNumberOfBytesRead) == FALSE)

{
printf("[!] WriteProcessMemory: %ld\n", GetLastError());
return -1;

}
Then, in the disassembly:

00BB1212 jmp HookedMessageBoxA (OBB1A80h)

A jmp is added to jump to the new function. Allowing this to run calls the hooked function
and the arguments are printed:

29/52

https://defuse.ca/online-x86-assembler.htm

int _ stdcall HookedMessageBoxA(HWND hwnd, LPCSTR 1lpText, LPCSTR lpCaption, UINT
uType)
{

printf("\n[HOOKED MESSAGEBOXA]\n");

printf("-> Arguments:\n");

printf(" 1. 1lpText: %s\n", 1lpText);

printf(" 2. 1lpCaption: %s\n", lpCaption);

printf(" 3. uType: %1ld\n", uType);

return 1;

Running it:

HOOKED MESSAC

Mot Hooked
tion: Not Hooked
uType: @

NtSetProcessinformation Callbacks

Setting up the callback is straight forward:

30/52

PROCESS_INSTRUMENTATION_CALLBACK_INFORMATION InstrumentationCallbackInfo;
InstrumentationCallbackInfo.Version = 0;
InstrumentationCallbackInfo.Reserved = 0;
InstrumentationCallbackInfo.Callback = CALLBACK_FUNCTION_GOES_HERE;
HANDLE hProcess = (HANDLE)-1;

HMODULE hNtdll = GetModuleHandleA("ntdll");
if (hNtdll == nullptr)
{

return FALSE;

_NtSetInformationProcess pNtSetInformationProcess =
reinterpret_cast<_NtSetInformationProcess>(GetProcAddress(hNtdll,
"NtSetInformationProcess"));

if (pNtSetInformationProcess == nullptr)

{
return FALSE;

NTSTATUS Status = pNtSetInformationProcess(hProcess,
(PROCESS_INFORMATION_CLASS)ProcessInstrumentationCallback,
&InstrumentationCallbackInfo, sizeof(InstrumentationCallbackInfo));
if (NT_SUCCESS(Status))

{

return TRUE;
}
else
{

return FALSE;
}

Where the callback function is included as follows:

InstrumentationCallbackInfo.Callback = CALLBACK_FUNCTION_GOES_HERE;

CALLBACK_FUNCTION GOES HERE is a function to use as the callback and then
ProcessInstrumentationCallback 1is:

#define ProcessInstrumentationCallback 0x28

An additional point is that by setting the callback to NULL , any callbacks sent will be
removed. This was documented by modexp in Bypassing User-Mode Hooks and Direct

Invocation of System Calls for Red Teams.

This talk was then built on by Secrary and again in Secrary's blog Hooking via
InstrumentationCallback. The original code from Alex Ionescu can be found in the

HookingNirvana repo.

31/52

https://twitter.com/modexpblog
https://www.mdsec.co.uk/2020/12/bypassing-user-mode-hooks-and-direct-invocation-of-system-calls-for-red-teams/
https://github.com/secrary/
https://secrary.com/Random/InstrumentationCallback/
https://github.com/ionescu007/HookingNirvana

Borrowing the hooks from Secrary gives access to the function and return value, giving us the

following Assembly:

.code

PUBLIC asmCallback
EXTERN Hook:PROC

asmCallback PROC

push
push
push
push
push
push
push
push
push
push
push

; without this it crashes :
1000h
rax
rio

sub
mov
mov

call Hook

add

pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop

jmp

rax ;

rcx
RBX
RBP
RDI
RSI
RSP
R12
R13
R14
R15

rsp,
rdx,
rcx,

rsp,

R15
R14
R13
R12
RSP
RSI
RDI
RBP
RBX
rcx
rax

R10

4

return value

1000h

asmCallback ENDP

end

Hook: With the assembly written, we also need to write the function called by the assembly,
allowing us to take in all of the provided registers and return their function names:

32/52

DWORD64 counter = 0;
bool flag = false;

EXTERN_C VOID Hook(DWORD64 R10, DWORD64 RAX/* ... */) {

// This flag is there for prevent recursion

if (!flag)

{
flag = true;
counter++;

CHAR buffer[sizeof(SYMBOL_INFO) + MAX_SYM_NAME] = { 0 };
PSYMBOL_INFO pSymbol = (PSYMBOL_INFO)buffer;
pSymbol->SizeOfStruct = sizeof (SYMBOL_INFO);
pSymbol->MaxNameLen = MAX_SYM_NAME;

DWORD64 Displacement;

// MSDN: Retrieves symbol information for the specified address.

BOOLEAN result = SymFromAddr (GetCurrentProcess(), R10, &Displacement,
pSymbol);

if (result) {

printf("%s => 0x%11lx\n", pSymbol->Name, RAX);

flag = false;

Then, in main , Symlnitialize is called, then the instrumentation is set:

int main()

{
SymSetOptions(SYMOPT_UNDNAME) ;
SymInitialize(GetCurrentProcess(), NULL, TRUE);
SetInstrumentationCallback();
return 0;

}

Running this completed example, we can now see all of the function names and return codes:

The hook could be updated to get access to the arguments for a full analysis, but we didn't
feel the need to look into that for this initial proof-of-concept.

One final mention for this technique is that it can be used to enumerate the the System
Service Number (SSN) for a given function call. This was documented by Paranoid Ninja in
EtwTi-Syscall-Hook and Release v0.8 - Warfare Tactics, where the hook is significantly
smaller (at the cost of doing far less):

33/52

http://10.10.0.46/data-production/pdf_1657670184_c18fe6.html
https://twitter.com/NinjaParanoid
https://github.com/paranoidninja/EtwTi-Syscall-Hook
https://bruteratel.com/release/2022/01/08/Release-Warfare-Tactics/

VOID HuntSyscall(ULONG_PTR
ReturnAddress, ULONG_PTR
retSyscallPtr) {

PVOID ImageBase = ((EtwPPEB)
(((_EtwPTEB) (NtCurrentTeb()-
>ProcessEnvironmentBlock))))-
>ImageBaseAddress;

PIMAGE_NT_HEADERS NtHeaders =
RtlImageNtHeader (ImageBase);

if (ReturnAddress >=
(ULONG_PTR)ImageBase && tualMemo
ReturnAddress < NEP - tualMemo
(ULONG_PTR)ImageBase + NtHeaders-
>0ptionalHeader.SizeOfImage) {

printf("[+] Syscall
detected: Return address: Ox%X
Syscall value: Ox%X\n",
ReturnAddress, retSyscallPtr);

}

And its companion assembly:

section .text ;
=

extern HuntSyscall
global hookedCallback

i

umeInformationFile

hookedCallback: yVolumeInformationFile
push rcx NEQue 'olumeInformationFile
push rdx NEA rtualMemory =:
mov rdx, [r10-0x10] A ‘ _ alMemory =:
call HuntSyscall Vel
pop rdx
pop rcx
ret

1Memory =:
tualMemo

Mt
NtClose
NtClose

NtClose =

Bypassing Userland Hooks

Back in 2019 Cneelis published Red Team Tactics: Combining Direct System Calls and sRDI

to bypass AV/EDR which had a subsequent release of SysWhispers:

34/52

https://twitter.com/Cneelis
https://outflank.nl/blog/2019/06/19/red-team-tactics-combining-direct-system-calls-and-srdi-to-bypass-av-edr/
https://github.com/jthuraisamy/SysWhispers

SysWhispers provides red teamers the ability to generate header/ASM pairs for any system call
in the core kernel image (ntoskrnl.exe). The headers will also include the necessary type

definitions.

Then modexp provided an update which corrected a shortcoming with version 1 and gave us
SysWhispers2:

The specific implementation in SysWhispers?2 is a variation of @modexpblog’s code. One
difference is that the function name hashes are randomized on each generation. @ElephantSe4l,
who had published this technique earlier, has another implementation based in C++17 which is
also worth checking out.

The main change is the introduction of base.c which is a result of Bypassing User-Mode
Hooks and Direct Invocation of System Calls for Red Teams.

And again, KlezVirus produced SysWhispers3:

The usage is pretty similar to SysWhispers2, with the following exceptions:

It also supports x86/WoW 64
It supports syscalls instruction replacement with an EGG (to be dynamically replaced)

It supports direct jumps to syscalls in x86/x64 mode (in WOW64 it's almost standard)

It supports direct jumps to random syscalls (borrowing @ElephantSeal's idea)

A better explanation of these features are better outlined i the blog post SysWhispers is dead,

long live SysWhispers!

This is just one suite of SysCall techniques, there's a whole other technique based on Heavens
Gate.

See Gatekeeping Syscalls for a breakdown on these different techniques.
EVEN THEN! There are more:

e FreshyCalls
e EtwTi-Syscall-Hook
e FireWalker

RECAP!

With the ability to transition into Kernel-Mode, we have the ability to go unseen by the User-
land hooks. So, lets build something.

For our example, we are going to use MinHook:

The Minimalistic x86/x64 API Hooking Library for Windows

35/52

https://twitter.com/modexpblog
https://github.com/jthuraisamy/SysWhispers2/blob/main/data/base.c
https://github.com/jthuraisamy/SysWhispers2
https://twitter.com/ElephantSe4l
https://www.crummie5.club/freshycalls/
https://github.com/crummie5/FreshyCalls
https://github.com/jthuraisamy/SysWhispers2/blob/main/data/base.c
https://www.mdsec.co.uk/2020/12/bypassing-user-mode-hooks-and-direct-invocation-of-system-calls-for-red-teams
https://twitter.com/KlezVirus
https://github.com/klezVirus/SysWhispers3
https://github.com/jthuraisamy/SysWhispers2
https://twitter.com/ElephantSe4l/status/1488464546746540042
https://klezvirus.github.io/RedTeaming/AV_Evasion/NoSysWhisper/
https://mez0.cc/posts/gatekeeping-syscalls/
https://github.com/crummie5/FreshyCalls
https://github.com/paranoidninja/EtwTi-Syscall-Hook
https://www.mdsec.co.uk/2020/08/firewalker-a-new-approach-to-generically-bypass-user-space-edr-hooking/
https://github.com/TsudaKageyu/minhook

The DLL

So, this is going to be a DLL which gets loaded into a process and then hooks functionality
and makes some decision based on its behaviour. Here is D11Main :

BOOL APIENTRY D11Main(HINSTANCE hInst, DWORD reason, LPVOID reserved)
{

switch (reason)

{
case DLL_PROCESS_ATTACH:
{
HANDLE hThread = CreateThread(nullptr, 0, SetupHooks, nullptr, O, nullptr);
if (hThread != nullptr) {
CloseHandle(hThread);
}
break;
}

case DLL_PROCESS_DETACH:

break;

}
return TRUE;

}

When a DLL_PROCESS_ATTACH is the load reason, then we create a new thread and point it
at our "main" function. This is where we initialise minhook, and set up some hooks:

36/52

DWORD WINAPI SetupHooks(LPVOID param)

{
MH_STATUS status;

if (MH_Initialize() !'= MH_OK) {
return -1,

status = MH_CreateHookApi(
L"ntd1ll",
"NtAllocateVirtualMemory",
NtAllocateVirtualMemory_Hook,

reinterpret_cast<LPVOID*>(&pNtAllocateVirtualMemory_Original)

);

status = MH_CreateHookApi(
L"ntd1l",
"NtProtectVirtualMemory",
NtProtectVirtualMemory_Hook,

reinterpret_cast<LPVOID*>(&pNtProtectVirtualMemory_Original)

)

status = MH_CreateHookApi(
L"ntd1l1l",
"NtWriteVirtualMemory",
NtWriteVirtualMemory_Hook,

reinterpret_cast<LPVOID*>(&pNtWriteVirtualMemory_Original)

);

status = MH_EnableHook(MH_ALL_HOOKS);

return status;

MH_Initialize() is a mandatory call, so we start with that. Next, we create 3 hooks:

e NtAllocateVirtualMemory
e NtProtectVirtualMemory
e NtWriteVirtualMemory

Hooks are created with the MH_CreateHookApi() call:

MH_STATUS WINAPI MH_CreateHookApi(LPCWSTR pszModule,

pDetour, LPVOID *ppOriginal);
To create a hook, 4 things are needed:

¢ Module Name
¢ Function Name

e Function to "replace" the desired function

LPCSTR pszProcName,

37/52

e Somewhere to store the original function address

Below is an example:

MH_STATUS status = MH_CreateHookApi(
L"ntd1l",
"NtAllocateVirtualMemory",
NtAllocateVirtualMemory_Hook,
reinterpret_cast<LPVOID*>(&pNtAllocateVirtualMemory_Original)

)
NtAllocateVirtualMemory Hook() isthe function used to replace the original function:

NTSTATUS NTAPI NtAllocateVirtualMemory_Hook(IN HANDLE ProcessHandle, IN OUT PVOID*
BaseAddress, IN ULONG_PTR ZeroBits, IN OUT PSIZE_T RegionSize, IN ULONG
AllocationType, IN ULONG Protect)
{
if (Protect == PAGE_EXECUTE_READWRITE)
{
printf("[INTERCEPTOR]: RWX Allocation Detected in %ld (0x%p)\n",
GetProcessId(ProcessHandle), ProcessHandle);
if (BLOCKING)
{

return 5;

}

else

{
return pNtAllocateVirtualMemory_Original(ProcessHandle, BaseAddress,
ZeroBits, RegionSize, AllocationType, Protect);

}
}

else

{

return pNtAllocateVirtualMemory Original(ProcessHandle, BaseAddress,
ZeroBits, RegionSize, AllocationType, Protect);

}

The function is declared exactly the same as typedef for the function:

typedef NTSTATUS(NTAPI* _NtAllocateVirtualMemory)(IN HANDLE ProcessHandle, IN OUT
PVOID* BaseAddress, IN ULONG_PTR ZeroBits, IN OUT PSIZE_T RegionSize, IN ULONG
AllocationType, IN ULONG Protect);

This is so that there are no issues with typing between hooks.

Inthe NtAllocateVirtualMemory Hook function, the only thing we are checking here is if
the protection type is PAGE_EXECUTE_READWRITE , RWX , because this is commonly a sign of
malicious activity (COMMONLY). If it matches, we just print that we found something.

38/52

Then, we have a concept of blocking. This simply means that if BLOCKING is true, then it
returns. If its false, then we return the pointer to the original function, allowing the function
to execute as the user expects.

In NtProtectVirtualMemory , we just check for changes to PAGE_EXECUTE_READ as thisis
the common protection type to avoid RWX allocations:

NTSTATUS NTAPI NtProtectVirtualMemory_Hook(IN HANDLE ProcessHandle, IN OUT PVOID*
BaseAddress, IN OUT PULONG NumberOfBytesToProtect, IN ULONG NewAccessProtection, OUT
PULONG OldAccessProtection) {

if (NewAccessProtection == PAGE_EXECUTE_READ) {
printf("[INTERCEPTOR]: Detected move to RX in %ld (O0x%p)\n",
GetProcessId(ProcessHandle), ProcessHandle);
if (BLOCKING)
{
return 5;
}
else
{
return pNtProtectVirtualMemory_Original(ProcessHandle, BaseAddress,
NumberOfBytesToProtect, NewAccessProtection, OldAccessProtection);
}
}
else
{
return pNtProtectVirtualMemory_Original(ProcessHandle, BaseAddress,
NumberOfBytesToProtect, NewAccessProtection, OldAccessProtection);

}

In NtWriteVirtualMemory , no additional checks are made:

NTSTATUS NTAPI NtWriteVirtualMemory_Hook(IN HANDLE ProcessHandle, IN PVOID
BaseAddress, IN PVOID Buffer, IN SIZE_T NumberOfBytesToWrite, OUT PSIZE_T
NumberOfBytesWritten OPTIONAL)
{

printf("[INTERCEPTOR]: Detected write of %I64u in %1d (Ox%p)\n",
NumberOfBytesTowWrite, GetProcessId(ProcessHandle), ProcessHandle);

if (BLOCKING)

{

return 5;

}

else

{
return pNtWritevVirtualMemory_Original(ProcessHandle, BaseAddress, Buffer,
NumberOfBytesToWrite, NumberOfBytesWritten);

}

The Loader

39/52

In this instance, we have a PE which just calls LoadLibraryA on the DLL, and then runs a
fake injection:

#include <Windows.h>
#include <stdio.h>

int main()

{
HMODULE hModule = LoadLibraryA("Interceptor.dll");

if (hModule == nullptr)

{
printf("[LOADER] [LOADER] Failed to load: %ld\n", GetLastError());
return -1;

}
printf (" [LOADER] Interceptor.dll: 0x%p\n", hModule);

Sleep(3000);
CHAR buf[8] = { Ox00, 0x00, 0x00, 0x00, 0x00, Ox00, O0x00, Ox00 };

LPVOID pAddress = VirtualAlloc(nullptr, 8, MEM_COMMIT | MEM_RESERVE,
PAGE_EXECUTE_READWRITE);
if (pAddress == nullptr)
{
printf("[LOADER] VirtualAlloc: %1ld\n", GetLastError());
return -1;

}
printf (" [LOADER] Base: 0x%p\n", pAddress);

if (WriteProcessMemory((HANDLE)-1, pAddress, buf, sizeof buf, nullptr) == FALSE)

{
printf (" [LOADER] WriteProcessMemory: %1ld\n", GetLastError());

return -1,

}
printf("[LOADER] Wrote!\n");

if (VirtualProtect(pAddress, sizeof buf, PAGE_EXECUTE_READ, nullptr) == FALSE)

{
printf("[LOADER] VirtualProtect: %1d\n", GetLastError());

return -1,
}
printf("[LOADER] Protected!\n");

return 0,

Detecting Functionality

Running this shows the calls being detected (in a non-blocking mode):

40/52

[LOADER] Interceptor.

PTOR]: De¢
([INTERCEP : d move to
[INTERCEPTOR]:

xFFFFFFFFFFFFFFFF)
FFFFFFFFFFFFFFFF)
xFFFFFFFFFFFFFFFF)

[LOADER] Ba
[INTERCEPTO
[LOADER]
[INTERCE
[LOADER]

In the screenshot, we can see:

e Moves to RX
¢ RWX Allocations
e Writes of 8 bytes

This is everything we planned on detecting. So, how would a bypass work here? Well, because
of a lot of community development, its quite easy in practice. But before that, we need to
discuss User-land and Kernel-land.

Bypassing the User-land hooks

For this example, we are going to use Tartarus Gate. All we have to do is make this one call in
wmain :

LoadLibraryA("Interceptor.dll");
And then change the payload in Payload :

unsigned char payload[] = { 0x00, 0x00, 0x00, 0x00, Ox00, 0x00, Ox00, 0x00, O0x00,
0x00 };

Checking the loaded modules:

Germeral Statistice Performance Threads Token Modules mMemory Environment Handlezs GPU Comment
Mame Base address Size Description Load reason
HellsGate.exe 0w FfF6f 7 cO0000 160 kB Dynamic
apphelp.di Ox 7341620000 576 kB Application Compatibility Clie... Dynamic
Interceptor.dil Ox 79010000 504 kB Dyniamic
kernel32.dll Ox 7845310000 756 kB Windows MT BASE API Clien... Dynamic
KernelBase. dl Ox7ffa43fa0000 2.8 MB Windows NT BASE API Clien... Static dependency
locale.nls Ox1e63bsd0000 a04 kB
ntdll. dll Ox 7ffa4acb0000 1.96 ME MT Layer DLL Static dependency
ucrthased.dl O 720260000 2.12MB Microsoft® C Runtime Library Static dependency
weruntime 140d. dil O 725570000 172 kB Microsoft® C Runtime Library Static dependency

41/52

https://github.com/trickster0/TartarusGate

The DLL is loaded..
Running it, and setting a breakpoint on the thread creation because the payload is junk:

NtAllocateVirtualM

FFFFFFFFFFFFFFF)
FFFFFFFFFFFFFFF)

[=l=l=l=0 [
= =y E

e

us = MH_EnableHook{MH_ALL
if (status == MH_OH)
i

printf{=[INTERCEPTOR] Hoo

Lse

1
{

primtf({"[INTERCEPTOR] Hoo
1

Locals

Search (Ctrl+E)

The above shows minhook being initialised, and then the hooks being enabled. Between this,
there is a move to RX. However, it happens before the hooks are set up. So this is likely either
minhook, or CRT doing something. We did not take the time to check this out.

Hooking and Process Instrumentation Conclusion

As we've stated, this isn't a comprehensive review of every potential technique. Another
which might specifically be worth exploring is Vectored Exception Handling (VEH). Two

examples of this are ethicalchaos's post on In-Process Patchless AMSI Bypass and
Countercept's CallStackSpoofer.

As with Kernel callbacks, this is a live field of study and there's far more to be explored than
we have time or space in this post.

Thread Call Stacks

Another component of a process which gets interrogated is via the Threads Call Stack. As
detailed in Viewing the Call Stack in WinDbg, the Call Stack is defined as:

42/52

https://docs.microsoft.com/en-us/windows/win32/debug/vectored-exception-handling
https://ethicalchaos.dev/
https://ethicalchaos.dev/2022/04/17/in-process-patchless-amsi-bypass/
https://www.withsecure.com/gb-en/solutions/managed-services/countercept
https://github.com/countercept/CallStackSpoofer/
https://docs.microsoft.com/en-us/windows/win32/procthread/about-processes-and-threads
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/calls-window

The call stack is the chain of function calls that have led to the current location of the program
counter. The top function on the call stack is the current function, the next function is the
function that called the current function, and so on. The call stack that is displayed is based on
the current program counter, unless you change the register context. For more information about

how to change the register context, see Changing Contexts.

As the call stack can help determine the intention of a thread, it often undergoes scrutiny to
determine its validity. In this section, we want to demonstrate how the call stack can be used
to determine malicious behaviour (in a rudimentary example), and then discuss the offensive
strategy for handling this.

Here, we have a an implant in Vulpes:

h Payloads Listeners Commands Web Logs © Settings v ? v

Implant ld Listener Operating System Hostname Address Username Integrity Process Name Processld Architecture Last Seen

If we look at the processes (10792) threads, we can see a bunch of threads starting at the
elusive TpReleaseCleanupGroupMembers:

]
m
i

i
m
m

|

i
r

=]
[=]
]
m
1
m
i

General Statistics Performance Threads Token Modules Memory Environment Handles GPU Comment

TID CPU Start address - Priority
1996 ntdll. dil' TpReleaseCleanupGroupMembers +0x 450 Mormal
2038 ntdll, dil' TpReleaseCleanupGroupMembers +0x450 Mormal
4532 ntdll, dll' TpReleaseCleanupGroupMembers +0x450 Mormal
G960 ntdll. dll TpReleaseCleanupGroupMembers +0x450 Mormal
2744 ntdll. dll TpReleaseCleanupGroupMembers +0x450 Mormal

10145 ntdll. dll TpReleaseCleanupGroupMembers +0x450 Mormal
12128 ntdll. dll TpReleaseCleanupGroupMembers +0x450 Maormal
25832 ntdll. dil' TpReleaseCleanupGroupMembers +0x450 Mormal
26084 ntdll. dil' TpReleaseCleanupGroupMembers +0x 450 Mormal
12404 Vulpes, x64. exe +0x 14d0 Mormal

This is quite common amongst processes, here is an example of chrome.exe :

43/52

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/changing-contexts
https://processhacker.sourceforge.io/doc/nttp_8h.html#afdd240c1c6b4713fdcc5e4701371e04f

@ CArQme. e

General Statistics Performance Threads Token Modules Memory Environment Handles GPU Comment
TID CPU Start address - Priarity
29108 ntdll. dil' TpReleaseCleanupGroupMembers +0x450 Marmal
21508 ntdll. dil'TpReleaseCleanupGroupMembers +0x450 Marmal
21340 nidll, dil' TpReleaseCleanupGroupMembers +0x450 Maormal
17300 ntdll. dll' TpR.eleaseCleanupGroupMembers +Hx450 Mormal
16620 ntdll. dll TpR.eleaseCleanupGroupMembers +Hx450 Mormal
25035 directmanipulation. dll+0x 14350 Mormal
10720 chrome. exe! Ordinald+0x4ba70 Marmal
17780 chrome. exe!GetHandleVerifier +0x73efl Marmal
28676 chrome. dil'IsSandboxedProcess +0x 7e9da80 Marmal
23512 chrome. dil'IsSandboxedProcess +0x 7e9da0 -4
27592 0,02 chrome.dl!IsSandboxedProcess+0x7eSda0 Mormal
26676 chrome.dil'IsSandboxedProcess +H0x 7e9da0 Marmal
24112 chrome. dil'IsSandboxedProcess +H0x 7e3da0 Marmal
23943 chrome. dil'IsSandboxedProcess +0x 7e9da0 Marmal
21354 chrome. dil'IsSandboxedProcess +0x 7e9da0 Maormal
20954 chrome. dil'IsSandboxedProcess +H0x7e9da0 Marmal
19856 chrome. dil'IsSandboxedProcess +0x 7e9da80 Marmal
18852 chrome. dil'IsSandboxedProcess +0x 7e9da0 -4
16836 chrome.dll'IsSandboxedProcess +0x 7e9da0 Mormal
16780 chrome.dil'IsSandboxedProcess +H0x 7e9da0 Marmal
14956 chrome. dil'IsSandboxedProcess +H0x 7e3da0 Marmal
Q503 chrome. dil'IsSandboxedProcess +0x 7e9da0 Marmal
Q320 chrome. dil'IsSandboxedProcess +0x 7e9da0 Maormal
9104 chrome. dil'IsSandboxedProcess +H0x7e9da0 Marmal
8368 chrome. dil'IsSandboxedProcess +0x 7e9da80 Marmal
7275 chrome. dil'IsSandboxedProcess +0x 7e9da0 -4
6460 chrome.dll'IsSandboxedProcess +0x 7e9da0 Mormal
Start module: |
Started: M A
State: M/A Priority: M/A
kernel time: N/A Base priority: A
User time: N/A I/O priority: MA
Context switches: N/JA Page priority: MNfA
Cycles: MNJfA Ideal processar: MJA

And then RuntimeBroker.exe :

44/52

Genmeral Statistics Performance Threads Token Modules Memory Environment Handles GPU Comment
P
TID CPU Start address Priarity
19178 LockAppEroker.,dll +0xdfich Mormal
1508 ntdll.dll TpReleaseCleanupGroupMembers +0x450 Mormal
20596 RuntimeBroker. exe +0x6740 Mormal
356 TetheringStation. dli TetheringStationFreeMemory +0xf720 Mormal
6656 wlanapi. di'WlanQueryvirtualinterfaceType +0xca30 Mormal
18548 wilanapi.dillWlanQueryVirtuallnterfaceType +0xca30 Mormal
19052 wlanapi.dillWlanQueryVirtuallnterfaceType +0xca3l Mormal

This is a good side-note for attackers. If the implant in question is reliant on masquarading
as something else, then this needs to be considered. For example, if the implant is operating
out of browsers such as chrome, then the HTTP should be handled the same way, and then
entry-point and call stack of the thread should be mimicked.

Back to the Vulpes implant, the call stack is primarily TpReleaseCleanupGroupMembers
which is fine. However, if we go through some of the threads, here is the thread responsible

for WinHTTP:

Mame

ntdll. dil'MtDelayExecution+0x 14

KernelBase, dl!SleepEx +0x%e

winhttp, dilWinHttpFreeProxyResultEx +0xb 155
winhttp, diilWinHttpFreeProxyResultEx +0xb034
ntdl.dlll TpSimpleTryPost+0x2dc

ntdll. dll' TpReleaseCleanupGroupMembers +H0x8as
kernel32.dlllBaseThreadInitThunk+0x 14
ntdll.dl'RtiUserThreadStart+0x21

et = L [Oy X O

| Copy || Refresh || Close

And here is a generic thread started by the process:

45/52

Mame

nidll. dil! Zw\WaitForWorkviaWorkerFactory +0x 14
ntdll. dil' TpReleaseCleanupGroupMembers +0x 747
kernel32.dll'BaseThreadInitThunk+0x 14
ntdll.dl'RHUserThreadStart+0x21

L ko= O

There are a few others, but lets focus on the second example because this is a call stack for a
thread that will be found in a lot of processes. Lets look at how to programmatically read the
thread stack and how a spoofed thread base address can look suspicious.

Here is the entry point:
int main()

{
DWORD dwProcessId = 10792;

DWORD dwSussThread = 1996;

DWORD dwNormalThread = 26084;

HANDLE hProcess = OpenProcess(PROCESS_ALL_ACCESS, FALSE, dwProcessId);
SymInitialize(hProcess, NULL, TRUE);

StackWalkThread(hProcess, dwSussThread);

SymCleanup (hProcess);
}

In the above, we have two thread IDs.

e 1996 : The spoofed thread
e 26084 : A somewhat normal stack

With that, we need to write a function to enumerate the call stack of the thread. We can do
that with the following code:

46/52

void StackWalkThread(HANDLE hProcess, DWORD dwThreadId)
{
STACKFRAMEG4 frame
CONTEXT context
int idx =

o
D A

- N

[N O]
[]

HANDLE hThread = OpenThread(MAXIMUM_ALLOWED, FALSE, dwThreadId);
if (!'hThread) return;

context.ContextFlags = CONTEXT_FULL;

if (GetThreadContext(hThread, &context) == FALSE) return;
frame.AddrPC.0ffset = context.Rip;

frame.AddrPC.Mode = AddrModeFlat;

frame.AddrStack.Offset = context.Rsp;

frame.AddrStack.Mode = AddrModeFlat;

frame.AddrFrame.O0ffset = context.Rbp;
frame.AddrFrame.Mode = AddrModeFlat;

printf("# Thread: %l1d\n\n", dwThreadId);

while (StackWalk64(IMAGE_FILE_MACHINE_AMD64, hProcess, hThread, &frame, &context,

NULL, SymFunctionTableAccess64, SymGetModuleBase64, NULL))
{
DWORD64 moduleBase = SymGetModuleBase64(hProcess, frame.AddrPC.O0ffset);
DWORD64 offset = 0;

char symbolBuff[sizeof(SYMBOL_INFO) + MAX_SYM_NAME * sizeof(TCHAR)] = { 0 };

PSYMBOL_INFO symbol = (PSYMBOL_INFO)symbolBuff;
symbol->SizeOfStruct = sizeof(SYMBOL_INFO);
symbol->MaxNameLen = MAX_SYM_NAME;

if (SymFromAddr (hProcess, frame.AddrPC.0Offset, &offset, symbol))
{

printf(
"_ Frame %d\n"
" |_ Name: %s\n"
" |_ Address: Ox%p\n\n",
idx,
symbol->Name,
symbol->Address

)

idx++;

From the DbgHelp library, we are using;:

47/52

https://docs.microsoft.com/en-us/windows/win32/debug/debug-help-library

e StackWalk64: Obtains a stack trace.

e SyGetModuleBase64: Retrieves the base address of the module that contains the
specified address.

e SymFromAddr: Retrieves symbol information for the specified address.

Pointing the code to the normal thread stack:

This matches what we saw earlier on.
Changing this to point to the bad
thread:

This now shows a different thread stack
we haven't seen so far. Looking at frame
3, its CreateTimeQueueTimer which
was described as the sleep obfuscation

Name :

technique in: Addre

~ame 2

As a disclaimer, this technique has full Hame -

kudos to Peter Winter-Smith.

So, programmatically, its easy to find rﬂ]f"ﬂ E
out the callstack of a thread. Let's H; n;:-

expand this into something completely
rudimentary that we can start to work

with.
First, we'll define a hard-coded list of expected # Thread: 1996
functions that we saw earlier on that we can use \ Frame ©
as an integrity check: Name :
std::vector < std::string > expected = {
ame
"ZwWaitForWorkViaWorkerFactory", ;m -
"TpReleaseCleanupGroupMembers", Addre
"BaseThreadInitThunk", i
"RtlUserThreadStart" \ name 2
}; Name :

Addre

And then an empty one, to track everything we
find:

std::vector<std::string> found;

Now, instead of just printing, lets add all the symbol names into a vector:

48/52

https://docs.microsoft.com/en-us/windows/win32/api/dbghelp/nf-dbghelp-stackwalk64
https://docs.microsoft.com/en-us/windows/win32/api/dbghelp/nf-dbghelp-symgetmodulebase64
https://docs.microsoft.com/en-us/windows/win32/api/dbghelp/nf-dbghelp-symfromaddr
https://docs.microsoft.com/en-us/windows/win32/api/threadpoollegacyapiset/nf-threadpoollegacyapiset-createtimerqueuetimer
https://twitter.com/peterwintrsmith

while (StackWalk64(IMAGE_FILE_MACHINE_AMD64, hProcess, hThread, &frame, &context,
NULL, SymFunctionTableAccess64, SymGetModuleBase64, NULL))
{
DWORD64 moduleBase = SymGetModuleBase64(hProcess, frame.AddrPC.0ffset);
DWORD64 offset = 0;
char symbolBuff[sizeof (SYMBOL_INFO) + MAX_SYM_NAME * sizeof(TCHAR)] = { 0 };
PSYMBOL_INFO symbol = (PSYMBOL_INFO)symbolBuff;
symbol->SizeOfStruct = sizeof(SYMBOL_INFO);
symbol->MaxNameLen = MAX_SYM_NAME;

if (SymFromAddr(hProcess, frame.AddrPC.0ffset, &offset, symbol))
{
found.push_back(symbol->Name);
printf(
"_ Frame %d\n"
"]_ Name: %s\n"
" |_ Address: Ox%p\n\n",
idx,
symbol->Name,
symbol->Address

)
idx++;
}

Once the code has ran, and found all the symbols, lets see if the vectors match:

if (std::equal(expected.begin(), expected.end(), found.begin()))

{

printf("[CLEAN]\n");
}
else
{

printf("[DIRTY]\n");
}

Pointing this at the good thread:
We get the CLEAN message. And then the dirty thread:

Obviously, this code isn't production ready and the nuances of writing this kind of logic
properly is extremely challenging. However, it is something that some EDR vendors are
starting to pick up. Given the increase into research to confuse and blind endpoint
protection, this is a good technique to have in the arsenal for both the blue and red teams.

Speaking of red teams, research into correcting this thread-mishap has already been ongoing.

49/52

This technique was first popularized by
Peter Winter-Smith, who is a common

reoccurrence in this space, and then
reinterpreted by mgeeky in
ThreadStackSpoofer. However, this proof-
of-concept sets the return address to o,
removing references to memory addresses

for shellcode injection.

This is an example implementation for
Thread Stack Spoofing technique aiming
to evade Malware Analysts, AVs and
EDRs looking for references to
shellcode's frames in an examined
thread's call stack. The idea is to hide
references to the shellcode on thread's
call stack thus masquerading allocations
containing malware's code.

If we remove the sleep masking from Vulpes,

here is how the call stack looks:

s Th

rame 1
Name :
Hl'j'jf

rame 2
Name :
Hl'j'jf

rame 3
Name :
Hl'j'jf

[CLEAN]

Thread:

_ Frame @
_ Name:
e

_ Add

_ Name:

_ Hl-j-j

[DIRTY]

e

1996

o

a8

FD4 FCD578

TimerQueueTimer
8887 FFDASFAEZAB

50/52

https://twitter.com/peterwintrsmith
https://twitter.com/mariuszbit
https://github.com/mgeeky/ThreadStackSpoofer

2R

[85] no-sleep-mask.exe (28036) Properties

General Statistics Performance Threads Token Modules Memory Environment Handles GPU

s

TID CPU Start address Priority
— Sl Maormal
ntdll.dll'RiUserThreadstart Mormal

! 1 ellealiuplar oupriembers+0x450 Mormal

11108 ntdll.dll! Tp Mormal

The technique would aim to mask these addresses by storing the return address into a
variable, setting the return address to 0, and then restoring the return address.

For a quick code example from the above repository:

void WINAPI MySleep(DWORD _dwMilliseconds)

{
[...]
auto overwrite = (PULONG_PTR)_AddressOfReturnAddress();
const auto origReturnAddress = *overwrite;
*overwrite = 0;
[...]
*overwrite = origReturnAddress;
}

In a more recent project, CallStackSpoofer by William Burgess was produced to take this a
step further and fully mask the stack.

See: Spoofing Call Stacks to confused EDRs

By using predefined vectors of stacks, the project is able to mimic:

e WMI
e RPC
e SVCHost

An example of a predefined vector for WMI:

51/52

https://github.com/countercept/CallStackSpoofer
https://twitter.com/joehowwolf
https://labs.withsecure.com/blog/spoofing-call-stacks-to-confuse-edrs
https://github.com/countercept/CallStackSpoofer/blob/076672e29ee68086a607d9f0bde2cd22754c3ac1/VulcanRaven/VulcanRaven.cpp#L119

std: :vector<StackFrame> wmiCallStack =

{
StackFrame (L"C:\\Windows\\SYSTEM32\\kernelbase.d1l1l", 0x2c13e, 0, FALSE),

StackFrame (L"C:\\Windows\\Microsoft.NET\\Framework64\\v4.0.30319\\CorperfmonExt.d1l1l",
Oxc669, 0, TRUE),

StackFrame (L"C:\\Windows\\Microsoft.NET\\Framework64\\v4.0.30319\\CorperfmonExt.d1l1l",
@xc71b, O, FALSE),

StackFrame (L"C:\\Windows\\Microsoft.NET\\Framework64\\v4.0.30319\\CorperfmonExt.dl1l",
ox2fde, O, FALSE),

StackFrame(L"C:\\Windows\\Microsoft.NET\\Framework64\\v4.0.30319\\CorperfmonExt.d1l1l",
0x2b9%e, 0O, FALSE),

StackFrame(L"C:\\Windows\\Microsoft.NET\\Framework64\\v4.0.30319\\CorperfmonExt.d1l1l",
0x2659, 0, FALSE),

StackFrame(L"C:\\Windows\\Microsoft.NET\\Framework64\\v4.0.30319\\CorperfmonExt.d1l1l",
0x11b6, O, FALSE),

StackFrame(L"C:\\Windows\\Microsoft.NET\\Framework64\\v4.0.30319\\CorperfmonExt.d1l1l",
0xcl1l44, O, FALSE),

StackFrame(L"C:\\Windows\\SYSTEM32\\kernel32.d11l", 0x17034, 0, FALSE),

StackFrame (L"C:\\Windows\\SYSTEM32\\ntdl1l.d1l1l", 0x52651, O, FALSE),

iy

By implementing this type of technique, it will make it extremely difficult to implement the
callstack integrity checking we showed earlier (granted our demo was hard-coded values, but
the point still stands).

Conclusion

This was a fairly long post in which we tried to provide some clarity into the mechanisms
EDRs can use to not only identify malicious activity, but prevent it. Along the way we've
discussed common pitfalls and some enhancements that can be made to protect against the
bypasses.

Whilst doing this, we've tried to shed more light onto the 'X bypasses EDR' narrative in
which, yes, the beacon might have comeback but there is likely logs of the activity.

The next episode will look at ETW and AMSI!

52/52

