
1/13

Writing a C++ Yara Agent
mez0.cc/posts/yaraengine

Table of Contents

Table of Contents

Introduction

Yara?

Yara Library Setup

Installing Yaralib

Initializing the Library

Creating a Compiler

Adding rules

Detecting Cobalt Strike

Reading Process Memory Regions

Reading regions to buffer

Scanning Memory Regions

Demo

Conclusion

Introduction

Whilst writing PreEmpt, one of the requirements was to make use of Yara to be able to

identify malware families. In this blog, I wanted to just go over the development process to

make use of the C API available for Yara.

Yara?

From https://virustotal.github.io/yara/:

YARA is a tool aimed at (but not limited to) helping malware researchers to identify and
classify malware samples. With YARA you can create descriptions of malware families (or
whatever you want to describe) based on textual or binary patterns. Each description, a.k.a rule,
consists of a set of strings and a boolean expression which determine its logic.

Essentially, it allows for rules to be ran over memory, processes, and files to identify malware

families. Rules are easy to write, here is an example from the Yara homepage:

https://mez0.cc/posts/yaraengine/
https://mez0.cc/projects/preempt/
https://virustotal.github.io/yara/
https://virustotal.github.io/yara/

2/13

rule silent_banker : banker

{

 meta:

 description = "This is just an example"

 threat_level = 3

 in_the_wild = true

 strings:

 $a = {6A 40 68 00 30 00 00 6A 14 8D 91}

 $b = {8D 4D B0 2B C1 83 C0 27 99 6A 4E 59 F7 F9}

 $c = "UVODFRYSIHLNWPEJXQZAKCBGMT"

 condition:

 $a or $b or $c

}

This isn't a blog on writing Yara rules, but essentially strings are the "match" criteria, and

condition are when to flag the rule. In this case, if any of the strings match, then the

rule flags as a match.

What this blog will do is write a small agent to run these rules against a specified process ID.

So, for that, rules are required. All I did was Google: cobalt strike yara rules github

and made a .yar file containing rules from:

1. https://github.com/Neo23x0/signature-base/blob/master/yara/apt_cobaltstrike.yar

2. https://github.com/jas502n/cs_yara

3. https://github.com/Neo23x0/signature-

base/blob/master/yara/apt_cobaltstrike_evasive.yar

4. https://github.com/mgreen27/cobaltstrike-1

5. https://github.com/JPCERTCC/MalConfScan/blob/master/yara/rule.yara

6. https://github.com/Te-k/cobaltstrike

All these rules will be ran against the target process. However, the usage of the tool produced

in this blog can be used as a Yara rule tester. The commandline arguments will be:

YaraAgent.exe <path to rule> <process id>

Let's write some code.

Yara Library Setup

Installing Yaralib

To get Yara's library into Visual Studio, I used vcpkg. Once installed:

.\vcpkg install yara

https://github.com/Neo23x0/signature-base/blob/master/yara/apt_cobaltstrike.yar
https://github.com/jas502n/cs_yara
https://github.com/Neo23x0/signature-base/blob/master/yara/apt_cobaltstrike_evasive.yar
https://github.com/mgreen27/cobaltstrike-1
https://github.com/JPCERTCC/MalConfScan/blob/master/yara/rule.yara
https://github.com/Te-k/cobaltstrike
https://vcpkg.io/en/packages.html

3/13

Then Yara is available as:

#include <yara.h>

Initializing the Library

The Yara C API documentation is okay, but it lacks when it comes to actually scanning. So,

first thing:

The first thing your program must do when using libyara is initializing the library. This is done
by calling the yr_initialize() function.

The library needs to be initialized, for me, I like to use C++ namespaces and classes for this.

This will become useful as Yara requires an initialize, and a finalize. Which are perfect

candidates for C++ constructors and destructors.

Lets add that:

namespace Yara

{

 class Manager

 {

 public:

 Manager()

 {

 int init = yr_initialize();

 if (init != ERROR_SUCCESS)

 {

 printf("Initialise failed: %s\n", GetErrorMsg(init).c_str());

 return;

 }

 }

 ~Manager()

 {

 int finalise = yr_finalize();

 if (finalise != ERROR_SUCCESS)

 {

 printf("Finalise failed: %s\n", GetErrorMsg(finalise).c_str());

 return;

 }

 }

 }

}

Here, yr_initialize() and yr_finalize() are being called which must be done in the main

thread. As these are just in the constructor and destructor, they can just be passively handle

by creating the object:

Yara::Manager yara = Yara::Manager();

https://yara.readthedocs.io/en/stable/capi.html
https://yara.readthedocs.io/en/stable/capi.html#c.yr_initialize
https://yara.readthedocs.io/en/stable/capi.html#c.yr_initialize
https://yara.readthedocs.io/en/stable/capi.html#c.yr_initialize

4/13

Creating a Compiler

The next thing that needs to happen is that the Yara Compiler needs to be created, this can

also be added into the constructor by calling the following function:

BOOL CreateCompiler()

{

 int create = yr_compiler_create(&compiler);

 if (create == ERROR_SUCCESS)

 {

 return TRUE;

 }

 else

 {

 return FALSE;

 }

}

Where compiler is a private :

YR_COMPILER* compiler = NULL;

The constructor is now:

Manager()

{

 int init = yr_initialize();

 if (init != ERROR_SUCCESS)
 {

 printf("Initialise failed: %s\n", GetErrorMsg(init).c_str());

 return;

 }

 if (CreateCompiler())

 {

 success = TRUE;

 }

 else

 {

 success = FALSE;

 }

}

Adding rules

Now its ready to receive a rule file. The path was passed in from the commandline and is

literally just that, a file path to a yara file.

The code structure I want for this is:

5/13

if (yara.AddRuleFromFile(path) == FALSE)

{

 printf("[!] Failed to load %s\n", path.c_str());

 return -1;

}

So, lets look at AddRuleFromFile() :

BOOL AddRuleFromFile(std::string file_name)

{

 FILE* rule_file = NULL;

 int result = fopen_s(&rule_file, file_name.c_str(), "r");

 if (result != ERROR_SUCCESS)

 {

 printf("Failed to open %s: %s\n", file_name.c_str(),
GetErrorMsg(result).c_str());

 return FALSE;

 }

 result = yr_compiler_add_file(compiler, rule_file, NULL, file_name.c_str());

 if (result != ERROR_SUCCESS)

 {

 printf("Failed to add rules from %s: %s\n", file_name.c_str(),
GetErrorMsg(result).c_str());

 return FALSE;

 }

 result = yr_compiler_get_rules(compiler, &rules);

 if (result != ERROR_SUCCESS)

 {

 printf("Failed to get rules from %s: %s\n", file_name.c_str(),
GetErrorMsg(result).c_str());

 return FALSE;

 }

 return TRUE;

}

First off, read the file:

FILE* rule_file = NULL;

int result = fopen_s(&rule_file, file_name.c_str(), "r");

if (result != ERROR_SUCCESS)

{

 printf("Failed to open %s: %s\n", file_name.c_str(),
GetErrorMsg(result).c_str());

 return FALSE;

}

6/13

There are three methods for adding rules:

1. yr_compiler_add_file()

2. yr_compiler_add_fd()

3. yr_compiler_add_string()

They are all self-explanatory, but the one used here is yr_compiler_add_file() :

result = yr_compiler_add_file(compiler, rule_file, NULL, file_name.c_str());

if (result != ERROR_SUCCESS)

{

 printf("Failed to add rules from %s: %s\n", file_name.c_str(),
GetErrorMsg(result).c_str());

 return FALSE;

}

The function parameters:

int yr_compiler_add_file(

 YR_COMPILER* compiler,

 FILE* file,

 const char* namespace,

 const char* file_name)

namespace is left to NULL because:

if namespace is NULL they will be put into the default namespace.

To check this worked, yr_compiler_get_rules() is used. This will either return

ERROR_SUCCESS or ERROR_INSUFFICIENT_MEMORY.

At this point, the library is initialised and rules are loaded; time to scan some memory.

Detecting Cobalt Strike

With all that set up, we still don't have anything to scan. But before that, this is the structure

I want to get back:

std::vector<YaraInfo> matches = yara.ScanProcessMemory(dwPid);

A vector of YaraInfo where YaraInfo is my struct:

typedef struct YARAINFO

{

 std::vector<std::string> matched_rules;

 RegionInfo infectedRegion;

} YaraInfo, * PYaraInfo;

Which is a vector of rule names, and another struct:

https://yara.readthedocs.io/en/stable/capi.html#c.yr_compiler_add_file
https://yara.readthedocs.io/en/stable/capi.html#c.yr_compiler_add_fd
https://yara.readthedocs.io/en/stable/capi.html#c.yr_compiler_add_string
https://yara.readthedocs.io/en/stable/capi.html#c.yr_compiler_get_rules
https://yara.readthedocs.io/en/stable/capi.html#c.ERROR_SUCCESS
https://yara.readthedocs.io/en/stable/capi.html#c.ERROR_INSUFFICIENT_MEMORY

7/13

typedef struct REGIONINFO

{

 LPVOID pBase;

 LPVOID pAllocation;

 DWORD dwRegion;

 DWORD dwProtect;

 DWORD dwState;

 DWORD dwType;

} RegionInfo, * PRegionInfo;

This is another custom struct, and is very similar to MEMORY_BASIC_INFORMATION.

However, this code is from PreEmpt which has a much bigger data structure (so I just copied

and pasted that and removed some fields).

A few things need to happen before this can be achieved, so lets look at that.

Reading Process Memory Regions

First off, get a HANDLE :

RAII::Handle hProcess = OpenProcess(PROCESS_READ_FLAGS, FALSE, dwPid);

Here, Resource Acquisition Is Initialization is being used to easily handle the, well, HANDLE .

And PROCESS_READ_FLAGS is:

#define PROCESS_READ_FLAGS PROCESS_QUERY_INFORMATION | PROCESS_VM_READ

For the process, I want to get a vector of every region is a RegionInfo struct, like so:

std::vector<RegionInfo> regions = GetProcessRegions(hProcess.Get());

Here is the function:

https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-memory_basic_information
https://mez0.cc/projects/preempt/
https://en.cppreference.com/w/cpp/language/raii

8/13

std::vector<RegionInfo> GetProcessRegions(HANDLE hProcess)

{

 std::vector<RegionInfo> regions;

 MEMORY_BASIC_INFORMATION mbi = {};

 LPVOID offset = 0;

 while (VirtualQueryEx(hProcess, offset, &mbi, sizeof(mbi)))

 {

 offset = (LPVOID)((DWORD_PTR)mbi.BaseAddress + mbi.RegionSize);

 RegionInfo regionInfo;

 regionInfo.pBase = mbi.BaseAddress;

 regionInfo.pAllocation = mbi.AllocationBase;

 regionInfo.dwProtect = mbi.Protect;

 regionInfo.dwRegion = mbi.RegionSize;

 regionInfo.dwState = mbi.State;

 regionInfo.dwType = mbi.Type;

 regions.push_back(regionInfo);

 }

 if (regions.size() == 0)

 {

 ErrorHandler::Show().print_win32error("VirtualQueryEx()");

 }

 return regions;

}

Here, VirtualQueryEx() is being used to retrieve information about pages within the virtual

address space:

SIZE_T VirtualQueryEx(

 [in] HANDLE hProcess,

 [in, optional] LPCVOID lpAddress,

 [out] PMEMORY_BASIC_INFORMATION lpBuffer,

 [in] SIZE_T dwLength

);

In order do to that, a while loop is used whilst incrementing the offset from 0, by the base

address plus the region size. This allows for each page to be incremented over. With each

region, we just build out a struct a push_back the vector.

For a visual representation of what this struct looks like, Process Hacker has it covered:

https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualqueryex
https://processhacker.sourceforge.io/

9/13

The only thing we don't care about here is the Use .

Okay, so thats the memory regions of the process mapped out; lets read them as a buffer.

Reading regions to buffer

The usage here is:

std::vector<RegionInfo> regions = GetProcessRegions(hProcess.Get());

for (RegionInfo& regionInfo : regions)

{

 std::vector<std::byte> region = ReadRegionToBuffer(regionInfo, hProcess.Get());

 if (region.empty()) continue;

}

For every region, read the region into a vector of bytes. Lets look at

ReadRegionToBuffer() :

std::vector<std::byte> ReadRegionToBuffer(RegionInfo regionInfo, HANDLE hProcess)

{

 if (regionInfo.dwProtect == PAGE_NOACCESS) return std::vector<std::byte>{};

 std::vector<std::byte> buffer(regionInfo.dwRegion);

 BOOL bRead = ReadProcessMemory(hProcess, (LPVOID)regionInfo.pBase, buffer.data(),
regionInfo.dwRegion, NULL);

 if (bRead == FALSE)

 {

 ErrorHandler::Show().print_win32error("ReadProcessMemory()");

 }

 return buffer;

}

First off, if the protection is PAGE_NOACCESS , leave. Otherwise, create a vector with the size

of the region. Then ReadProcessMemory() is used:

https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-readprocessmemory

10/13

BOOL ReadProcessMemory(

 [in] HANDLE hProcess,

 [in] LPCVOID lpBaseAddress,

 [out] LPVOID lpBuffer,

 [in] SIZE_T nSize,

 [out] SIZE_T *lpNumberOfBytesRead

);

This is quite simple, take in:

1. A HANDLE to the process

2. The base address to read from

3. Where to put the read bytes

4. How much TO read

5. How much WAS read

If it returns TRUE , then the bytes were read. When this returns, we check if it actually did:

if (region.empty()) continue;

Then we cast to unsigned char with another check for empties:

const unsigned char* buffer = (const unsigned char*)region.data();

int buffer_size = region.size();

if (strlen((char*)buffer) == 0) continue;

Scanning Memory Regions

Now that the regions are identified and read into buffers, a YaraInfo struct is prepared:

YaraInfo yaraInfo;

And finally another Yara Library call:

int result = yr_rules_scan_mem(rules, buffer, buffer_size, SCAN_FLAGS_PROCESS_MEMORY,
capture_matches, &yaraInfo, 0);

This is where the actual magic happens. yr_rules_scan_mem() will scan a memory buffer

and will return one of the following:

1. ERROR_SUCCESS

2. ERROR_INSUFFICIENT_MEMORY

3. ERROR_TOO_MANY_SCAN_THREADS

4. ERROR_SCAN_TIMEOUT

5. ERROR_CALLBACK_ERROR

6. ERROR_TOO_MANY_MATCHES

Lets look at the structure of this call:

https://yara.readthedocs.io/en/v3.4.0/capi.html#c.yr_rules_scan_mem
https://yara.readthedocs.io/en/v3.4.0/capi.html#c.ERROR_SUCCESS
https://yara.readthedocs.io/en/v3.4.0/capi.html#c.ERROR_INSUFFICIENT_MEMORY
https://yara.readthedocs.io/en/v3.4.0/capi.html#c.ERROR_TOO_MANY_SCAN_THREADS
https://yara.readthedocs.io/en/v3.4.0/capi.html#c.ERROR_SCAN_TIMEOUT
https://yara.readthedocs.io/en/v3.4.0/capi.html#c.ERROR_CALLBACK_ERROR
https://yara.readthedocs.io/en/v3.4.0/capi.html#c.ERROR_TOO_MANY_MATCHES

11/13

int yr_rules_scan_mem(

 YR_RULES* rules,

 uint8_t* buffer,

 size_t buffer_size,

 int flags,

 YR_CALLBACK_FUNC callback,

 void* user_data,

 int timeout)

The first three parameters are clear; the rules we created earlier, a buffer, and a buffer size.

The flags has the following options:

#define SCAN_FLAGS_FAST_MODE 1

#define SCAN_FLAGS_PROCESS_MEMORY 2

#define SCAN_FLAGS_NO_TRYCATCH 4

#define SCAN_FLAGS_REPORT_RULES_MATCHING 8

#define SCAN_FLAGS_REPORT_RULES_NOT_MATCHING 16

I'm not completely sure what behavioral differences these flags have, so I stuck with

SCAN_FLAGS_PROCESS_MEMORY .

The callback and user_data where the most complicated and took some Googling,

shout out to Radare2 for making use of this API call and helping me solve this part.

So, callback is the function to run on scans; the code I went with:

static int capture_matches(YR_SCAN_CONTEXT* context, int message, void* message_data,
void* user_data)

{

 PYaraInfo yaraInfo = static_cast<PYaraInfo>(user_data);

 if (message == CALLBACK_MSG_RULE_MATCHING)

 {

 YR_RULE* rule = (YR_RULE*)message_data;

 YR_STRING* string;

 yr_rule_strings_foreach(rule, string)

 {

 std::string rule_name = rule->identifier;

 if (VectorContainsStringA(yaraInfo->matched_rules, rule_name) == FALSE)

 {

 yaraInfo->matched_rules.push_back(rule_name);

 }

 }

 }

 return CALLBACK_CONTINUE;

}

https://github.com/radareorg/radare2-extras/blob/master/yara/yara/core_yara.c
https://github.com/radareorg/radare2-extras/blob/df747eba958300a218f0114a6cfbed82297c6c2b/yara/yara/core_yara.c#L185

12/13

Note the user_data again. What this is, is the structure that you want back. So, when we

called the function, &yaraInfo was passed. This can then be retrieved inside the callback,

allowing a custom struct to be filled:

PYaraInfo yaraInfo = static_cast<PYaraInfo>(user_data);

In the above, if a rule matches (CALLBACK_MSG_RULE_MATCHING), loop over all the rules

matched and add them into the YaraInfo struct:

yaraInfo->matched_rules.push_back(rule_name);

The VectorContainsStringA is a helper function I use a lot:

inline std::string ConvToLowerA(std::string a)

{

 std::transform(a.begin(), a.end(), a.begin(), ::tolower);

 return a;

}

inline BOOL VectorContainsStringA(std::vector<std::string> haystack, std::string
needle)

{

 for (std::string& hay : haystack)

 {

 if (ConvToLowerA(hay) == ConvToLowerA(needle))

 {

 return TRUE;

 }

 }

 return FALSE;

}

Once the yr_rules_scan_mem() function finishes, and the callback is executed, the

YaraInfo struct is checked:

if (yaraInfo.matched_rules.size() > 0)

{

 yaraInfo.infectedRegion = regionInfo;

 allYaraInfo.push_back(yaraInfo);

}

Then the vector of YaraInfo is returned:

return allYaraInfo;

ALOT has happened in this one function call:

13/13

std::vector<YaraInfo> matches = yara.ScanProcessMemory(dwPid);

if (matches.size() == 0)

{

 printf("[!] No Yara matches!\n");

 return -1;

}

To recap:

1. All the process memory regions were obtained

2. Read to a buffer

3. Passed to the Yara Library

4. Callback function checked each region for rules and updated the YaraInfo struct with

matching rules

5. A vector of YaraInfo was returned.

Demo

Now that malware is identifed, it can be displayed:

int idx = 1;

for (YaraInfo& match : matches)

{

 printf("_ Match: %d/%I64u\n", idx, matches.size());

 printf(" | Base Address: 0x%p\n", match.infectedRegion.pBase);

 printf(" | Allocation Address: 0x%p\n", match.infectedRegion.pAllocation);

 printf(" | Page Protection: %ld\n", match.infectedRegion.dwProtect);

 printf(" | Page State: %ld\n", match.infectedRegion.dwState);

 printf(" | Page Type: %ld\n", match.infectedRegion.dwType);

 printf(" | Rules:\n");

 for (std::string& rule : match.matched_rules)

 {

 printf(" - %s\n", rule.c_str());

 }

 idx++;

 printf("\n");

}

Conclusion

This was a very code heavy blog post, but I just wanted to demonstrate how to use the Yara

Library as I couldn't really find too much online about it. As mentioned, this is a feature in

PreEmpt and writing this blog helped me get a better understanding of how this works.

The code for this agent is available on GitHub.

https://mez0.cc/projects/preempt/
https://github.com/mez-0/YaraEngine

