
1/7

elastic.github.io /security-research/whitepapers/2022/02/02.sandboxing-antimalware-products-for-fun-and-profit/article/

Sandboxing Antimalware Products for Fun and Profit -
Elastic Security Research
Gabriel Landau · @gabriellandau 2022-02-02 ⋮

Windows Internals Protected Processes Security Vulnerability

This article demonstrates a flaw that allows attackers to bypass a Windows security mechanism which
protects anti-malware products from various forms of attack. This is of particular interest because we
build and maintain two anti-malware products that benefit from this protection.

Protected Anti-Malware Services¶

Windows 8.1 introduced a concept of Protected Antimalware Services. This enables specially-signed
programs to run such that they are immune from tampering and termination, even by administrative
users. Microsoft’s documentation (archived) describes this as:

In Windows 8.1, a new concept of protected service has been introduced to allow anti-
malware user-mode services to be launched as a protected service. After the service is
launched as protected, Windows uses code integrity to only allow trusted code to load into
the protected service. Windows also protects these processes from code injection and other
attacks from admin processes.

The goal is to prevent malware from instantly disabling your antivirus and then running amok. For the rest
of this article, we call them Protected Process Light (PPL). For more depth, Alex Ionescu goes into great
detail on protected processes in his talk at NoSuchCon 2014.

To be able to run as a PPL, an anti-malware vendor must apply to Microsoft, prove their identity, sign
binding legal documents, implement an Early Launch Anti-Malware (ELAM) driver, run it through a test
suite, and submit it to Microsoft for a special Authenticode signature. It is not a trivial process. Once this
process is complete, the vendor can use this ELAM driver to have Windows protect their anti-malware
service by running it as a PPL.

You can see PPL in action yourself by running the following from an elevated administrative command
prompt on a default Windows 10 install:

Protected Process Light in Action

C:\WINDOWS\system32>whoami

nt authority\system

C:\WINDOWS\system32>whoami /priv | findstr "Debug"

SeDebugPrivilege Debug programs Enabled

https://elastic.github.io/security-research/whitepapers/2022/02/02.sandboxing-antimalware-products-for-fun-and-profit/article/
https://elastic.github.io/security-research/tags/#windows-internals
https://elastic.github.io/security-research/tags/#protected-processes
https://elastic.github.io/security-research/tags/#security-vulnerability
https://docs.microsoft.com/en-us/windows/win32/services/protecting-anti-malware-services-
https://web.archive.org/web/20211019010629/https://docs.microsoft.com/en-us/windows/win32/services/protecting-anti-malware-services-
https://twitter.com/aionescu
https://www.youtube.com/watch?v=35L_qJNMu1A
https://docs.microsoft.com/en-us/windows/win32/w8cookbook/secured-boot
https://docs.microsoft.com/en-us/windows/win32/api/sysinfoapi/nf-sysinfoapi-installelamcertificateinfo

2/7

C:\WINDOWS\system32>taskkill /f /im MsMpEng.exe

ERROR: The process "MsMpEng.exe" with PID 2236 could not be terminated.

Reason: Access is denied.

As you can see here, even a user running as SYSTEM (or an elevated administrator) with
SeDebugPrivilege cannot terminate the PPL Windows Defender anti-malware Service
(MsMpEng.exe). This is because non-PPL processes like taskkill.exe cannot obtain handles with
the PROCESS_TERMINATE access right to PPL processes using APIs such as OpenProcess.

In summary, Windows attempts to protect PPL processes from non-PPL processes, even those with
administrative rights. This is both documented and implemented. That being said, with
PROCESS_TERMINATE blocked, let’s see if there are other ways we can interfere with it instead.

Windows Tokens¶

A Windows token can be thought of as a security credential. It says who you are and what you’re allowed
to do. Typically when a user runs a process, that process runs with their token and can do anything the
user can do. Some of the most important data within a token include:

User identity
Group membership (e.g. Administrators)
Privileges (e.g. SeDebugPrivilege)
Integrity level

Tokens are a critical part of Windows authorization. Any time a Windows thread accesses a securable
object, the OS performs a security check. It compares the thread’s effective token against the security
descriptor of the object being accessed. You can read more about tokens in the Microsoft access token
documentation and the Elastic blog post that introduces Windows tokens.

Sandboxing Tokens¶

Some applications, such as web browsers, have been repeated targets of exploitation. Once an attacker
successfully exploits a browser process, the exploit payload can perform any action that the browser
process can perform. This is because it shares the browser’s token.

To mitigate the damage from such attacks, web browsers have moved much of their code into lower-
privilege worker processes. This is typically done by creating a restricted security context called a
sandbox. When a sandboxed worker needs to perform a privileged action on the system, such as saving
a downloaded file, it can ask a non-sandboxed “broker” process to perform the action on its behalf. If the
sandboxed process is exploited, the goal is to limit the payload’s ability to cause harm to only resources
accessible by the sandbox.

While modern sandboxing involves several components of OS security, one of the most important is a
low-privilege, or restricted, token. New sandbox tokens can be created with APIs such as
CreateRestrictedToken. Sometimes a sandboxed process needs to lock itself down after performing
some initialization. The AdjustTokenPrivileges and AdjustTokenGroups APIs allow this

https://devblogs.microsoft.com/oldnewthing/20080314-00/?p=23113
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocess
https://docs.microsoft.com/en-us/windows/win32/secauthz/securable-objects
https://docs.microsoft.com/en-us/windows/win32/secauthz/security-descriptors
https://docs.microsoft.com/en-us/windows/win32/secauthz/access-tokens
https://www.elastic.co/blog/introduction-to-windows-tokens-for-security-practitioners
https://docs.microsoft.com/en-us/windows/win32/api/securitybaseapi/nf-securitybaseapi-createrestrictedtoken
https://docs.microsoft.com/en-us/windows/win32/api/securitybaseapi/nf-securitybaseapi-adjusttokenprivileges
https://docs.microsoft.com/en-us/windows/win32/api/securitybaseapi/nf-securitybaseapi-adjusttokengroups

3/7

adjustment. These APIs enable privileges and groups to be “forfeit” from an existing process’s token in
such a way that they cannot be restored without creating a new token outside the sandbox.

One commonly used sandbox today is part of Google Chrome. Even some security products are getting
into sandboxing these days.

Accessing Tokens¶

Windows provides the OpenProcessToken API to enable interaction with process tokens. MSDN states
that one must have the PROCESS_QUERY_INFORMATION right to use OpenProcessToken. Since a
non-protected process can only get PROCESS_QUERY_LIMITED_INFORMATION access to a PPL
process (note the LIMITED), it is seemingly impossible to get a handle to a PPL process’s token.
However, MSDN is incorrect in this case. With only PROCESS_QUERY_LIMITED_INFORMATION, we can
successfully open the token of a protected process. James Forshaw explains this documentation
discrepancy in more depth, showing the underlying de-compiled kernel code.

Tokens are themselves securable objects. As such, regular access checks still apply. The effective token
of the thread attempting to access the token is checked against the security descriptor of the token being
accessed for the requested access rights (TOKEN_QUERY, TOKEN_WRITE, TOKEN_IMPERSONATE, etc).
For more detail about access checks, see the Microsoft article, “How Access Checks Work.”

The Attack¶

Process Hacker provides a nice visualization of token security descriptors. Taking a look at Windows
Defender’s (MsMpEng.exe) token, we see the following Discretionary Access Control List (DACL):

https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md
https://www.microsoft.com/security/blog/2018/10/26/windows-defender-antivirus-can-now-run-in-a-sandbox/
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocesstoken
https://twitter.com/tiraniddo
https://www.tiraniddo.dev/2017/05/reading-your-way-around-uac-part-2.html
https://docs.microsoft.com/en-us/windows/win32/secauthz/how-dacls-control-access-to-an-object
https://github.com/processhacker/processhacker/releases/tag/v2.39

4/7

Note that the SYSTEM user has full control over the token. This means, unless some other mechanism is
protecting the token, a thread running as SYSTEM can modify the token. When such modification is
possible, it violates the desired “PPL is protected from administrators” design goal.

Demo¶

Alas, there is no other mechanism protecting the token. Using this technique, an attacker can forcefully
remove all privileges from the MsMpEng.exe token and reduce it from system to untrusted integrity.
Being nerfed to untrusted integrity prevents the victim process from accessing most securable resources
on the system, quietly incapacitating the process without terminating it.

In this video, the attacker could have further restricted the token, but the privilege and integrity changes
were sufficient to prevent MsMpEng.exe from detecting and blocking a Mimikatz execution. We felt this
illustrated a valid proof of concept.

Defense¶

Newer versions of Windows include an undocumented feature called “trust labels.” Trust labels are part of
the System Access Control List (SACL), an optional component of every security descriptor. Trust labels
allow Windows to restrict specific access rights to certain types of protected processes. For example,
Windows protects the \KnownDlls object directory from modification by malicious administrators using a
trust label. We can see this with WinObjEx64:

https://powersploit.readthedocs.io/en/latest/Privesc/Get-System/
https://docs.microsoft.com/en-us/windows/win32/secauthz/mandatory-integrity-control
https://docs.microsoft.com/en-us/windows/win32/ad/retrieving-an-objectampaposs-sacl
https://www.elastic.co/blog/protecting-windows-protected-processes
https://www.elastic.co/blog/detect-block-unknown-knowndlls-windows-acl-hardening-attacks-cache-poisoning-escalation
https://github.com/hfiref0x/WinObjEx64

5/7

Like \KnownDlls, tokens are securable objects, and thus it is possible to protect them against
modification by malicious administrators. Elastic Security does this, in fact, and is immune to this attack,
by denying TOKEN_WRITE access to processes with a trust label below “Anti-Malware Light.” Because
this protection is applied at runtime, however, there is still a brief window of vulnerability until it can apply
the trust label.

Ideally, Windows would apply such a trust label to each PPL process’s token as it is created. This would
eliminate the race condition and fix the vulnerability in the PPL mechanism. There is precedent. With a
kernel debugger, we can see that Windows is already protecting the System process’ token on Windows
(21H1 shown below) with a trust label:

Trust Label on System Process Token

1: kd> dx -r1 (((nt!_OBJECT_HEADER*)((@$cursession.Processes[0x4]-

>KernelObject->Token->Object - sizeof(nt!_OBJECT_HEADER)) & ~0xf))-

>SecurityDescriptor & ~0xf)

(((nt!_OBJECT_HEADER*)((@$cursession.Processes[0x4]->KernelObject->Token-

>Object - sizeof(nt!_OBJECT_HEADER)) & ~0xf))->SecurityDescriptor & ~0xf)

: 0xffffe00649c46c20

1: kd> !sd 0xffffe00649c46c20

->Revision: 0x1

->Sbz1 : 0x0

->Control : 0x8814

 SE_DACL_PRESENT

 SE_SACL_PRESENT

 SE_SACL_AUTO_INHERITED

 SE_SELF_RELATIVE

->Owner : S-1-5-32-544

->Group : S-1-5-32-544

->Dacl :

6/7

->Dacl : ->AclRevision: 0x2

->Dacl : ->Sbz1 : 0x0

->Dacl : ->AclSize : 0x1c

->Dacl : ->AceCount : 0x1

->Dacl : ->Sbz2 : 0x0

->Dacl : ->Ace[0]: ->AceType: ACCESS_ALLOWED_ACE_TYPE

->Dacl : ->Ace[0]: ->AceFlags: 0x0

->Dacl : ->Ace[0]: ->AceSize: 0x14

->Dacl : ->Ace[0]: ->Mask : 0x000f01ff

->Dacl : ->Ace[0]: ->SID: S-1-5-18

->Sacl :

->Sacl : ->AclRevision: 0x2

->Sacl : ->Sbz1 : 0x0

->Sacl : ->AclSize : 0x34

->Sacl : ->AceCount : 0x2

->Sacl : ->Sbz2 : 0x0

->Sacl : ->Ace[0]: ->AceType: SYSTEM_MANDATORY_LABEL_ACE_TYPE

->Sacl : ->Ace[0]: ->AceFlags: 0x0

->Sacl : ->Ace[0]: ->AceSize: 0x14

->Sacl : ->Ace[0]: ->Mask : 0x00000001

->Sacl : ->Ace[0]: ->SID: S-1-16-16384

->Sacl : ->Ace[1]: ->AceType: SYSTEM_PROCESS_TRUST_LABEL_ACE_TYPE

->Sacl : ->Ace[1]: ->AceFlags: 0x0

->Sacl : ->Ace[1]: ->AceSize: 0x18

->Sacl : ->Ace[1]: ->Mask : 0x00020018

->Sacl : ->Ace[1]: ->SID: S-1-19-1024-8192

The SYSTEM_PROCESS_TRUST_LABEL_ACE_TYPE access control entry limits access to
READ_CONTROL, TOKEN_QUERY, and TOKEN_QUERY_SOURCE (0x00020018) unless the caller is a
WinTcb protected process (SID S-1-19-1024-8192). That SID can be interpreted as follows:

1: Revision 1
19: SECURITY_PROCESS_TRUST_AUTHORITY
1024: SECURITY_PROCESS_PROTECTION_TYPE_FULL_RID
8192: SECURITY_PROCESS_PROTECTION_LEVEL_WINTCB_RID

Mitigation¶

Alongside this article, we are releasing an update to the PPLGuard proof-of-concept that protects all
running anti-malware PPL processes against this attack. It includes example code that anti-malware
products can employ to protect themselves. Here it is in action, protecting Defender:

Disclosure¶

https://github.com/gabriellandau/ctypes-windows-sdk/blob/0a5bfaa9385391038a7d31928b14d6fe5b76fa97/cwinsdk/um/winnt.py#L1794
https://github.com/gabriellandau/ctypes-windows-sdk/blob/0a5bfaa9385391038a7d31928b14d6fe5b76fa97/cwinsdk/um/winnt.py#L2097
https://github.com/gabriellandau/ctypes-windows-sdk/blob/0a5bfaa9385391038a7d31928b14d6fe5b76fa97/cwinsdk/um/winnt.py#L2100
https://github.com/gabriellandau/ctypes-windows-sdk/blob/0a5bfaa9385391038a7d31928b14d6fe5b76fa97/cwinsdk/um/winnt.py#L2104
https://github.com/elastic/PPLGuard

7/7

We disclosed this vulnerability and proposed fixes to the Microsoft Security Response Center (MSRC) on
2022-01-05. They responded on 2022-01-24 that they have classified it as moderate severity, and will not
address it with a security update. However, they may address it in a future version of Windows.

Conclusion¶

In this article, we disclosed a flaw in the Windows Protected Process Light (PPL) mechanism. We then
demonstrated how malware can use this flaw to neutralize PPL anti-malware products. Finally, we
showed a simple ACL fix (with sample code) that anti-malware products can employ to defend against
this attack. Elastic Security already incorporates this fix, but we hope that Windows implements it (or
something equivalent) by default in the near future.

Last update: February 2, 2022

Created: February 2, 2022

https://www.microsoft.com/en-us/msrc?rtc=1

