
ii

ABSTRACT

Malicious code detection and removal is very important to the security of the

computer system. This project presents methodologies and tools to detect any malicious

code present in the system and can be used as a preventive measure to protect the system

from being infected. Malicious code analysis can be static or dynamic.

Static code analysis performs control flow and data flow analysis of the programs

to detect malware. Dynamic code analysis has a greater edge over static code analysis. In

this technique the instructions are analyzed as the code is being executed. Thus

polymorphic malware can also be detected. The dynamic code technique makes use of a

virtual environment to perform the analysis. Some malware can also detect the virtual

environment and change behavior accordingly to hide itself from the defensive system.

Thus dynamic analysis in a virtual environment is not an effective tool until it is used

with some other tool that can detect the obfuscation of malware. The proposed tool

examines the code in a virtual environment along with a minifilter driver and detects any

malicious code present. The minifilter driver is used to monitor the windows API calls,

registry changes and is used to generate reports. These reports can be analyzed to

categorize a program as a malware or a normal program.

iii

TABLE OF CONTENTS

Abstract …………………………………………………………………………………ii

Table of Contents ………………………………………………………………………iii

List of Tables……………………………………………………………………………vi

List of Figures…………………………………………………………………………..vii

1. Background and Rationale ……………………………………………………..1

 1.1 Malicious Code……………………………………………………...1

 1.2 Categories of Malware….……………………………………………1

 1.2.1 Viruses……………………………………………………..2

 1.2.2 Worms……………………………………………………...2

 1.2.3 Trojan Horse……………………………………………….2

 1.2.4 Attacker Tools….…………………………………………..2

 1.2.4.1 Backdoors………………………………………..3

1.2.4.2 Keystroke Loggers……………………………….3

1.2.4.3 Root kits…………………………………………3

1.2.4.4 Email Generators………………………………..3

1.2.4.5 Attacker Toolkits………………………………..4

1.3 Vulnerability to Malware……………………………………………4

 1.4 Malicious Code Analysis……………………………………………5

 1.4.1 Static Analysis…………………………………………..7

 1.4.2 Dynamic Analysis………………………………………8

2. Minifilter Driver……….………………………………………………………11

 2.1 Analyzing a Executable……………………………………………11

iv

 2.2 Malicious Code Detection…………………………………………11

 2.3 Minifilter Driver……………………………………………………13

 2.3.1 Minifilter………………………………………………….13

 2.3.2 Filter Manager Concepts…………………………………14

 2.3.2.1 Load Order Groups…………………………….14

 2.3.2.2 Altitude of a Minifilter…………………………15

 2.3.2.3 Instance of a Minifilter…………………………15

 2.3.2.4 Callback Routines of a Minifilter………………16

 2.4 Advantages of Minifilter Drivers…………………………………..19

 2.5 Analyzing the reports and decision making……………………….19

3. System Design………………………………………………………………...22

 3.1 Overview of the System…………………………………………...22

 3.2 Information Analyzed…..…………………………………………23

 3.3 Testing Environment………………………………………………24

 3.3.1 Redirection using the tool……………………………..26

 3.4 Installing a Minifilter Driver………………………………………27

 3.4.1 Creating an INF File for a Minifilter Driver…………….27

 3.4.1.1 Version Section (required).................................28

 3.4.1.2 DestinationDirs Section…………………….....29

 3.4.1.3 DefaultInstall Section…………………………29

 3.4.1.3 Strings Section………………………………...29

 3.5 Analysis Process……………...30

4. Evaluation and Results ……………………………………………………….32

v

 4.1 Sample Reports……………………………………………………37

5. Conclusion and Future Work……………...………………………………….57

 BIBLIOGRAPHY AND REFERENCES……………………………………………59

APPENDIX A. STARTING A VIRTUAL OPERATING SYSTEM………………..61

APPENDIX B. INSTALLING MINIFILTER …….………………………………...63

APPENDIX C. STARTING THE TOOL…………………………………………….64

APPENDIX D. TESTING A SAMPLE PROGRAM………………………………..65

APPENDIX E. INF FILE FOR THE MINIFILTER………………………………...66

vi

LIST OF TABLES

Table 1.1 Differentiating Malware Categories…………………………………..4

Table 3.1 Table describing the contents of the version section in a INF file……28

 Table 4.1 MalProber Test Results……………………………………………….33

vii

LIST OF FIGURES

Figure 1.1 A Static Analyzer……………………………………………………….7

Figure 1.2 A Dynamic Analyzer…………………………………………………...9

Figure 2.1 I/O Stack with filter manager and three minifilter drivers………..……16

Figure 2.2 I/O Stack with two filter manager frames, minifilter driver instances, and

 a legacy filter driver…………………………………………….………18

Figure 3.1 Architecture of the Malicious Code Detection Tool……...……………25

Figure 3.2 Overview of the Malicious Code Analysis Tool…………………..…...31

Figure 4.1 Installing Malprober Driver…………….………………….…………..34

Figure 4.2 Starting the Malprober Service……………………………….………..35

Figure 4.3 Testing usbview.exe with Malprober Tool….…………………………36

Figure A.1 Starting Virtual Operating System………….…………………………61

Figure A.2 Selecting a Virtual Disk…………………….…………………………62

Figure B.1 Installing Minifilter Driver………………….…………………………63

Figure C.1 Starting the Malprober Service………………..……………………….64

1

1. BACKGROUND AND RATIONALE

1.1 Malicious code

Malicious code is a term used to refer to any code that can cause undesired

effects, security breaches and potential damages to the software system without the users

consent. Software is classified as malware based on the users intent rather than the

features of the software. Any harmful software is not a malware. For example, defective

software can be legitimate and can still cause potential damage due to the presence of

harmful bugs. Malware includes trojans, viruses, worms, spyware and any kind of

software with intention to cause damage to the system. [Andreas, Ulrich 2006]

Destructive malware generally spreads by using popular communication tools to

spread them. For example, worms can be spread using an email tool. They usually exploit

the vulnerabilities on the target system to make their entry easy and unknown to the

system.

A special category of malware called data-stealing malware exists. This malware

intends to steal personal and confidential information of a person or an organization. The

security threats of this kind are created using software like key loggers, adware, spyware

and bots. This malware is typically stored in the cache memory which is frequently

flushed. Once this kind of malware gets successfully installed on the target machine, they

can take-over the IDS or anti-virus programs protecting the system.

1.2 Categories of Malware

Malware has become the greatest external threat to organizations causing resource

damage and restoration overhead. Malware can be categorized into the following:

2

1.2.1 Viruses

A virus is a self-replicating program that inserts copies of itself into the target

program or target machine. Generally viruses are initiated by user interaction. This

happens whenever a user opens a file or runs a program.

1.2.2 Worms

A worm is a self-replicating program that requires no user interaction. It replicates

itself based on some conditions. Worms are further categorized into: Network Service

Worms and Mass mailing worms.

Network Service Worms replicate themselves and infect the target machines by

making use of the vulnerabilities in the network.

Mass mailing worms are similar to email viruses except that they are self

contained and do not infect other files [Kent K, Mell P, Nusbaum J].

1.2.3 Trojan Horse

A Trojan horse is a non-replicating and self contained program that looks like

a useful program but has hidden code that has a malicious purpose and can cause

damage to the system. Generally Trojan horses are used as aiding tools for others

attacker tools [Kent K, Mell P, Nusbaum J].

1.2.4 Attacker Tools

Attacker tools are generally delivered to a target system as part of a malware

infection. There is a large variety of attacker tools. Generally these tools help

3

attackers in gaining unauthorized access to infected systems and their data. They can

also be used to launch additional attacks. The most common attacker tools are:

1.2.4.1 Backdoors

A Backdoor is a tool that can be used to bypass the normal authentication

and remain undetected. Generally a backdoor is a malicious program that listens

to the commands being executed on certain TCP or UDP port. There is type of

backdoor known as bot, which when installed allows the attacker to gain remote

control over the infected system.

1.2.4.2 Keystroke Loggers

A keystroke logger is a malicious program that is used to record and

monitor the keyboard usage. These tools can be used to log confidential

information of the user, like user names and passwords and send them to the

attacker.

1.2.4.3 Root kits

A root kit is a collection of malicious files that are deployed on a target

machine and then they alter the functionality of the target systems in a stealthy

way. Generally root kits make many changes to the target machine making itself

difficult to detect.

1.2.4.4 E-Mail Generators

An Email Generator is a program that is used by the attacker to send large

number of emails that contain malware, spyware, and other infections to target

systems without user’s knowledge.

4

1.2.4.5 Attacker Toolkits

 Attackers make use of attacker toolkits which consists of wide variety of

tools and utilities that can be used to probe and attack target systems. The tools

include packet sniffers, port scanners, vulnerability scanners, password crackers

and other scripts. The following table shows different malware categories.

Characteristic

Virus

Worm

Trojan
Horse

Tracking
Cookie

Attacker
Tools

Is it self-contained?

No

Yes

Yes

Yes

Yes

Is it self-replicating? Yes Yes No No No

What is its method of

propagation?

User-

interaction

Self-

Propagation

N/A N/A N/A

Table 1.1 Differentiating Malware Categories [Kent K, Mell P, Nusbaum J]

1.3 Vulnerability to Malware

Many factors may leave a system vulnerable to attacks. The most common being

the exploits of the bugs in the operating system design, existence of over- privileged

users (who can leave the system vulnerable to the malware by making wrong decisions).

Once a potential weakness is determined in an operating system, it can be used to launch

attacks against all the machines that have the same operating system. Once a machine is

compromised the malware can act intelligently hiding itself from the anti-malware and

anti-virus programs, at the same time performing its intended task.

5

The user should always install the patches for the design weaknesses to protect

itself from being prone to malware attack. Most of the web-sites on the World Wide Web

are infected by malware. For example, the social networking site Twitter had a

vulnerability called XSS security issue. This vulnerability allowed the malicious program

developers to inject malicious code into the HTML pages, thus all the systems that visited

this Web-site and had a lack of malware protection were infected by the malware. The

XSS vulnerability allows the malware owners to hi-jack user accounts and also with the

help of knowledge of other vulnerabilities, they could compromise the systems [Wiki

2009].

Another example of vulnerability is the Microsoft Office PowerPoint

vulnerability. This unpatched vulnerability could allow the hackers to get arbitrary code

executed with the privileges of the log-on user.

1.4 Malicious Code Analysis

Malicious code analysis is used to refer to the process of determining the intent

and nature of the malware sample. This is very important to the process of developing the

detection techniques for the malware. Also it is very important for developing tools that

can be used to remove the malware from the system. For a long time the malicious code

analysis was a manual, time consuming and tedious task. Thus there was need for

automated systems which could detect the presence of the malware and automatically act

to prevent the malware from achieving its intended task.

The most important preventive measures for malware are the virus scanner, but

these scanners rely on a database of known signatures for virus. Thus they are restricted

to only known viruses and malware, but many new types of malware and viruses attack

6

the computer systems every day. So there is a need for a better malware tracking solution.

Whenever a new malware is found, its signature is written to the database of signatures,

so that all systems infected with this malware can be easily fixed.

In addition it is very important to understand the functionality of the malware. In

order to remove the malware, it is not sufficient to remove the binary from the Windows

environment; all the registry settings affected by the malware should be restored.

Generally the malware analysis is conducted by allowing the malware program to

be executed in a restricted environment and observe the actions. Then the actions of the

program are analyzed (usually a debugger is used). This manual analysis is a time taking

and tedious process. Thus there is a need for automated analysis programs. This

automation is generally achieved by executing the affected program in a virtual

environment and recording the actions of the programs and finally sending the recorded

actions to the human analyst [Andreas, Ulrich 2006].

The existing automated malicious code analyzers have shortcomings. One of the

very important aspect among them being the failure of the analyzers due to the presence

of detection routines within the malware. The detection routines allow the malware to

detect if the program is running in a virtual environment. If so, the malware program acts

in a different way, thus hiding its existence. Some malware have the capability to check

the existence of both hardware and software breakpoints, which can be used to detect the

existence of a malware.

Other problems with the automated malware analysis include the incapability of

the tool to detect the complete interaction of the program with the system.

7

1.4.1. Static Analysis

Static analysis is the process of analyzing the malware without actually executing

it. In this technique the binary code is converted into corresponding assembler level

instructions. After the transformation, control flow and data flow analysis techniques are

implemented to draw a conclusion about the programs functionality. The following figure

shows a static analyzer. [Feng M, Gupta R]

Figure 1.1 A Static Analyzer

Static analysis is faster in performance than dynamic analysis. One of the major

disadvantages of static analysis is the ability of the malware to make use of binary

obfuscation, which can be used to safely play with the control flow and data flow

analysis. The binary obfuscation preserves the programs functionality while at the same

time making the parsing of the program difficult. The malware can also make use of code

Malicious
Code

Virtual OS Is
packed?

Unpacker

Pattern
Analyzer

Call Graph

Yes Unpacked Binary Code

No

8

obfuscation which makes it difficult to perform the data flow and control flow analysis.

These obfuscation techniques are implemented with the help of opaque predicates and

opaque constants. Opaque predicates are defined as “Boolean valued expressions whose

values are known to the obfuscator but difficult to determine for an automatic

deobfuscator”. Opaque constants are similar to Opaque predicates but they hold integer

values [Christodorescu,M., Jha, S].

It’s not necessary that the code analyzed by the static analyzer is the code that will

be actually executed. This is true in particular for the self-modifying programs that make

use of polymorphism to hide their actual form.

1.4.2. Dynamic Analysis

In contrast to static analysis, the dynamic analyzers analyze the code when it is

being executed. The most important advantage of dynamic analyzer is that the

instructions that are analyzed are the ones that are executed. These tools provide security

against the obfuscation techniques. The following figure shows a dynamic analyzer.

9

Figure 1.2 A Dynamic Analyzer

Generally the analysis is conducted in a virtual environment. Thus the risk of

system being damaged is reduced, because the virtual environment image could be

replaced with a new one. [Feng M, Gupta R]

One of the significant drawbacks of conducting the analysis in a virtual

environment is that the malware could determine that it is running in a virtual

environment and may change its behavior accordingly.

Virtual environment detection tools are easily available. These tools make use of

CPU instructions to determine the existence of a virtual environment. For example the

following sample code can be used to test the existence of a virtual environment:

int swallow_redpill () {
unsigned char m[2+4], rpill[] =
"\x0f\x01\x0d\x00\x00\x00\x00\xc3";

 (unsigned)&rpill[3]) = (unsigned)m;
 ((void(*)())&rpill)();
 return (m[5]>0xd0) ? 1 : 0;
 }

Malicious
Code

User
Module

Report

OS Kernel Kernel
Module

User Mode

Kernel Mode

System Service Calls

10

The heart of this code is actually the SIDT (store interrupt descriptor table)

instruction (encoded as 0F010D [addr]), which stores the contents of the interrupt

descriptor table register (IDTR) in the destination operand, which is actually a memory

location. One very interesting thing about the SIDT instruction is that, it can be executed

in non privileged mode but it returns the contents of the sensitive register, used internally

by the operating system.

Because there is only one IDTR register, but there are at least two OS running

concurrently (i.e. the host and the guest OS), VMM needs to relocate the guest's IDTR in

a safe place, so that it will not conflict with a host's one. Unfortunately, VMM cannot

know if (and when) the process running in guest OS executes SIDT instruction, since it is

not privileged (and it doesn't generate an exception). Thus the process gets the relocated

address of the IDT table. It was observed that on VMWare, the relocated address of IDT

is at address 0xffXXXXXX, whereas on Virtual PC it is 0xe8XXXXXX. This was tested on

VMWare Workstation 4 and Virtual PC 2004, both running on Windows XP host OS

[Quist D, Val Smith].

11

2. Minifilter Driver

2.1 Analyzing a Executable

The ultimate goal of this project is to analyze a given executable and generate a

report of the changes made to the system by the executable. Then analysis of the report is

performed to decide if the executable is a malware or a normal program.

The executable is tested in a virtual environment. The analysis tool has two main

components. They are:

1. Minifilter Driver: The minifilter driver is used to dynamically monitor the

activities of the program that is being tested. This driver can track the

Windows API calls made by the program.

2. Analysis Tool: This tool works along with the driver. It makes use of the

track report of the Windows API calls made by the program and generates a

report that is understandable by an analyst. The report includes all the file and

registry operations made by the program.

The minifilter driver is created using Windows programming with Windows

Driver Kit (WDK) [Microsoft-7]. The analysis component is developed using C and C++

programming with Visual C++. Based on the reports generated by the analysis tool, the

changes made by the program are taken into consideration, analysis is performed and a

decision is made as malicious or normal program.

2.2 Malicious Code Detection

Malicious code detection is the process of detecting various malware that can

cause potential damage to the system. Any defense technology can be separated into two

components – a technical component and an analytical component. In reality, these

12

components may not be clearly separable at the module or algorithm level within every

malicious program. However, in terms of function, their differences are significant and

important. The technical component is a collection of program functions and algorithms

that selects the data that will be analyzed by the analytical component. This data may be

anything – from text strings within a file, to a specific action the program performs, to a

full sequence of actions that the program performs, and more.

The analytical component serves as the decision-making system. It assesses the

data provided by the technical component using one or more algorithms and then issues a

verdict about the data. The security program will then use the verdict to take action on the

malicious program according to the security policy that has been set in the security

program. For example, a few of the possible actions that could occur based upon the

verdict might be –

 a. Notifying the user

 b. Requesting further instructions from the user

 c. Placing a file in the quarantine

 d. Blocking unauthorized program actions

Consider the following example, which is extracted from the assembly code of

Bagle, which is a widespread email-based virus. For ease of presentation and

understanding, some simplifications of the original code have been performed.

1 lea edi, ptr [ebp+0x4025] // edi = mem[ebp+...]
2 mov edx, 0xef4013a0 // edx = 0xef4013a0
3 mov ecx, 0x3ec5 // ecx = 0x3ec5

 loop:

4 mov al, byte ptr ds[edi] // al = mem[ds+edi]
5 sub al, dl // al = al - dl
6 sub al, dh // al = al - dh

13

7 xor al, cl // al = al . cl
8 rol edx, cl // rotate edx by cl bits

9 mov byte ptr ds[edi], al // mem[ds+edi] = al

10 inc edi
11 dec ecx

12 jnz loop // jump
13 push edi // push args into stack
14 call 0x7c92a950 // call a lib function

The key part of the sample code is a loop formed by instructions 4 through 12.

The instructions preceding the loop (i.e., instructions 1 through 3) initialize the loop

counter (ecx), starting address (edi), and another variable (edx). During each iteration, the

loop fetches a value from the data segment, performs a calculation based upon that value,

and then finally puts the new computed value back into the data segment. Following the

loop, the program calls a library function that uses the newly computed values. The use

of these values triggers the actions of the virus. Many different kinds of obfuscation

transformations can be applied to this piece of code to affect mutations of the Bagle virus

[Feng M, Gupta R].

2.3 Minifilter Driver

 2.3.1 Minifilter

The filter manager is a kernel-mode driver that performs in accordance to

a standard file system filter model. The ultimate goal of a filter manager is to

provide the generic functionality that is required by file system filter drivers. This

functionality is very useful for the third party driver developer to develop and

write minifilters for the user applications [Microsoft-3].

14

The minifilter technique is very simple and easy to develop than the

corresponding file system filter drivers. By taking advantage of this functionality,

third-party developers can write minifilter drivers, which are simpler to develop

than legacy file system filter drivers. This process shortens the driver production

process with far superior quality. The applications developed by minifilters are

more robust and versatile [Microsoft-1].

2.3.2 Filter Manager Concepts

All Windows operating systems have a Filter manager installed on them.

But the filter manager is turned into active mode only when a minifilter driver is

loaded. The filter manager works by attaching itself to the file system stack and

thus acquiring a place in the target volume. On the other hand minifilter driver has

an indirect attachment to the target volume by registering itself with the filter

manager. The minifilter driver can register itself with the filter manager to

perform filtering of a chosen set of I/O operations.

2.3.2.1 Load Order Groups

The “load order group” determines the position of a legacy filter driver

position in the file system I/O stack relative to other filter drivers. This can be

better explained by the following example. An antivirus filter driver should

always be at a higher position in a file system I/O stack than replication filter

driver. This position of antivirus filter driver is required in order to detect

viruses and disinfect files before they can cause further damage to the other

machines. Thus, filter drivers located in the FSFilter Anti-Virus load order

group are higher in position and are loaded before filter drivers located in the

15

FSFilter Replication group. Every filter driver in the file system has a

corresponding system-defined class. There is also a GUID specified in the .inf

file for the filter driver [Microsoft-4].

2.3.2.2 Altitude of a Minifilter

Similar to the legacy filter drivers, all the minifilter drivers attach to

the file system stack in a particular order. A unique identifier called altitude

determines the order of attachment of a minifilter driver. The altitude of a

minifilter is the characteristic that identifies the position of a minifilter relative

to other minifilters in the I/O stack when the minifilters are loaded. The

altitude is an infinite-precision string interpreted as a decimal number. Lower

the altitude value, earlier the filter loaded. It means a minifilter that has a low

numerical altitude is loaded below a minifilter that has a higher numerical

value in the I/O stack [Microsoft-4].

2.3.2.3 Instance of a Minifilter

The attachment of a minifilter driver at a particular altitude on the file

system stack is called an instance of the minifilter driver. The altitude of a

minifilter driver ensures the order of loading instances of minifilter drivers is

appropriate. The altitude also determines the order in which the minifilter

drivers are called by the filter manager to handle I/O. The allocation of

altitudes to the instance of minifilter drivers is managed by Microsoft. The

following figure shows a simplified I/O stack with the filter manager and three

minifilter drivers. The following figure shows a single filter manager on a I/O

stack.

16

Figure 2.1 I/O stack with single filter manager and three minifilter drivers

[Microsoft-2].

2.3.2.4 Callback Routines of a Minifilter

A minifilter has the capability to filter all the three major I/O based

operations. The three I/O operations are IRP-based I/O operations; fast I/O

and file system filter (FSFilter) callback operations. The minifilter can register

with a preoperation call back routine, a post operation callback routine, or

both for filtering each of the above three I/O operations. The filter manager

makes a call to the appropriate callback routine for each minifilter driver

whenever they need to handle an I/O operation. It can call a callback routine

only when it is registered. When the callback routine returns, the filter

17

manager makes a call to other callback routine registered for other minifilter

drivers for the same I/O operation [Microsoft-2].

The call to the callback routines by the filter manager are in order of

altitude from highest to lowest (A, B, C). The I/O request is then forwarded to

the next-lower driver for further processing. Once a request for I/O operation

complete is receive by the filter manager, a call to post operation callback

routines of each of the minifilter driver is made in reverse order, from lowest

to highest (C, B, A) [Microsoft-5].

Generally there is a need for interoperability between the minifilter

drivers and the legacy filter drivers. To achieve this interoperability the filter

manager attaches filter device objects to a file system I/O stack in multiple

location. Each of the filter manager's filter device objects is called a frame.

The legacy filter driver perceives each filter manager frame as just another

legacy filter driver.

Every filter manager frame makes use of band of altitudes. The filter

manager is robust enough, so that it can create a new frame or modify an

existing frame to attach to the file system at the correct location.

 It’s always important to verify the interoperability among the legacy

filter drivers and the minifilter drivers. If there are issues with the

interoperability, there is a need to replace legacy filters with minifilters. If a

minifilter driver is unload operation is performed and then a reload operation

is called, the minifilter is reloaded at the same altitude in the same frame from

which it was unloaded.

18

The following figure shows a simplified I/O stack with a two filter

manager frames, minifilter driver instances, and a legacy filter driver. The

following figure shows multiple filter managers on a I/O stack.

Figure 2.2 I/O stack with two filter manager frames, minifilter driver instances, and a

legacy filter driver [Microsoft-2]

19

2.4 Advantages of Minifilter Drivers

The minifilter model offers the following advantages over the existing

legacy filter driver model:

1. Filter load order control is easy

2. Unloading a minifilter while a system running is possible

3. Ability to process only necessary operations

4. Kernel stack is used more efficiently

5. Code redundancy is reduced

6. Less complexity

7. New operations can be easily added

8. Can support multiple platforms easily

9. Better support for user-mode applications

2.5 Analyzing the reports and decision making

Once a report is generated by the tool, analysis can be performed by the analyst.

Based on the operations performed by the program as listed in report, the analyst can

classify a program as a malicious program or a normal program. For example, the

following is the analysis of a sample report. The report is from Symantec Antivirus:

Name: Auraax.c

Type: Worm

Infection Length: 27,136 bytes

Systems Affected: Windows 98, Windows 95, Windows XP, Windows Me, Windows

Vista, Windows NT, Windows Server 2003, and Windows 2000.

20

Whenever the worm executes, it replicates itself and infects all the machines that

are prone to it. It copies into the system files of a machine as follows:

 %ProgramFiles%\Microsoft Common\wuauclt.exe

Once a machine is infected, it then creates several files on the infected machine.

For example the following files are created:

1. %Windir%\Temp\rld[SINGLE NUMBER].tmp

2. %System%\config\systemprofile\Local Settings\History\desktop.ini

3. %System%\config\systemprofile\Cookies\index.dat

4. %System%config\systemprofile\Local Settings\Temporary Internet

Files\desktop.ini

After the creation of files, the worm alters the following system processes:

1. svchost.exe

2. explorer.exe

Then the worm makes few new entries into the windows registry. These entries

run every time the system boots.

The entries are as follows:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsNT\

CurrentVersion\Image File Execution Options\explorer.exe\"Debugger" =

"%ProgramFiles%\Microsoft Common\wuauclt.exe"

The worm also modifies few existing registry entries, which are loaded every time

the system boots. The entries are as follows:

21

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsNT\CurrentVersi

on\Winlogon\"Userinit" = "%System%\userinit.exe, ProgramFiles%\Microsoft

Common\wuauclt.exe"

The worm also creates registry entries that have the capability to bypass the

Windows firewall. They are:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\SharedAcce

ss\Parameters\FirewallPolicy\StandardProfile\AuthorizedApplications\List\"%

ProgramFiles%\MicrosoftCommon\wuauclt.exe"="%ProgramFiles%\Microsof

t Common\wuauclt.exe:*:Enabled:EMOTIONS_EXECUTABLE"

The worm also searches the kernel drivers for .sys extension files in the

%System%\DRIVERS\ folder so that it can overwrite these files. These files are

generally overwritten with a root kit so that the worm can hide itself.

The worm also modifies the host machine files, so that the host machine is

prevented from accessing the following websites.

1. 127.0.0.1 downloads.microsoft.com

2. 127.0.0.1 downloads1.kaspersky-labs.com

3. 127.0.0.1 downloads1.kaspersky-labs.com

4. 127.0.0.1 downloads1.kaspersky-labs.com

5. 127.0.0.1 downloads2.kaspersky-labs.com

6. 127.0.0.1 downloads3.kaspersky-labs.com [Symantec 2008].

22

3. SYSTEM DESIGN

3.1 Overview of the system

The use of a dedicated standalone system for testing the malware is not an

efficient solution. The dedicated system can be reinstalled after each dynamic test run is

performed, but this induces very high cost. In order to overcome the disadvantages of a

standalone system, the tool run the tests in a virtual environment, thus limiting the effect

of the malware only to the virtual machine but not the real system.

 In case of a virtual system, the infected virtual image is replaced with a new one.

Thus there is no need to reinstall software on the machine, thereby reducing the overhead.

 Virtual machines are very fast and similar to the real one in-term’s of the execution

speed. A major drawback of the virtual solution is that the malware may detect that the

environment in which it is running is the virtual environment and may change its

behavior accordingly.

 The alternative solution to the above problem is the use of an emulator. A PC

emulator is a piece of software that emulates the functionality of a real system including

all the real time resources of a system. There is a subtle difference between an emulator

and a virtual machine. Virtual system executes a statically dominant set of instructions

directly on a real system, whereas an emulator simulates all the instructions in software

[Duan H, Guan Y, Zhang J].

But there is a problem with software emulators. They are not easily available for

Windows based Operating System. Hence there is a need for a tool that can work with a

virtual Operating system and still detect malware.

23

 Also there is a very important difference between the speed of execution on a real

time system and the speed of execution on a virtual Operating System. This difference

can be used by the malware to judge whether it is being run on a virtual Operating

System or a real system. This disadvantage can be overcome by using a minifilter driver

which can redirect operations and makes a malware believe that it is not being run in a

test environment.

3.2 Information Analyzed

It is possible to classify the types of information that is captured during the

analysis phase of the system. Many systems concentrate on the communication between

the application and the operating system. This includes intercepting system calls and

hooking API calls.

There are tools that can be used to list all the windows processes running in a

system. Also it is possible to log the windows registry and the file system activity.

Generally these tools are implemented as operating system drivers that can intercept the

native windows calls. Thus they are invisible to the application that is currently on

analysis. There are also tools that can intercept arbitrary user functions, including all

windows API calls. This requires some rewriting of the target function. This rewriting

could be detected by a malware and thus it may act differently to overcome the detection.

In order to overcome the above problem, virtual Operating System is used along

with a minifilter tool. The minifilter tool has complete control over the system. It has the

capability of analyzing both the native windows calls as well as the windows API calls, at

the same time being unidentified by the malicious code. Because of the use of the

minifilter which has complete control over the system, the analysis being performed is

24

more fine grain. This functionality is similar to the debugger but the technique does not

make use of break points, which are known to create problems when used for analyzing

malicious code. The reason being the software break points can be detected using code

integrity checks and the malware could act accordingly [Kirda E, Ulrich 2006].

The minifilter tool is used for analyzing windows executables especially the files

corresponding to the PE file format. In this technique the program is tested in a virtual

environment and the valid native windows calls and windows API are logged for

analysis.

3.3 Testing Environment

The testing environment is very simple. The tool has two major parts. They are:

1. Minifilter Driver

2. Analysis Tool

The whole testing is performed on a Virtual System. First the minifilter is

installed on the virtual operating system using Windows Installer. Then the analysis tool

service is started. The service can be started using the windows executable sc.exe which

is used to start, suspend and stop services on the windows operating system. The tool is

started using a command prompt. Once the minifilter is installed and the service is

running, the program can be tested [OSR 2010]. The following chart shows the designed

tool architecture.

25

Figure 3.1 Architecture of the Malicious Code Detection Tool

The testing is performed in the following steps:

1. The detection tool is supplied with a program to be analyzed.

2. The program name is sent to the driver

3. Driver monitoring process operations

a. driver monitors the process creation

b. drivers monitors the activity and redirect any operation

4. Driver monitor the exit of the process

5. Detection tool receives notification from the driver and performs analysis

6. After analyzing, the tool generates the report and displays it.

Detection Tool
1. The detection tool is supplied with a program to be

analyzed.
6. After analyzing, the tool generates the report and

displays it.

5. Detection tool receives notification from the
driver and performs analysis.

User mode

Kernel mode

Minifilter Driver

3. Driver monitoring process operations

Registry Callback Driver
4. Monitor the exit of the process

2. Detection tool sends the program
 name to driver

26

3.3.1 Redirection using the detection tool

Redirection explains how the detection tool controls the malware by having

greater control over the system. The following redirection schemes are used:

1. Suppose program wants to read an existing registry key:

HKLM\Software\Microsoft\Windows\TaskManager\

Analyzer will let the program read the value and return to malware program.

2. Suppose malware wants to create a registry key

HKLM\Software\Microsoft\Windows\MalwareXXX\

Analyzer will create a registry key as:

HKLM\Software\Analyzer Sandbox\Malware\

– > Sub Key will be:

HKLM\Software\Microsoft\Windows\MalwareXXX\

The tool makes the malware believe that it is not detected by sending wrong

registry keys. It monitors the creation and deletion of registry keys.

3. Whenever malware tries to read a registry key, Analyzer will first check the

sandboxed key and if found will return the value from there, otherwise will let

the operation go as usual.

4. What happens if malware modifies any registry key?

 This operation will be considered as same to creation of key

5. What happens when file operation is requested?

 It treats as if registry names are some file names and file paths.

27

3.4 Installing a Minifilter Driver

All the Windows Operating systems including Windows XP and latter, minifilter

drivers are installed by using an INF (Setup Information file) and an installation

application. In all the previous operating systems, minifilter drivers were installed by the

Service Control Manager [Microsoft-5].

The "INF-based installation" means that the use of INF file is to copy files and to

store information in the registry. The system does not depend on a single INF file for the

whole installation.

3.4.1 Creating an INF File for a Minifilter Driver

An INF file for a file system minifilter driver is very important for installing

the minifilter drivers. An INF file generally contains the following sections:

1. Version (required)

2. DestinationDirs (optional but recommended)

3. DefaultInstall (required)

4. DefaultInstall.Services (required)

5. ServiceInstall (required)

6. AddRegistry (required)

7. DefaultUninstall (optional)

8. DefaultUninstall.Services (optional)

9. Strings (required)

28

3.4.1.1 Version Section (required)

The Version section specifies a class and GUID. These class and GUID

characteristics are used to determine the type of minifilter driver. This can be

shown in the following code example.

[Version]
Signature = "$WINDOWS NT$"
Class = "ActivityMonitor"
ClassGuid = {b86dff51-a31e-4bac-b3cf-e8cfe75c9fc2}
Provider = %v@t%
DriverVer = 10/09/2001,1.0.0.0

Table 3.1 Table describing the contents of the version section in a INF file [Microsoft-3].

Table 3.1 describes the version section of a INF file.

Entry Value

Signature "$WINDOWS NT$"

Class Specifies the class name for the minifilter driver

ClassGuid Specifies the GUID for the minifilter driver

Provider The name of the software company which is developing the drivers

DriverVer Specifies the driver version

CatalogFile This field is empty for non-antivirus minifilter drivers.

This filed contains the name of a WHQL-supplied catalog file for Antivirus
minifilter drivers which are signed.

29

3.4.1.2 DestinationDirs Section (optional but recommended)

This section specifies the directories where minifilter driver and

application files will be copied.

In both DestinationDirs Section and ServiceInstall section, well-known

system directories can be specified by system-defined numeric values. In the

following code example, the value 12 refers to the Drivers directory

(%windir%\system32\drivers on Windows NT-based platforms), and the value

10 refers to the Windows directory (%windir%) [Microsoft-3].

[DestinationDirs]
DefaultDestDir = 12
Mafiltertool.DriverFiles = 12
Mafiltertool.UserFiles = 10,FltMgr

3.4.1.3 DefaultInstall Section (required)

The DefaultInstall section makes use of a CopyFiles directive. This

directive can be used to copy the minifilter driver's driver files and user-

application files to the targets directories that are enlisted in the

DestinationDirs section [Microsoft-3].

3.4.1.4 Strings Section (required)

The Strings section defines each %strkey% token that is used in

the INF file. The following code example shows a typical Strings section

[Microsoft-3].

[Strings]
V@t = "Vinay@TAMUCC"
ServiceDescription = "Malprober Mini-Filter Driver"
ServiceName = "Malprober"
DriverName = "Malprober"
DiskId1 = "PassThrough Device Installation Disk"

30

RegInstancesSubkeyName = "Instances"
RegAltitudeValueName = "Altitude"
RegFlagsValueName = "Flags"
DefaultInstance = " Mafiltertool - Top Instance"
Instance1.Name = " Mafiltertool - Middle Instance"
Instance1.Altitude = "370000"
Instance1.Flags = 0x1 ; Suppress automatic attachments
Instance2.Name = " Mafiltertool - Bottom Instance"
Instance2.Altitude = "365000"
Instance2.Flags = 0x1 ; Suppress automatic attachments
Instance3.Name = " Mafiltertool - Top Instance"
Instance3.Altitude = "385000"
Instance3.Flags = 0x1 ; Suppress automatic attachments

3.5 Analysis Process

The analysis process is started by allowing the given program to execute in an

emulated environment. When the program executes, all the operating system services that

are requested by the program are noted. Every action that involves communication with

the environment, requires some operating system services, it cannot directly interact with

the hardware.

 In a windows operating system environment, the application cannot directly

interact with the windows native API. They are supposed to make use of the functions

provided by the operating system to interact with the operating system services.

 Malware writers make direct use of these native API to avoid any kind of DLL

dependencies or confuse the virus scanners. This tool takes care of both Windows API

function calls by an application and native API calls of an application, thus making the

probability of a malware escaping the analysis very low.

The tool is supposed to track which operating system services are used by a program.

This tracking requires us to solve two problems:

31

1. We must be able to track the execution of a malware process and also distinguish

between the instructions executed by a malware process and the instructions

executed by a normal process. This is very important because the emulated

environment does not only run the instructions of the malware process, but also

the native operating system instructions and instructions of the other supporting

processes.

2. We need to make sure that the native API call or a windows API call is invoked

without any kind of modification to the malware sample.

The PDBR (Page Directory Base Register) can be used to track the execution of the

instructions. This project creates a tool that makes use of virtual OS and minifilter drivers

to detect malicious code. The following figure shows the overview of the malicious code

detection tool.

Figure 3.2 Overview of the Malicious Code Detection Tool

Malicious
Code

Virtual OS with
Minifilter drivers
Installed

Detection
Tool

Report

runs in
results from
filter tool

generate reports

32

4. EVALUATION AND RESULTS

To demonstrate the capability of the malware tool in successfully monitoring the

actions of malicious code, the tool runs dynamic tests on current malware samples. Then

the results of the tool are compared to the solutions provided by various anti-virus

providers. The ultimate goal of the evaluation is to determine till what extent our analysis

results match the characterizations provided by this well-known anti-virus vendor.

For the selection of our test subjects, we make use of Symantec’s list of the most

prevalent malware samples that are published. Unfortunately, it is not possible to obtain

samples for all entries on these lists. However, we select some set of different malware

programs that represent a good mix of different malicious code variants currently popular

on the Internet. Some of these samples may be packed using different executable packer

programs; others may not be recognized as valid Windows PE executables. From this

pool, we choose one working sample for each malware type. Then, we scan all samples

for our experiments by the online virus scanner provided by Symantec and make sure that

they were all recognized correctly. There can be differences between the results of our

tool and the virus descriptions of the various anti-virus providers [Kirda E, Ulrich 2006].

The detection tool was also able to recognize many viruses that are enlisted

neither on Symantec’s anti-virus list nor on Kaspersky’s anti-virus list. The technical

detail of malware includes the files, registry, processes and services affected by the

malware. Generally these changes by a particular virus are not the same on different

computers. The probable reason can be that the malicious code chooses random file

names or a name from a list of options that are not exhaustively covered by the malware

description. Another possible reason for the variation in output can be analysis of a

33

malware variant rather than the malware about which the virus scanner has published the

technical details.

 The following table shows some malwares that were analyzed by the tool and

compared to the results of the Symantec anti-virus list.

 Malware Name File Registry Process Service

W32.Storm.Worm Yes P P P

W32.HLLW.Doomsjuice Yes P P P

W32.Sality.AE Yes P P P

W32.Qquzlzb.exe No No No No

W32.Srvcp.exe No No No No

Table 4.1 MalProber Test Results

In the above figure ‘P’ refers to partial matches. The partial matches occur due to

the malware dependency on the target system. This dependency occurs due to the systems

execution environment. Generally files are also dependent on the target system but the

core files that are created or affected by the malware are always the same.

Also there are few malware samples listed above whose virus definitions were not

found on the Symantec’s anti-virus list. These viruses were detected by our tool.

Whenever some normal process is analyzed, the tool displays the changes made

by the program to the system. This tool can also be handy for people who want to study

the nature of their processes.

 The following steps describe the process of analyzing a malware or a normal
process.

34

Step 1: Installing the Malprober Driver

1. Go to the project folder

2. Open the directory /Malware Analyzer/Driver

3. Install the minifilter drivers by right clicking the Malprober.inf and selecting

“install”.

Figure 4.1 Installing Malprober Driver

The above figure shows how to install the Malprober Minifilter Driver.

35

Step 2: Starting the Malprober Service

1. Open a command prompt on the virtual Operating System.

2. Type the following command to start the tool

Command: sc start malprober

Figure 4.2 Starting the Malprober service

The above figure shows how to start the Malprober Service.

36

Step 3: Testing a program with Malprober

1. Type the following command for testing the sample program and generating reports.

Command: u_malanalyze.exe usbview.exe

Figure 4.3 Testing usbview.exe with Malprober Tool

The above figure shows how a program named “usbview.exe” is tested with the

Malprober. Once we run the tool, the tool generates a report for the binary. The generic

report contains all the file operations, registry and timestamp changes made by the binary

under analysis. At the end of the report, there is an automated analysis of the program

behavior.

37

4.1 Sample Reports

Sample#1

A genuine program. The following is the report for usbview.exe.

1. The program created the following new files

/*==*/

2. The program opened the following files

/*==*/

3. These files are read by the program

/*==*/

4. These files are written into by the program

/*==*/

5. The following files security permissions are changed

/*==*/

6. These files are deleted by the program

/*==*/

7. These files are sent ioctl command

/*==*/

8. The timestamps are changed for the following files

/*==*/

38

9. The following registry keys are created

\Registry\Machine\SOFTWARE\Microsoft\Cryptography\RNG
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Internet Settings
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\SystemCertificates\My
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-500\Software\Microsoft\Windows
NT\CurrentVersion\Winlogon
\REGISTRY\MACHINE\SYSTEM\ControlSet001\Control\DeviceClasses
/*==*/

10. The following registry key values set

\REGISTRY\MACHINE\SOFTWARE\Microsoft\Cryptography\RNG Seed
/*==*/

11. The following registry keys are deleted

/*==*/

12. The following processes are created

/*==*/

/*===*/

Automated analysis of the program behavior

/*===*/

The program seems to be a genuine program#####

39

Sample#2

A little suspicious program. The following is the report for msrll.exe.

1. The program created the following new files

\Device\HarddiskVolume1\WINDOWS\system32\mfm\msrll.exe
/*==*/

2. The program opened the following files

\Device\HarddiskVolume1\WINDOWS\system32\ws2_32.dll
\Device\HarddiskVolume1\WINDOWS\system32\ws2help.dll
\Device\HarddiskVolume1\WINDOWS\system32\shell32.dll
\Device\HarddiskVolume1\WINDOWS\WinSxS\x86_Microsoft.Windows.Common-
Controls_6595b64144ccf1df_6.0.2600.2180_x-ww_a84f1ff9\comctl32.dll
\Device\HarddiskVolume1\WINDOWS\WindowsShell.Manifest
\Device\HarddiskVolume1\WINDOWS\system32\wininet.dll
\Device\HarddiskVolume1\Documents and Settings\Administrator\Desktop\freemalwares\msrll.exe
\Device\HarddiskVolume1\WINDOWS\system32\mfm\msrll.exe
/*==*/

3. These files are read by the program

/*==*/

4. These files are written into by the program

/*==*/

5. The following files security permissions are changed

/*==*/

6. These files are deleted by the program

\Device\HarddiskVolume1\WINDOWS\system32\mfm\msrll.exe
/*==*/

7. These files are sent ioctl command

/*==*/

40

8. The timestamps are changed for the following files

/*==*/

9. The following registry keys are created

\Registry\Machine\SOFTWARE\Microsoft\Cryptography\RNG
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Internet Settings
/*==*/

10. The following registry key values set

\REGISTRY\MACHINE\SOFTWARE\Microsoft\Cryptography\RNG Seed
/*==*/

11. The following registry keys are deleted

/*==*/

12. The following processes are created

/*==*/

/*===*/

Automated analysis of the program behavior

/*===*/

The program deletes itself

The program is a little suspicious program#####

41

Sample#3

A quite suspicious program. The following is the report for DoomJuice2.exe.

1. The program created the following new files

\Device\HarddiskVolume1\WINDOWS\system32\intrenat.exe
\Device\HarddiskVolume1\sync-src-1.00.tbz
\Device\HarddiskVolume1\WINDOWS\sync-src-1.00.tbz
\Device\HarddiskVolume1\WINDOWS\system32\sync-src-1.00.tbz
\Device\HarddiskVolume1\Documents and Settings\Administrator\Local Settings\Temp\sync-src-1.00.tbz
\Device\HarddiskVolume1\Documents and Settings\Administrator\sync-src-1.00.tbz
/*==*/

2. The program opened the following files

\Device\HarddiskVolume1\WINDOWS\system32\ws2_32.dll
\Device\HarddiskVolume1\WINDOWS\system32\ws2help.dll
\Device\HarddiskVolume1\WINDOWS\system32\intrenat.exe
\Device\HarddiskVolume1\Documents and Settings\Administrator\Desktop\freemalwares\DoomJuice2.exe
\Device\HarddiskVolume1\WINDOWS\system32\wininet.dll
\Device\HarddiskVolume1\WINDOWS\WinSxS\x86_Microsoft.Windows.Common-
Controls_6595b64144ccf1df_6.0.2600.2180_x-ww_a84f1ff9\comctl32.dll
\Device\HarddiskVolume1\WINDOWS\WindowsShell.Manifest
\Device\HarddiskVolume1\WINDOWS\system32\shell32.dll
\Device\HarddiskVolume1\Documents and Settings\Administrator\Local Settings\Temporary Internet Files
\Device\HarddiskVolume1\Documents and Settings\Administrator\Local Settings\History
\Device\HarddiskVolume1\Documents and Settings\Administrator\Local Settings\Temporary Internet
Files\Content.IE5
\Device\HarddiskVolume1\Documents and Settings\Administrator\Local Settings\Temporary Internet
Files\Content.IE5\index.dat
\Device\HarddiskVolume1\Documents and Settings\Administrator\Cookies
\Device\HarddiskVolume1\Documents and Settings\Administrator\Cookies\index.dat
\Device\HarddiskVolume1\Documents and Settings\Administrator\Local Settings\History\History.IE5
\Device\HarddiskVolume1\Documents and Settings\Administrator\Local
Settings\History\History.IE5\index.dat
\Device\HarddiskVolume1\WINDOWS\system32\rasapi32.dll
\Device\HarddiskVolume1\WINDOWS\system32\rasman.dll
\Device\HarddiskVolume1\WINDOWS\system32\tapi32.dll
\Device\HarddiskVolume1\WINDOWS\system32\rtutils.dll
\Device\HarddiskVolume1\WINDOWS\system32\winmm.dll
\Device\HarddiskVolume1\WINDOWS\system32\sensapi.dll
\Device\HarddiskVolume1\AUTOEXEC.BAT
\Device\HarddiskVolume1\WINDOWS\system32\mswsock.dll
\Device\HarddiskVolume1\WINDOWS\system32\dnsapi.dll
\Device\HarddiskVolume1\WINDOWS\system32\winrnr.dll
\Device\HarddiskVolume1\WINDOWS\system32\rasadhlp.dll
\Device\HarddiskVolume1\WINDOWS\system32\hnetcfg.dll
\Device\HarddiskVolume1\WINDOWS\system32\wshtcpip.dll
/*==*/

42

3. These files are read by the program

\Device\HarddiskVolume1\AUTOEXEC.BAT
/*==*/

4. These files are written into by the program

\Device\HarddiskVolume1\WINDOWS\system32\intrenat.exe
\Device\HarddiskVolume1\sync-src-1.00.tbz
\Device\HarddiskVolume1\WINDOWS\sync-src-1.00.tbz
\Device\HarddiskVolume1\WINDOWS\system32\sync-src-1.00.tbz
\Device\HarddiskVolume1\Documents and Settings\Administrator\Local Settings\Temp\sync-src-1.00.tbz
\Device\HarddiskVolume1\Documents and Settings\Administrator\sync-src-1.00.tbz
/*==*/

5. The following files security permissions are changed

/*==*/

6. These files are deleted by the program

\Device\HarddiskVolume1\WINDOWS\system32\intrenat.exe
/*==*/

7. These files are sent ioctl command

/*==*/

8. The timestamps are changed for the following files

\Device\HarddiskVolume1\WINDOWS\system32\intrenat.exe
\Device\HarddiskVolume1\Documents and Settings\Administrator\Local Settings\Temporary Internet Files
\Device\HarddiskVolume1\Documents and Settings\Administrator\Local Settings\History
\Device\HarddiskVolume1\Documents and Settings\Administrator\Local Settings\Temporary Internet
Files\Content.IE5
\Device\HarddiskVolume1\Documents and Settings\Administrator\Local Settings\Temporary Internet
Files\Content.IE5\index.dat
\Device\HarddiskVolume1\Documents and Settings\Administrator\Cookies
\Device\HarddiskVolume1\Documents and Settings\Administrator\Cookies\index.dat
\Device\HarddiskVolume1\Documents and Settings\Administrator\Local Settings\History\History.IE5
\Device\HarddiskVolume1\Documents and Settings\Administrator\Local
Settings\History\History.IE5\index.dat
/*==*/

43

9. The following registry keys are created

\Registry\Machine\SOFTWARE\Microsoft\Cryptography\RNG
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Internet Settings
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Explorer\User Shell Folders
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders
\REGISTRY\MACHINE\SOFTWARE\Microsoft\Tracing
\REGISTRY\MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\User Shell Folders
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-500\Software\Microsoft\Windows
NT\CurrentVersion\Winlogon
\REGISTRY\MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Internet Settings\Connections
\REGISTRY\MACHINE\SYSTEM\ControlSet001\Hardware
Profiles\0001\Software\Microsoft\windows\CurrentVersion\Internet Settings
\REGISTRY\MACHINE\SYSTEM\ControlSet001\Services\Tcpip\Parameters
/*==*/

10. The following registry key values set

\REGISTRY\MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run Gremlin
\REGISTRY\MACHINE\SOFTWARE\Microsoft\Cryptography\RNG Seed
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders Cache
\REGISTRY\MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet Settings\Cache\Paths
Directory
\REGISTRY\MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet Settings\Cache\Paths
Paths
\REGISTRY\MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet
Settings\Cache\Paths\path1 CachePath
\REGISTRY\MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet
Settings\Cache\Paths\path2 CachePath
\REGISTRY\MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet
Settings\Cache\Paths\path3 CachePath
\REGISTRY\MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet
Settings\Cache\Paths\path4 CachePath
\REGISTRY\MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet
Settings\Cache\Paths\path1 CacheLimit
\REGISTRY\MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet
Settings\Cache\Paths\path2 CacheLimit
\REGISTRY\MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet
Settings\Cache\Paths\path3 CacheLimit
\REGISTRY\MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet
Settings\Cache\Paths\path4 CacheLimit
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders Cookies
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders History
\REGISTRY\MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders
Common AppData
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders AppData

44

\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Internet Settings MigrateProxy
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Internet Settings ProxyEnable
\REGISTRY\MACHINE\SYSTEM\ControlSet001\Hardware
Profiles\0001\Software\Microsoft\windows\CurrentVersion\Internet Settings ProxyEnable
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Internet Settings\Connections SavedLegacySettings
/*==*/

11. The following registry keys are deleted

\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Internet Settings ProxyServer
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Internet Settings ProxyOverride
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Internet Settings AutoConfigURL
/*==*/

12. The following processes are created

/*==*/

/*===*/

Automated analysis of the program behavior

/*===*/

The program adds a program which will run automatically on next login

The program changes the internet settings

The program writes to executables

The program is a quite suspicious program#####

45

Sample#4

A very very suspicious program. The following is the report for qquzlzb.exe

1. The program created the following new files

\Device\HarddiskVolume1\WINDOWS\qquzlzb.exe
/*==*/

2. The program opened the following files

\Device\HarddiskVolume1\WINDOWS\system32\crtdll.dll
\Device\HarddiskVolume1\WINDOWS\system32\wsock32.dll
\Device\HarddiskVolume1\WINDOWS\system32\ws2_32.dll
\Device\HarddiskVolume1\WINDOWS\system32\ws2help.dll
\Device\HarddiskVolume1\WINDOWS\system32\wininet.dll
\Device\HarddiskVolume1\WINDOWS\WinSxS\x86_Microsoft.Windows.Common-
Controls_6595b64144ccf1df_6.0.2600.2180_x-ww_a84f1ff9\comctl32.dll
\Device\HarddiskVolume1\WINDOWS\WindowsShell.Manifest
\Device\HarddiskVolume1\Documents and Settings\Administrator\Desktop\freemalwares\qquzlzb.exe
\Device\HarddiskVolume1\WINDOWS\qquzlzb.exe
\Device\HarddiskVolume1\WINDOWS\Prefetch\QQUZLZB.EXE-1E41BD18.pf
\Device\HarddiskVolume1
\Device\HarddiskVolume1\WINDOWS\system32\ntdll.dll
\Device\HarddiskVolume1\WINDOWS\system32\kernel32.dll
\Device\HarddiskVolume1\WINDOWS\system32\unicode.nls
\Device\HarddiskVolume1\WINDOWS\system32\locale.nls
\Device\HarddiskVolume1\WINDOWS\system32\sorttbls.nls
\Device\HarddiskVolume1\WINDOWS\system32\advapi32.dll
\Device\HarddiskVolume1\WINDOWS\system32\rpcrt4.dll
\Device\HarddiskVolume1\WINDOWS\system32\secur32.dll
\Device\HarddiskVolume1\WINDOWS\system32\user32.dll
\Device\HarddiskVolume1\WINDOWS\system32\gdi32.dll
\Device\HarddiskVolume1\WINDOWS\system32\crypt32.dll
\Device\HarddiskVolume1\WINDOWS\system32\msvcrt.dll
\Device\HarddiskVolume1\WINDOWS\system32\msasn1.dll
\Device\HarddiskVolume1\WINDOWS\system32\oleaut32.dll
\Device\HarddiskVolume1\WINDOWS\system32\ole32.dll
\Device\HarddiskVolume1\WINDOWS\system32\shlwapi.dll
\Device\HarddiskVolume1\WINDOWS\system32\sortkey.nls
\Device\HarddiskVolume1\WINDOWS\system32\ctype.nls
\Device\HarddiskVolume1\WINDOWS\WINDOWSSHELL.MANIFEST
\Device\HarddiskVolume1\WINDOWS\system32\shell32.dll
\Device\HarddiskVolume1\WINDOWS\system32\comctl32.dll
\Device\HarddiskVolume1\WINDOWS\system32\mswsock.dll
\Device\HarddiskVolume1\WINDOWS\system32\hnetcfg.dll
\Device\HarddiskVolume1\WINDOWS\system32\wshtcpip.dll
\Device\HarddiskVolume1\WINDOWS\system32\dnsapi.dll
\Device\HarddiskVolume1\Documents and Settings\Administrator\Local Settings\Temporary Internet
Files\Content.IE5\index.dat
\Device\HarddiskVolume1\WINDOWS\system32\winrnr.dll
\Device\HarddiskVolume1\WINDOWS\system32\wldap32.dll
\Device\HarddiskVolume1\Documents and Settings\Administrator\Cookies\index.dat

46

\Device\HarddiskVolume1\Documents and Settings\Administrator\Local
Settings\History\History.IE5\index.dat
\Device\HarddiskVolume1\WINDOWS\system32\urlmon.dll
\Device\HarddiskVolume1\WINDOWS\system32\version.dll
\Device\HarddiskVolume1\WINDOWS\system32\rasapi32.dll
\Device\HarddiskVolume1\WINDOWS\system32\rasman.dll
\Device\HarddiskVolume1\WINDOWS\system32\netapi32.dll
\Device\HarddiskVolume1\WINDOWS\system32\tapi32.dll
\Device\HarddiskVolume1\WINDOWS\system32\rtutils.dll
\Device\HarddiskVolume1\WINDOWS\system32\winmm.dll
\Device\HarddiskVolume1\WINDOWS\system32\sensapi.dll
\Device\HarddiskVolume1\WINDOWS\system32\userenv.dll
\Device\HarddiskVolume1\Documents and Settings\Administrator\Local Settings\Temporary Internet Files
\Device\HarddiskVolume1\Documents and Settings\Administrator\Local Settings\History
\Device\HarddiskVolume1\Documents and Settings\Administrator\Local Settings\Temporary Internet
Files\Content.IE5
\Device\HarddiskVolume1\Documents and Settings\Administrator\Cookies
\Device\HarddiskVolume1\Documents and Settings\Administrator\Local Settings\History\History.IE5
\Device\HarddiskVolume1\AUTOEXEC.BAT
\Device\HarddiskVolume1\WINDOWS\system32\rasadhlp.dll
/*==*/

3. These files are read by the program

\Device\HarddiskVolume1\Documents and Settings\Administrator\Desktop\freemalwares\qquzlzb.exe
\Device\HarddiskVolume1\WINDOWS\Prefetch\QQUZLZB.EXE-1E41BD18.pf
\Device\HarddiskVolume1\WINDOWS\qquzlzb.exe
\Device\HarddiskVolume1\AUTOEXEC.BAT
/*==*/

4. These files are written into by the program

/*==*/

5. The following files security permissions are changed

/*==*/

6. These files are deleted by the program

/*==*/

7. These files are sent ioctl command

/*==*/

47

8. The timestamps are changed for the following files

\Device\HarddiskVolume1\Documents and Settings\Administrator\Local Settings\Temporary Internet Files
\Device\HarddiskVolume1\Documents and Settings\Administrator\Local Settings\History
\Device\HarddiskVolume1\Documents and Settings\Administrator\Local Settings\Temporary Internet
Files\Content.IE5
\Device\HarddiskVolume1\Documents and Settings\Administrator\Local Settings\Temporary Internet
Files\Content.IE5\index.dat
\Device\HarddiskVolume1\Documents and Settings\Administrator\Cookies
\Device\HarddiskVolume1\Documents and Settings\Administrator\Cookies\index.dat
\Device\HarddiskVolume1\Documents and Settings\Administrator\Local Settings\History\History.IE5
\Device\HarddiskVolume1\Documents and Settings\Administrator\Local
Settings\History\History.IE5\index.dat
/*==*/

9. The following registry keys are created

\Registry\Machine\SOFTWARE\Microsoft\Cryptography\RNG
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Internet Settings
\REGISTRY\MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Explorer\User Shell Folders
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders
\REGISTRY\MACHINE\SOFTWARE\Microsoft\Tracing
\REGISTRY\MACHINE\SYSTEM\ControlSet001\Services\Tcpip\Parameters
\REGISTRY\MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\User Shell Folders
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-500\Software\Microsoft\Windows
NT\CurrentVersion\Winlogon
\REGISTRY\MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Internet Settings\Connections
\REGISTRY\MACHINE\SYSTEM\ControlSet001\Hardware
Profiles\0001\Software\Microsoft\windows\CurrentVersion\Internet Settings
/*==*/

10. The following registry key values set

\REGISTRY\MACHINE\SOFTWARE\Microsoft\Cryptography\RNG Seed
\REGISTRY\MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run Update
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders Cache
\REGISTRY\MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet Settings\Cache\Paths
Directory
\REGISTRY\MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet Settings\Cache\Paths
Paths
\REGISTRY\MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet
Settings\Cache\Paths\path1 CachePath
\REGISTRY\MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet
Settings\Cache\Paths\path2 CachePath

48

\REGISTRY\MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet
Settings\Cache\Paths\path3 CachePath
\REGISTRY\MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet
Settings\Cache\Paths\path4 CachePath
\REGISTRY\MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet
Settings\Cache\Paths\path1 CacheLimit
\REGISTRY\MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet
Settings\Cache\Paths\path2 CacheLimit
\REGISTRY\MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet
Settings\Cache\Paths\path3 CacheLimit
\REGISTRY\MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet
Settings\Cache\Paths\path4 CacheLimit
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders Cookies
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders History
\REGISTRY\MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders
Common AppData
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders AppData
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Internet Settings MigrateProxy
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Internet Settings ProxyEnable
\REGISTRY\MACHINE\SYSTEM\ControlSet001\Hardware
Profiles\0001\Software\Microsoft\windows\CurrentVersion\Internet Settings ProxyEnable
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Internet Settings\Connections SavedLegacySettings
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Internet Settings\ZoneMap ProxyBypass
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Internet Settings\ZoneMap IntranetName
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Internet Settings\ZoneMap UNCAsIntranet
/*==*/

11. The following registry keys are deleted

\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Internet Settings ProxyServer
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Internet Settings ProxyOverride
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Internet Settings AutoConfigURL
/*==*/

12. The following processes are created

most probably creates a short lived or hidden process: pid = 1464
/*==*/

49

/*===*/

Automated analysis of the program behavior

/*===*/

The program adds a program which will run automatically on next login

The program changes the internet settings

The program is a very very suspicious program#####

50

Sample#5

A quite suspicious program. The following is the report for msnbot.exe

1. The program created the following new files

/*==*/

2. The program opened the following files

/*==*/

3. These files are read by the program

/*==*/

4. These files are written into by the program

/*==*/

5. The following files security permissions are changed

/*==*/

6. These files are deleted by the program

/*==*/

7. These files are sent ioctl command

/*==*/

8. The timestamps are changed for the following files

/*==*/

9. The following registry keys are created

\Registry\Machine\SOFTWARE\Microsoft\Cryptography\RNG

51

\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Internet Settings
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Explorer\User Shell Folders
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders
\REGISTRY\MACHINE\SYSTEM\ControlSet001\Services\Tcpip\Parameters
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Explorer\MountPoints2\{edcc221d-ac40-11de-a14b-
806d6172696f}
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Explorer\MountPoints2\{2b820c76-8d25-11df-80c4-
000c29f8a390}
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Explorer\MountPoints2\{9bca3804-8d21-11df-80c3-
806d6172696f}
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Explorer\MountPoints2\{edcc221a-ac40-11de-a14b-
806d6172696f}
\REGISTRY\MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\User Shell Folders
\REGISTRY\MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\WinTrust\Trust Providers\Software Publishing
\REGISTRY\MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run
/*==*/

10. The following registry key values set

\REGISTRY\MACHINE\SOFTWARE\Microsoft\Cryptography\RNG Seed
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders Cache
\REGISTRY\MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet Settings\Cache\Paths
Directory
\REGISTRY\MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet Settings\Cache\Paths
Paths
\REGISTRY\MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet
Settings\Cache\Paths\path1 CachePath
\REGISTRY\MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet
Settings\Cache\Paths\path2 CachePath
\REGISTRY\MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet
Settings\Cache\Paths\path3 CachePath
\REGISTRY\MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet
Settings\Cache\Paths\path4 CachePath
\REGISTRY\MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet
Settings\Cache\Paths\path1 CacheLimit
\REGISTRY\MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet
Settings\Cache\Paths\path2 CacheLimit
\REGISTRY\MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet
Settings\Cache\Paths\path3 CacheLimit
\REGISTRY\MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet
Settings\Cache\Paths\path4 CacheLimit
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders Cookies

52

\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders History
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders Personal
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Explorer\MountPoints2\{edcc221d-ac40-11de-a14b-
806d6172696f} BaseClass
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Explorer\MountPoints2\{2b820c76-8d25-11df-80c4-
000c29f8a390} BaseClass
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Explorer\MountPoints2\{9bca3804-8d21-11df-80c3-
806d6172696f} BaseClass
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Explorer\MountPoints2\{edcc221a-ac40-11de-a14b-
806d6172696f} BaseClass
\REGISTRY\MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders
Common Documents
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders Desktop
\REGISTRY\MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders
Common Desktop
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Internet Settings\ZoneMap ProxyBypass
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Internet Settings\ZoneMap IntranetName
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\CurrentVersion\Internet Settings\ZoneMap UNCAsIntranet
\REGISTRY\USER\S-1-5-21-854245398-113007714-682003330-
500\Software\Microsoft\Windows\ShellNoRoam\MUICache c:\a.bat
\REGISTRY\MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run Windows Taskmanager
/*==*/

11. The following registry keys are deleted

/*==*/

12. The following processes are created

most probably creates a short lived process: pid = 4864
most probably creates a short lived process: pid = 4872
/*==*/

/*===*/

Automated analysis of the program behavior

53

/*===*/

The program changes the internet settings

The program adds a program which will run automatically on next login

The program is a quite suspicious program#####

54

Sample#6

A quite suspicious program. The following is the report for 440acfc139f1ea0b8e879
bf8990a0f92.exe

1. The program created the following new files

\Device\HarddiskVolume1\Documents and Settings\Administrator\Local Settings\Temp\~DF2FEF.tmp
\Device\HarddiskVolume1\WINDOWS\system32\~A~m~B~u~R~a~D~u~L~\csrss.exe
\Device\HarddiskVolume1\WINDOWS\system32\~A~m~B~u~R~a~D~u~L~\smss.exe
\Device\HarddiskVolume1\WINDOWS\system32\~A~m~B~u~R~a~D~u~L~\lsass.exe
\Device\HarddiskVolume1\WINDOWS\system32\~A~m~B~u~R~a~D~u~L~\services.exe
\Device\HarddiskVolume1\WINDOWS\system32\~A~m~B~u~R~a~D~u~L~\winlogon.exe
\Device\HarddiskVolume1\WINDOWS\system32\~A~m~B~u~R~a~D~u~L~\Paraysutki_VM_Communit
y
\Device\HarddiskVolume1\WINDOWS\system32\~A~m~B~u~R~a~D~u~L~\msvbvm60.dll
\Device\HarddiskVolume1\Documents and Settings\Administrator\Local Settings\Temp\~DF3B27.tmp
/*==*/

2. The program opened the following files

\Device\HarddiskVolume1\WINDOWS\system32\msvbvm60.dll
\Device\HarddiskVolume1\WINDOWS\system32\rpcss.dll
\Device\HarddiskVolume1\WINDOWS\system32\uxtheme.dll
\Device\HarddiskVolume1\WINDOWS\system32\clbcatq.dll
\Device\HarddiskVolume1\WINDOWS\system32\comres.dll
\Device\HarddiskVolume1\WINDOWS\system32\scrrun.dll
\Device\HarddiskVolume1\WINDOWS\system32\mfc42.dll
\Device\HarddiskVolume1\WINDOWS\system32\sxs.dll
\Device\HarddiskVolume1\Documents and
Settings\Administrator\Desktop\malwares\440acfc139f1ea0b8e879bf8990a0f92.exe\malware.exe
\Device\HarddiskVolume1\WINDOWS\system32\~A~m~B~u~R~a~D~u~L~\csrss.exe
\Device\HarddiskVolume1\WINDOWS\system32\~A~m~B~u~R~a~D~u~L~\smss.exe
\Device\HarddiskVolume1\WINDOWS\system32\~A~m~B~u~R~a~D~u~L~\lsass.exe
\Device\HarddiskVolume1\WINDOWS\system32\~A~m~B~u~R~a~D~u~L~\services.exe
\Device\HarddiskVolume1\WINDOWS\system32\~A~m~B~u~R~a~D~u~L~\winlogon.exe
\Device\HarddiskVolume1\WINDOWS\system32\~A~m~B~u~R~a~D~u~L~\Paraysutki_VM_Communit
y
\Device\HarddiskVolume1\WINDOWS\system32\~A~m~B~u~R~a~D~u~L~\msvbvm60.dll
\Device\HarddiskVolume1\WINDOWS\system32\~A~m~B~u~R~a~D~u~L~
\Device\HarddiskVolume1\WINDOWS\system32\apphelp.dll
\Device\HarddiskVolume1\WINDOWS\AppPatch\sysmain.sdb
/*==*/

3. These files are read by the program

\Device\HarddiskVolume1\WINDOWS\system32\scrrun.dll
\Device\HarddiskVolume1\WINDOWS\system32\~A~m~B~u~R~a~D~u~L~\csrss.exe
\Device\HarddiskVolume1\WINDOWS\system32\~A~m~B~u~R~a~D~u~L~\smss.exe
\Device\HarddiskVolume1\WINDOWS\system32\~A~m~B~u~R~a~D~u~L~\lsass.exe
\Device\HarddiskVolume1\WINDOWS\system32\~A~m~B~u~R~a~D~u~L~\services.exe

55

\Device\HarddiskVolume1\WINDOWS\system32\~A~m~B~u~R~a~D~u~L~\winlogon.exe
\Device\HarddiskVolume1\WINDOWS\system32\~A~m~B~u~R~a~D~u~L~\Paraysutki_VM_Communit
y
\Device\HarddiskVolume1\WINDOWS\system32\msvbvm60.dll
/*==*/

4. These files are written into by the program

\Device\HarddiskVolume1\WINDOWS\system32\~A~m~B~u~R~a~D~u~L~\csrss.exe
\Device\HarddiskVolume1\WINDOWS\system32\~A~m~B~u~R~a~D~u~L~\smss.exe
\Device\HarddiskVolume1\WINDOWS\system32\~A~m~B~u~R~a~D~u~L~\lsass.exe
\Device\HarddiskVolume1\WINDOWS\system32\~A~m~B~u~R~a~D~u~L~\services.exe
\Device\HarddiskVolume1\WINDOWS\system32\~A~m~B~u~R~a~D~u~L~\winlogon.exe
\Device\HarddiskVolume1\WINDOWS\system32\~A~m~B~u~R~a~D~u~L~\Paraysutki_VM_Communit
y
\Device\HarddiskVolume1\WINDOWS\system32\~A~m~B~u~R~a~D~u~L~\msvbvm60.dll
/*==*/

5. The following files security permissions are changed

/*==*/

6. These files are deleted by the program

/*==*/

7. These files are sent ioctl command

/*==*/

8. The timestamps are changed for the following files

\Device\HarddiskVolume1\WINDOWS\system32\~A~m~B~u~R~a~D~u~L~\csrss.exe
\Device\HarddiskVolume1\WINDOWS\system32\~A~m~B~u~R~a~D~u~L~\smss.exe
\Device\HarddiskVolume1\WINDOWS\system32\~A~m~B~u~R~a~D~u~L~\lsass.exe
\Device\HarddiskVolume1\WINDOWS\system32\~A~m~B~u~R~a~D~u~L~\services.exe
\Device\HarddiskVolume1\WINDOWS\system32\~A~m~B~u~R~a~D~u~L~\winlogon.exe
\Device\HarddiskVolume1\WINDOWS\system32\~A~m~B~u~R~a~D~u~L~\Paraysutki_VM_Communit
y
\Device\HarddiskVolume1\WINDOWS\system32\~A~m~B~u~R~a~D~u~L~\msvbvm60.dll
\Device\HarddiskVolume1\WINDOWS\system32\~A~m~B~u~R~a~D~u~L~
/*==*/

9. The following registry keys are created

56

\Registry\Machine\SOFTWARE\Microsoft\Cryptography\RNG
/*==*/

10. The following registry key values set

\REGISTRY\MACHINE\SOFTWARE\Microsoft\Cryptography\RNG Seed
/*==*/

11. The following registry keys are deleted

/*==*/

12. The following processes are created

most probably creates a short lived or hidden process: pid = 400
/*==*/

/*===*/

Automated analysis of the program behavior

/*===*/

The program writes to executables

The program is a quite suspicious program#####

57

5. CONCLUSION AND FUTUREWORK

Because of the time gap between the vulnerability that comes into existence due

to the appearance of new malware and the point where a solution for the new malware is

generated by the anti-virus provider, every new malware poses a serious threat to

computer systems. This dynamic tool analyzes the behavior of an unknown program by

executing the code in a virtual environment.

The ultimate goal of the dynamic analysis tool is to gain a quick understanding of

the malicious activity performed by malicious code with the central target of minimizing

the time frame between the creation of the vulnerability and generation of solution to the

malware attack. This dynamic tool has many advantages. One of the main advantage is

the report generated by the tool is simple and easy to understand by an analyst. All the

events are listed in separate paragraph, which makes it easy to understand. Because the

analysis is performed in a virtual environment, the overhead is less.

Some sophisticated malware can detect the presence of a virtual environment. In

order to overcome this disadvantage, thwarting virtual environment detection techniques

are implemented. These techniques work by hiding the VME (Virtual Machine

Environment) artifacts in memory and VME specific processor instructions from

malware.

This dynamic tool makes use of a minifilter driver for tracking the security related

operating system events including Windows API functions and native kernel calls. Once

a minifilter driver is provided with a program name, it notifies the tool about the activities

of the program.

58

 This dynamic tool generates reports for the program tested based on the input

parameters and the execution environment. Generally all programs have some decision

making branches in it, so there can be many ways a program can be executed. The path of

execution depends on the input parameters and the execution environment. This tool

analyses the input program for a specific path of execution. But the program can be

executed in many different ways, so there is a need for extending this tool to analyze all

the paths of execution. This thing can be achieved by making copies of the binaries of the

program that is analyzed.

In the future this tool can be improved to include more classified and detailed

reports. The tool is run on windows command prompt, it can be improved to a GUI

(Graphical User Interface) based tool. Also there is a scope of creating a database to store

the signatures of detected viruses and use this database whenever necessary.

59

BIBLIOGRAPHY AND REFERENCES

[Andreas, Ulrich 2006] Dynamic analysis of malicious code. Journal of Computer
Viruses, (2006) 2:67–77.

[Bellard, F] Qemu,a fast and portable dynamic translator. In: Usenix Annual Technical
Conference, 2005.

[Christodorescu,M., Jha, S] Static analysis of executables to detect malicious patterns. In:
Usenix Security Symposium, 2003.

[Duan H, Guan Y, Zhang J] AMCAS: An Automatic Malicious Code Analysis System. The
Ninth International Conference on Web-Age Information Management.

[Feng M, Gupta R] Detecting Virus Mutations Via Dynamic Matching. ICSM 2009,
Edmonton, Canada.

[Kent K, Mell P, Nusbaum J] Guide to Malware Incident Prevention and Handling.
Special Publication 800-83, NIST.

[Kirda E, Ulrich 2006] TTAnalyze: A Tool for Analyzing Malware. Ikarus Software &
Technical University of Vienna.

[Microsoft-1] Microsoft Filter Drivers, Available from
http://www.microsoft.com/whdc/driver/filterdrv/default.mspx

[Microsoft-2] Microsoft Filter Manager, Available from

[Microsoft-3] Microsoft INF file, Available from http://msdn.microsoft.com/en-
us/library/ms924764.aspx

[Microsoft-4] Microsoft Load Order Groups, Available from
http://www.microsoft.com/whdc/driver/filterdrv/alt-range.mspx

[Microsoft-5] Microsoft Minifilter Architecture, Available from
http://msdn.microsoft.com/en-us/library/ff541613(v=VS.85).aspx

[Microsoft-6] MSDN Simrep Filters, Available from http://msdn.microsoft.com/en-
us/library/ff556746(VS.85).aspx

[Microsoft-7] Microsoft WDK, Available from
http://www.microsoft.com/whdc/DevTools/WDK/WDKpkg.mspx

[Microsoft-8] Microsoft Windows Service, Available from
http://support.microsoft.com/kb/251192

60

[OSR 2010] OSR Driver Development, Available from
http://www.osronline.com/custom.cfm?name=login_joinok.cfm

[Offensive Computing 2009] Offensive Computing. http://www.offensivecomputing.net

[Quist D, Val Smith] Detecting the Presence of Virtual Machines Using the Local Data
Table. Offensive Computing http://www.offensivecomputing.net/

[Redpill] Redpill Available from http://www.invisiblethings.org/papers/redpill.html

[Rothman M, Zimmer V] Virus Scanning of Input/Output Traffic of a Computer System.
Unites States Patent Application Publication, Pub No. US 2005/0216759 A1.

[Symantec 2008] Symantec Auraax, Available from
http://www.symantec.com/security_response/writeup.jsp?docid=2008-092409-4704-
99&tabid=2

[Wiki 2009] Wikipedia, Available from www.wikipedia.com/

61

APPENDIX A. STARTING A VIRTUAL OPERATING SYSTEM

1. Start All Programs VMWare VMWare Workstation

The figure below shows how to start a virtual operating system.

Figure A.1 Starting Virtual Operating System

2. File Open and then select a virtual operating system which is to be loaded

62

3. Select “Power on this Virtual Machine”

The figure below shows how to select a particular virtual machine.

Figure A.2 Selecting a Virtual Disk

4. This start the Virtual Machine after the login credentials are specified

63

APPENDIX B. INSTALLING MINIFILTER

1. Go to the project folder

2. Open the directory /Malware Analyzer/Driver

3. Install the minifilter drivers by right clicking the matool.inf and selecting “install”

This step installs the drivers and places files required by the project in the correct

destinations. The figure below shows how to install a mini filter driver.

Figure B.1 Installing Minifilter Driver

64

APPENDIX C. STARTING THE TOOL

1. Open a command prompt on the virtual Operating System.

2. Type the following command to start the tool

Command: sc start malprober

This command makes use of the sc service of Windows. This service can be used

to start services on the Windows Operating System [Microsoft-8]. The figure

below shows that a minifilter service is started.

Figure C.1 Starting the Malprober Service

65

APPENDIX D. TESTING A SAMPLE PROGRAM

1. After starting the tool, navigate to the project folder that has the

u_malanalyze.exe file. This is the main executable of the tool.

2. Place the sample program to be tested in the same folder as u_malanalyze.exe

is in.

3. Type the following command for testing the sample program and generating

reports.

Command: u_malanalyze.exe <sample program executable>

 Sample program is the executable that is to be analyzed.

These reports can be analyzed to classify the nature of the given sample program

as malicious or a normal program

66

APPENDIX E. INF FILE FOR THE MINIFILTER

;;;

;;; PassThrough

;;;

;;;

;;; Copyright (c) 1999 - 2001, Microsoft Corporation

;;;

[Version]

Signature = "$Windows NT$"

Class = "ActivityMonitor"

;This is determined by the work this filter driver does

ClassGuid = {b86dff51-a31e-4bac-b3cf-e8cfe75c9fc2}

;This value is determined by the Class

Provider = %vat%

DriverVer = 06/16/2007,1.0.0.1

CatalogFile = passthrough.cat

[DestinationDirs]

DefaultDestDir = 12

MiniFilter.DriverFiles = 12 ;%windir%\system32\drivers

;;

;; Default install sections

;;

67

[DefaultInstall]

OptionDesc = %ServiceDescription%

CopyFiles = MiniFilter.DriverFiles

[DefaultInstall.Services]

AddService = %ServiceName%,,MiniFilter.Service

;;

;; Default uninstall sections

;;

[DefaultUninstall]

DelFiles = MiniFilter.DriverFiles

[DefaultUninstall.Services]

DelService = %ServiceName%,0x200

;Ensure service is stopped before deleting

;

; Services Section

;

[MiniFilter.Service]

DisplayName = %ServiceName%

Description = %ServiceDescription%

ServiceBinary =%12%\%DriverName%.sys

;%windir%\system32\drivers\

Dependencies = "FltMgr"

68

ServiceType = 2 ;SERVICE_FILE_SYSTEM_DRIVER

StartType = 3 ;SERVICE_DEMAND_START

ErrorControl = 1 ;SERVICE_ERROR_NORMAL

LoadOrderGroup = "FSFilter Activity Monitor"

AddReg = MiniFilter.AddRegistry

;

; Registry Modifications

;

[MiniFilter.AddRegistry]

HKR,,"DebugFlags",0x00010001 ,0x0

HKR,"Instances","DefaultInstance",0x00000000,%DefaultInstance%

HKR,"Instances\"%Instance1.Name%,"Altitude",0x00000000,%Instance1

.Altitude%

HKR,"Instances\"%Instance1.Name%,"Flags",0x00010001,%Instance1.Fl

ags%

;

; Copy Files

;

[MiniFilter.DriverFiles]

%DriverName%.sys

69

[SourceDisksFiles]

passthrough.sys = 1,,

[SourceDisksNames]

1 = %DiskId1%,,,

;;

;; String Section

;;

[Strings]

vat = "Vinay@TAMUCC"

ServiceDescription = "Malprober Mini-Filter Driver"

ServiceName = "Malprober"

DriverName = "Malprober"

DiskId1 = "PassThrough Device Installation Disk"

;Instances specific information.

DefaultInstance = "PassThrough Instance"

Instance1.Name = "PassThrough Instance"

Instance1.Altitude = "370030"

Instance1.Flags = 0x0 ; Allow all attachments

