
1/12

Booting Linux off of Google Drive
ersei.net/en/blog/fuse-root

Published: [2024-07-01 09:20 EDT]

Categories: [programming]

Tags: [linux, filesystems]
Competitiveness is a vice of mine. When I heard that a friend got Linux to boot off of NFS, I
had to one-up her. I had to prove that I could create something harder, something better,
faster, stronger.

Like all good projects, this began with an Idea.

My mind reached out and grabbed wispy tendrils from the æther, forcing the disparate
concepts to coalesce. The Mass gained weight in my hands, and a dark, swirling colour
promising doom to those who gazed into it for long.

On the brink of insanity, my tattered mind unable to comprehend the twisted interplay of
millennia of arcane programmer-time and the ragged screech of madness, I reached into the
Mass and steeled myself to the ground lest I be pulled in, and found my magnum opus.

Booting Linux off of a Google Drive root.

But How?

I wanted this to remain self-contained, so I couldn't have a second machine act as a "helper".
My mind went immediately to FUSE—a program that acts as a filesystem driver in userspace
(with cooperation from the kernel).

I just had to get FUSE programs installed in the Linux kernel initramfs and configure
networking. How bad could it be?

The Linux Boot Process

The Linux boot process is, technically speaking, very funny. Allow me to pretend I
understand for a moment :

1. The firmware (BIOS/UEFI) starts up and loads the bootloader
2. The bootloader loads the kernel
3. The kernel unpacks a temporary filesystem into RAM which has the tools to mount the

real filesystem
4. The kernel mounts the real filesystem and switches the process to the init system

running on the new filesystem

1

https://ersei.net/en/blog/fuse-root
https://ersei.net/en/blog/category:programming
https://ersei.net/en/blog/tag:linux
https://ersei.net/en/blog/tag:filesystems
https://www.kernel.org/doc/html/latest/admin-guide/nfs/nfsroot.html
https://en.wikipedia.org/wiki/Filesystem_in_Userspace
https://www.kernel.org/doc/html/latest/filesystems/ramfs-rootfs-initramfs.html

2/12

As strange as the third step may seem, it's very helpful! We can mount a FUSE filesystem in
that step and boot normally.

A Proof of Concept

The initramfs needs to have both network support as well as the proper FUSE binaries.
Thankfully, Dracut makes it easy enough to build a custom initramfs.

I decide to build this on top of Arch Linux because it's relatively lightweight and I'm familiar
with how it works, as opposed to something like Alpine.

$ git clone https://github.com/dracutdevs/dracut

$ podman run -it --name arch -v ./dracut:/dracut docker.io/archlinux:latest bash

In the container, I installed some packages (including the linux package because I need a
functioning kernel), compiled dracut from source, and wrote a simple module script in
modules.d/90fuse/module-setup.sh:

#!/bin/bash

check() {

 require_binaries fusermount fuseiso mkisofs || return 1

 return 0

}

depends() {

 return 0

}

install() {

 inst_multiple fusermount fuseiso mkisofs

 return 0

}

That's it. That's all the code I had to write. Buoyed by my newfound confidence, I powered
ahead, building the EFI image.

https://github.com/dracutdevs/dracut

3/12

$./dracut.sh --kver 6.9.6-arch1-1 \

 --uefi efi_firmware/EFI/BOOT/BOOTX64.efi \

 --force -l -N --no-hostonly-cmdline \

 --modules "base bash fuse shutdown network" \

 --add-drivers "target_core_mod target_core_file e1000" \

 --kernel-cmdline "ip=dhcp rd.shell=1 console=ttyS0"

$ qemu-kvm -bios ./FV/OVMF.fd -m 4G \

 -drive format=raw,file=fat:rw:./efi_firmware \

 -netdev user,id=network0 -device e1000,netdev=network0 -nographic

...

...

dracut Warning: dracut: FATAL: No or empty root= argument

dracut Warning: dracut: Refusing to continue

Generating "/run/initramfs/rdsosreport.txt"

You might want to save "/run/initramfs/rdsosreport.txt" to a USB stick or /boot

after mounting them and attach it to a bug report.

To get more debug information in the report,

reboot with "rd.debug" added to the kernel command line.

Dropping to debug shell.

dracut:/#

Hacker voice I'm in. Now to enable networking and mount a test root. I have already
extracted an Arch Linux root into a S3 bucket running locally, so this should be pretty easy,
right? I just have to manually set up networking routes and load the drivers.

dracut:/# modprobe fuse

dracut:/# modprobe e1000

dracut:/# ip link set lo up

dracut:/# ip link set eth0 up

dracut:/# dhclient eth0

dhcp: PREINIT eth0 up

dhcp: BOUND setting up eth0

dracut:/# ip route add default via 10.0.2.2 dev eth0 proto dhcp src 10.0.2.15

dracut:/# s3fs -o url=http://192.168.2.209:9000 -o use_path_request_style fuse
/sysroot

dracut:/# ls /sysroot

bin dev home lib64 opt root sbin sys usr

boot etc lib mnt proc run srv tmp var

dracut:/# switch_root /sysroot /sbin/init

switch_root: failed to execute /lib/systemd/systemd: Input/output error

dracut:/# ls

sh: ls: command not found

Honestly, I don't know what I expected. Seems like everything is just... gone. Alas, not even
tab completion can save me. At this point, I was stuck. I had no idea what to do. I spent days
just looking around, poking at the switch_root source code, all for naught. Until I

4/12

remembered a link Anthony had sent me: How to shrink root filesystem without booting a
livecd. In there, there was a command called pivot_root that switch_root seems to call
internally. Let's try that out.

dracut:/# logout

...

[430.817269] ---[end Kernel panic - not syncing: Attempted to kill init!
exitcode=0x00000100]---

...

dracut:/# cd /sysroot

dracut:/sysroot# mkdir oldroot

dracut:/sysroot# pivot_root . oldroot

pivot_root: failed to change root from `.' to `oldroot': Invalid argument

Apparently, pivot_root is not allowed to pivot roots if the root being switched is in the
initramfs. Unfortunate. The Stack Exchange answer tells me to use switch_root, which
doesn't work either. However, part of that answer sticks out to me:

initramfs is rootfs: you can neither pivot_root rootfs, nor unmount it. Instead delete
everything out of rootfs to free up the space (find -xdev / -exec rm '{}' ';'), overmount
rootfs with the new root (cd /newmount; mount --move . /; chroot .), attach
stdin/stdout/stderr to the new /dev/console, and exec the new init.

Would it be possible to manually switch the root without a specialized system call? What if I
just chroot?

...

dracut:/# mount --rbind /sys /sysroot/sys

dracut:/# mount --rbind /dev /sysroot/dev

dracut:/# mount -t proc /proc /sysroot/proc

dracut:/# chroot /sysroot /sbin/init

Explicit --user argument required to run as user manager.

Oh, I need to run the chroot command as PID 1 so Systemd can start up properly. I can
actually tweak the initramfs's init script and just put my startup commands in there, and
replace the switch_root call with exec chroot /sbin/init.

I put this in modules.d/99base/init.sh in the Dracut source after the udev rules are loaded
and bypassed the root variable checks earlier.

https://a.exozy.me/
https://unix.stackexchange.com/questions/226872/how-to-shrink-root-filesystem-without-booting-a-livecd/227318#227318
https://unix.stackexchange.com/a/455224

5/12

modprobe fuse

modprobe e1000

ip link set lo up

ip link set eth0 up

dhclient eth0

ip route add default via 10.0.2.2 dev eth0 proto dhcp src 10.0.2.15

s3fs -o url=http://192.168.2.209:9000 -o use_path_request_style fuse /sysroot

mount --rbind /sys /sysroot/sys

mount --rbind /dev /sysroot/dev

mount -t proc /proc /sysroot/proc

I also added exec chroot /sysroot /sbin/init at the end instead of the switch_root
command.

Rebuilding the EFI image and...

I sit there, in front of my computer, staring. It can't have been that easy, can it? Surely, this is
a profane act, and the spirit of Dennis Ritchie ought't've stopped me, right?

Nobody stopped me, so I kept going.

I log in with the very secure password root as root, and it unceremoniously drops me into a
shell.

[root@archlinux ~]# mount

s3fs on / type fuse.s3fs (rw,nosuid,nodev,relatime,user_id=0,group_id=0)

...

[root@archlinux ~]#

At last, Linux booted off of an S3 bucket. I was compelled to share my achievement with
others—all I needed was a fetch program to include in the screenshot:

6/12

[root@archlinux ~]# pacman -Sy fastfetch

:: Synchronizing package databases...

core.db failed to download

error: failed retrieving file 'core.db' from geo.mirror.pkgbuild.com : Could not
resolve host: geo.mirror.pkgbuild.com

warning: fatal error from geo.mirror.pkgbuild.com, skipping for the remainder of this
transaction

error: failed retrieving file 'core.db' from mirror.rackspace.com : Could not resolve
host: mirror.rackspace.com

warning: fatal error from mirror.rackspace.com, skipping for the remainder of this
transaction

error: failed retrieving file 'core.db' from mirror.leaseweb.net : Could not resolve
host: mirror.leaseweb.net

warning: fatal error from mirror.leaseweb.net, skipping for the remainder of this
transaction

error: failed to synchronize all databases (invalid url for server)

[root@archlinux ~]#

Uh, seems like DNS isn't working, and I'm missing dig and other debugging tools.

Wait a minute! My root filesystem is on S3! I can just mount it somewhere else with functional
networking, chroot in, and install all my utilities!

Some debugging later, it seems like systemd-resolved doesn't want to run because it Failed
to connect stdout to the journal socket, ignoring: Permission denied. I'm not
about to try to debug systemd because it's too complicated and I'm lazy, so instead I'll just
use Cloudflare's.

[root@archlinux ~]# echo "nameserver 1.1.1.1" > /etc/resolv.conf

[root@archlinux ~]# pacman -Sy fastfetch

:: Synchronizing package databases...

core is up to date

extra is up to date

...

[root@archlinux ~]# fastfetch

7/12

I look around, making sure that nobody had tried to stop me. My window was intact, my
security system had not tripped, the various canaries I had set up around the house had not
been touched. I was safe to continue.

I was ready to have it run on Google Drive.

Google Gets Involved

There's a project already that does Google Drive over FUSE for me already: google-drive-
ocamlfuse. Thankfully, I have a Google account lying around that I haven't touched in years
ready to go! I follow the instructions, accept the terms of service I didn't read, create all the
oauth2 secrets, enable the APIs, install google-drive-ocamlfuse from the AUR into my
Arch Linux VM, patch some PKGBUILDs (it's been a while), and lo and behold! I have
mounted Google Drive! Mounting Drive and a few very longrsync runs later, I have Arch
Linux on Google Drive.

Just kidding, it's never that easy. Here's a non-exhausive list of problems I ran into:

1. Symlinks to symlinks don't work (very important for stuff in /usr/lib)
2. Hardlinks don't work
3. It's so slowwwww
4. Relative symlinks don't work at all
5. No dangling symlinks (important for stuff that links to /proc and isn't mounted, or stuff

that just hasn't copied over yet)
6. Symlinks outside of Google Drive don't work
7. Permissions don't work (neither do attributes)
8. Did I mention it's SLOW

https://github.com/astrada/google-drive-ocamlfuse

8/12

With how many problems there are with symlinks, I have half a mind to change the FUSE
driver code to just create a file that ends in .internalsymlink to fix all of that, Google Drive
compatibility be damned.

But, I have challenged myself to do this without modifying anything important (no kernel
tweaking, no FUSE driver tweaking), so I'll just have to live with it and manually create the
symlinks that rsync fails to make with a hacky sed command to the rsync error logs.

In the meantime, I added the token files generated from my laptop into the initramfs, as well
as the Google Drive FUSE binary and SSL certificates, and tweaked a few settings to make
my life slighty easier.

...

inst ./gdfuse-config /.gdfuse/default/config

inst ./gdfuse-state /.gdfuse/default/state

find /etc/ssl -type f -or -type l | while read file; do inst "$file"; done

find /etc/ca-certificates -type f -or -type l | while read file; do inst "$file";
done

...

It's nice to see that timestamps kinda work, at least. Now all that's left is to wait for the
agonizingly slow boot!

chroot: /sbin/init: File not found

Perhaps they did not bother to stop me because they knew I would fail.

I know the file exists since, well, it exists, so why is it not found? Simple: Linux is kinda weird
and if the binary you call depends on a library that's not found, then you'll get "File not
found".

2

9/12

dracut:/# ldd /sysroot/bin/bash

 linux-vdso.so.1 (0x00007e122b196000)

 libreadline.so.8 => /usr/lib/libreadline.so.8 (0x00007e122b01a000)

 libc.so.6 => /usr/lib/libc.so.6 (0x00007e122ae2e000)

 libncursesw.so.6 => /usr/lib/libncursesw.so.6 (0x00007e122adbf000)

 /lib64/ld-linux-x86-64.so.2 => /usr/lib64/ld-linux-x86-64.so.2
(0x00007e122b198000)

However, these symlinks don't actually exist! Remember how earlier we noted that relative
symlinks don't work? Well, that's come back to bite me. The Kernel is looking for files in
/sysroot inside /sysroot/sysroot. Luckily, this is an easy enough fix: we just need to have
/sysroot linked to /sysroot/sysroot without links:

dracut:/# mkdir /sysroot/sysroot

dracut:/# mount --rbind /sysroot /sysroot/sysroot

Now time to boot!

It took five minutes for Arch to rebuild the dynamic linker cache, another minute per systemd
unit, and then, nothing. The startup halted in its tracks.

[TIME] Timed out waiting for device /dev/ttyS0.

[DEPEND] Dependency failed for Serial Getty on ttyS0.

Guess I have to increase the timeout and reboot. In /etc/systemd/system/dev-
ttyS0.device, I put:

[Unit]

Description=Serial device ttyS0

DefaultDependencies=no

Before=sysinit.target

JobTimeoutSec=infinity

Luckily, it did not take infinite time to boot.

10/12

I'm so close to victory I can taste it! I just have to increase another timeout. I set
LOGIN_TIMEOUT to 0 in /etc/login.defs in Google Drive, and tried logging in again.

Thankfully, there's a cache, so subsequent file reads aren't nearly as slow.

Here I am, laurel crown perched upon my head, my chimera of Linux and Google Drive
lurching around.

But I'm not satisfied yet. Nobody had stopped me because they want me to succeed. I have
to take this further. I need this to work on real hardware.

Now Do It On Real Hardware

11/12

Fortunately for me, I switched servers and now have an extra laptop with no storage just
lying around! A wonderful victim for my test!

There are a few changes I'll have to make:

1. Use the right ethernet driver and not the default e1000
2. Do not use a serial display
3. Change the network settings to match my house's network topology

All I need is the r8169 driver for my ethernet port, and let's throw in a Powerline into the mix,
because it's not going to impact the performance in any way that matters, and I don't have an
ethernet cord that can reach my room.

I build the unified EFI file, throw it on a USB drive under /BOOT/EFI, and stick it in my old
server. Despite my best attempts, I couldn't figure out what the modprobe directive is for the
laptop's built-in keyboard, so I just modprobed hid_usb and used an external keyboard to set
up networking.

This is my magnum opus. My Great Work. This is the mark I will leave on this planet long
after I am gone: The Cloud Native Computer.

Nice thing is, I can just grab the screenshot from Google Drive and put it here!

Woe! Cloud Native Computer Be Upon Ye

Despite how silly this project is, there are a few less-silly uses I can think of, like booting
Linux off of SSH, or perhaps booting Linux off of a Git repository and tracking every change
in Git using gitfs. The possibilities are endless, despite the middling usefulness.

3

4

https://ersei.net/en/blog/updates-2024-02
https://en.wikipedia.org/wiki/Power-line_communication
https://github.com/libfuse/sshfs
https://wiki.archlinux.org/title/Gitfs

12/12

If there is anything I know about technology, it's that moving everything to The Cloud is the
current trend. As such, I am prepared to commercialize this for any company wishing to
leave their unreliable hardware storage behind and move entirely to The Cloud. Please
request a quote if you are interested in True Cloud Native Computing.

Unfortunately, I don't know what to do next with this. Maybe I should install Nix?

Thoughts? Comments? Opinions? Feel free to share (relevant) ones with me! Contact me
here if you want.

1. I understand mostly because I read this Archwiki article. This section ends up being a
wispy summarization. ↩

2. I set acknowledge_abuse=true, and root_folder=fuse-root. ↩

3. No computers were (physically) harmed in the making of this project. ↩

4. I used fbgrab to take the screenshot ↩

https://ersei.net/en/contact-me
https://ersei.net/en/contact-me
https://wiki.archlinux.org/title/Arch_boot_process
https://github.com/GunnarMonell/fbgrab

