
1/18

ELF's Story Part3: ELF's Structure: ELF Section Headers
aleeamini.com/elfs-story-part3-elfs-structure-elf-section-headers/

ELF’s Story Part3: ELF’s Structure: ELF Section Headers

1-Introduction

Are you ready to delve deeper into the world of ELF files? In my previous part, I discussed
the critical role of the ELF header in locating different parts of the file. 

 Today, I want to share with you some exciting information about the ELF Section Headers.
These headers serve as descriptors for various sections of the file, providing valuable
insights into their properties. 

 By learning how to locate and retrieve information from these headers, you can gain a better
understanding of the ELF file structure and how it works. So, are you ready to take the next
step in your ELF file journey? Let’s dive in together and explore the ELF Section Headers!

 

2-What is ELF Section Headers

In every binary file, we have two types of contents: code and data. These contents rest in
the binary file in a way that tools like Linker and Loader can load them and use them in the
linking time and also in the run time. All this content( codes and data) rests in the ELF file, in
some chunks that are named “Section” in the ELF glossary.

 So we can imagine that all we have in an ELF file is a series of “Sections”.
 These sections do not have any special and predefined structure. the structure of every

section depends on its contents. 
 Sometimes a Section doesn’t have any special structure and is just a series of bytes of data

or codes. So we need a thing that can describe a section and identify it for others. So
“Section Header” is what we need. 

 

https://aleeamini.com/elfs-story-part3-elfs-structure-elf-section-headers/
https://aleeamini.com/elfs-story-part3-elfs-structure-elf-section-headers/


2/18

The Section Header is a table that describes a section and denotes the properties of the
section.

 The Section Headers table contains the Section Headers for all Sections of an ELF binary.

But is important to note that sections are mainly used during the linking phase. This means
that they serve as a reference point during the linking process. Section headers play a
crucial role in the linking phase of executable files. They provide the linker with important
information about the linking process. However, not all sections are necessary during
runtime, and as a result, the dynamic loader does not load them into memory when running
the executable file.

 I’ll talk about dynamic loading in the next parts.

Due to that sections are used to provide a view for the linker, the
 section header table is an optional part in the ELF format. ELF files that

 don’t need linking aren’t required to have a section header table. If no second-
 tion header table is present, the e_shoff field in the executable header is set

 to zero.

OK, every section header has some fields that are to describe a section. These fields are as
described below:

 

2-1 sh_name (Section Name)

This value is a 4-Bytes number that indicates the index of a string in the Sections Headers
String table, that is the section name.

 As before said, we have a special section in an ELF file which is named section header
string table or .shstrtab. All the names of sections are saved in it. This section contains
some NULL-terminated strings that everyone is for a section.



3/18

Figure 2-1: The index of section names in the string table

As you see in the above image, in a section header, the value of sh_name is 0x1B or 27. So
in the String table, at the 27th index, we can find the name of this section.

 

2-2 sh_type (Section Type):

This is a 4-Bytes value that indicates the type of the section. Every section in an ELF file has
a special type. This value is useful for the linker at linking time, to detect those sections that
are for relocation purposes.



4/18

Value Name Meaning

0x0 SHT_NULL Section header table entry unused

0x1 SHT_PROGBITS Program data

0x2 SHT_SYMTAB Symbol table

0x3 SHT_STRTAB String table

0x4 SHT_RELA Relocation entries with addends

0x5 SHT_HASH Symbol hash table

0x6 SHT_DYNAMIC Dynamic linking information

0x7 SHT_NOTE Notes (Some additional information about
the binary)

0x8 SHT_NOBITS Program space with no data (bss)

0x9 SHT_REL Relocation entries, no addends

0x0A SHT_SHLIB Reserved

0x0B SHT_DYNSYM Dynamic linker symbol table

0x0E SHT_INIT_ARRAY Array of constructors

0x0F SHT_FINI_ARRAY Array of destructors

0x10 SHT_PREINIT_ARRAY Array of pre-constructors

0x11 SHT_GROUP Section group

0x12 SHT_SYMTAB_SHNDX Extended section indices

0x13 SHT_NUM Number of defined types.

0x60000000 SHT_LOOS Start OS-specific.

Table 2-1:Section Type values 
Ref:https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

 
I discuss some important types.

SHT_NULL: This type indicates that the section is NULL and there is no data. just a NULL
section.

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format


5/18

SHT_PROGBITS: This type indicates that the section contains program data such as
machine instructions or constants. For example, the opcodes of the executable file, are
stored in sections of this type.

SHT_SYMTAB: This type indicates that the section is a static symbol table. A section that it’s
type is Symbol Table, stores the symbols of the executable in itself as a table.

A symbol is a symbolic name and type for a particular address or offset in the executable file.
For example, names of functions and variables are saved as symbols in the ELF file.

 Tip: The sections with SHT_SYMTAB are those sections that are used in linking time. 
 The linker can use them to locate functions and variable addresses.

SHT_DYNSYM: This type indicates that the section is a dynamic symbol table. A section that
its type is a dynamic symbol table, stores the symbols that are needed at runtime of the
executable in itself as a table.

 Tip: The sections with SHT_DYNSYM are those sections that are used in running time. The
dynamic linker (loader) can use them to locate external functions that should resolve.

SHT_STRTAB: This type indicates that the section is a string table. As before said, the
.shstrtab section, holds the names of all sections. This section’s type is SHT_STRTAB. 

 These sections hold the names of other parts of the ELF file. They involve some NULL-
terminated strings.

SHT_RELA and SHT_REL: This type indicates that the section has information about
relocation that is used by the linker at the linking phase. These sections are needed just for
linking time.

SHT_DYNAMIC: This type indicates that the section contains information needed for
dynamic linking at loading time.

SHT_INIT_ARRAY: This type indicates that the section contains the array of addresses of
constructor functions. A constructor function is a function that runs before the main function
of the executable. I’ll talk about it in the next parts.

SHT_FINI_ARRAY: This type indicates that the section contains the array of addresses of
destructor functions. A destructor function is a function that runs before the executable ends.

OK, I’ll talk about other types in section parts. now let’s continue to talk about other values of
a section header.

 

2-3 sh_flags (Section Flags)

This is an 8-Byte value (4-Byte in 32-bit) that indicates some additional information about the
section. The most important values of this field are:



6/18

SHF_WRITE: This flag indicates that the section is writable at runtime. this means this
section will be used at runtime.

SHF_ALLOC: This flag indicates that the contents of the section will load to a memory buffer
at running time.

SHF_EXECINSTR: This flag indicates that the contents of the section are some executable
instructions. This means the section contains some code and should load at the running
time.

0x1 SHF_WRITE Writable

0x2 SHF_ALLOC Occupies memory during execution

0x4 SHF_EXECINSTR Executable

0x10 SHF_MERGE Might be merged

0x20 SHF_STRINGS Contains null-terminated strings

0x40 SHF_INFO_LINK ‘sh_info’ contains SHT index

0x80 SHF_LINK_ORDER Preserve order after combining

0x100 SHF_OS_NONCONFORMING The section is member of a group

0x200 SHF_GROUP The section is excluded unless
referenced or allocated (Solaris)

0x400 SHF_TLS Section hold thread-local data

0x0FF00000 SHF_MASKOS OS-specific

0xF0000000 SHF_MASKPROC Processor-specific

0x4000000 SHF_ORDERED Special ordering requirement
(Solaris)

0x8000000 SHF_EXCLUDE Section is excluded unless
referenced or allocated (Solaris)

Table 2-2:Section Flags values 
 Ref:https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

2-4 sh_addr (Section Address)

This 8-Byte (4-Byte in 32-bit) value is the address of the section in virtual memory. This value
is valid for those sections that will loaded at runtime. For the sections that don’t load at
running time, this value is zero.

 



7/18

As I mentioned earlier, sections are utilized during the linking phase rather than at runtime.
But here we see a value that indicates the address of the section at running time in memory.
what happened? This is for static linker. some parts of sections will load at memory at the
running time and in this case, the static linker should know about them to relocate them
correctly.

 

2-5 sh_offset (Section Offset)

This 8-Byte (4-Byte in 32-bit) value is the offset of the section in the ELF file. This field
specifies the offset from the beginning of the file to the start of the section.

2-6 sh_size (Section Size)

This 8-Byte (4-Byte in 32-bit) value is the size of the section in bytes.
 

2-7 sh_link (Section Link)

This 4-Byte value indicates the index number of an associated section. Some sections have
a relationship with other sections. For example, sections that are in SHT_SYMTAB,
SHT_DYNSYM, or SHT_DYNAMIC types, usually have a linked section that is a string table
section that contains the symbolic names for the symbols in question.



8/18

Figure2-2: Section Link

As you can see in the above image, in the symbol table (SH_SYMTAB type) the value of the
sh_link is 0x1c (28) which is an index of the 28th section in the ELF file. then we can iterate
in section headers and locate the 28th section. The 28th is a string table-type section
containing some NULL-terminated strings used in the symbol table section.

 

2-8 sh_info (Section Information)

This 4-Byte value indicates some more information about the section. This value varies
depending on the section type. For example, this value in sections with relocation type is the
index of the section that should relocate at linking time.

 

2-9 sh_addralign (Section Address Align)



9/18

This 8-Byte (4-Byte in 32-bit) value is the alignment of the section. Some sections should be
mapped with a particular size. So this value indicates the value of alignment. This value must
be a power of two. For example, if this field

 is set to 8, the base address of the section (as chosen by the static linker)
 must be some multiple of 8. The values 0 and 1 are reserved to indicate no

 special alignment needs.
 

2-10 sh_entsize (Section Entry Size)

Some sections, such as symbol tables or relocation tables, contain a table
 of well-defined data structures (such as Elf64_Sym or Elf64_Rela). For such

 sections, the sh_entsize field indicates the size in bytes of each entry in the
 table. When the field is unused, it is set to zero

 
Now we can take a look at the section headers of an ELF file. You can use from readelf tool
in Linux.

 



10/18

Figure 2-3: readelf – section headers

In the above image, we can see the output of the readelf. This is the section headers of an
ELF file. As you can see there are 30 (0-29) section headers. Also, the first section header is
for a NULL section with index 0. After this section header, other sections are listed. As I said
before, a section header is an identifier for a section. So for example section header 14
describes a section named “.text”, for us.

 We find out from this section header that the name of the section is “.text” and its type is
“PROGBITS”, which means the section contains program codes. Also, there is its Address,
offset, and size. If you look at flags of the “.text” section, flags A and X are present. They
indicate that the section should load in memory at running time and also its contents are
executable (X). So we find out the “.text” section will load at running time. There is no link
section and information for this section but there is an alignment with 16 value. This means
the target memory address that the loader allocates for this section, must be a multiple of 16
in the virtual memory of the process.

 
Example



11/18

 
In the next part of this story, I will discuss the sections in more detail. However, I understand
that this part can be complex and confusing. To help with this, I recommend a practical
exercise to better understand the sections and section headers.

OK let’s do it. 
 Imagine we want to locate section headers in an ELF file and then locate a section with the

name “.interp”.
 For this exercise, we need a Hex Editor. I use 010-editor. It has a great UI/UX and it is free

for 30 days.
 I compiled the code from the previous part and now we have a file named main.out. I open it

in the hex editor. I don’t want to use any script for this exercise. All things are by hand. From
the previous section of this part, we learned what is ELF header and what is its structure. If
you remember, in the ELF header we have a value named ShOffset that indicates the offset
of beginning the section headers table. this value is located at the 40th index of the
beginning of the file and its size is 8-Byte in 64-bit. So we can easily find it. Also, we know
that this is a little-endian value.

 

Figure 2-4: Locating Section header table offset

As you see the value of the Section headers table offset is: “0x00000000000039B8“.
 Now we need to go to the 0x39B8th byte of the file to arrive at the beginning of the Section

headers table. In the 010-editor you can go to any offset of the file by pressing ctrl+G. I press
it and then enter the value 0x39B8 in it and press Enter. Now We are at the beginning of the
Section headers table.

 



12/18

Figure 2-5: Beginning of the Section headers table

 
But we have another value in the ELF header that could help us find the size of the section
headers table. ShEntrySize tells us the size of every section header entry and the ShNum
value of the ELF header is the number of all exsiting sections. So we can calculate the whole
size of the section headers table.

Figure 2-6: Section header entry Size and Numbers

 
The Whole size of the section headers table: 0x1E*0x40=0x780 bytes. So we can select
0x780 bytes from the beginning of the section headers table to select all section headers



13/18

table. You can do it by pressing Ctrl+Shift+A to select a range in 010-editor or select 1920
bytes by selecting them by mouse.

 

Figure 2-7: The whole section headers table

 
As you see in the above image, I selected 0x780 bytes from offset 0x39B8 of the beginning
of the section headers table.

 I reached the end of the file. So we can find out that the section headers table is located at
the end of this ELF file.

 OK, we know that the size of the very entry is 0x40 bytes and I am searching for a section
that named “.interp”. The first 0x40 bytes of the beginning section headers table is a NULL
header as you saw before. So the first 0x40 bytes is not our candidate. I select the next 0x40
bytes which is our next entry of the section headers table.

 



14/18

Figure 2-8: the content of the section headers table

 
As you see in the above image, I select 0x80 bytes from the beginning of the section
headers table. The first 0x40 bytes are NULL. The second 0x40 bytes is the second entry or
second section header. As said before in this part, the first 4-Byte is the index of the name of
the section in the string table section. This value is 0x1B in this case.

 To find the name of the section, I should first locate the string table section in this ELF file
and then locate the 0x1Bth offset in it, to find the name of this section. So where is the String
table (.shstrtab)? As previously mentioned, the location in question is specified in the ELF
header by the Shstrndx value. The reason the string table index is in the ELF header is
appears. We cannot find the string table without any information. So it should be at a
particular location. 

 



15/18

Figure 2-9: Address of Section Header String table in ELF header

 
As you see the index number of the Section Header String table in the section headers table
is 0x1D (29). So we found out the entry of this section is located at the 29th table in the
section headers table. To locate it we know the size of every entry that is 0x40 bytes. And
now we know the index number of this entry, 0x1D. By a simple calculation 0x40*0x1D =
0x740

 So if we go 0x740 bytes into the section headers table, we arrive at the beginning of the
string table section header. 

 



16/18

Figure 2-10: Section Header’s String table

As you see the string table entry in the section headers is located at the end of the file. If you
back the output of the readelf, see that the last row is for shstrtab and its index is 29.

 OK, now we have the entry of the string table but this is just its header. 
Now we should find the string table location in the file. As said before the sh_offset value in
the section header, is the offset of the section in the ELF file. This value for this section
header is 0x38B0 as you see in the image. Now we can locate the string table at the 0x38B0
th byte from the beginning of the ELF file.(CTRL+G)

 



17/18

Figure 2-12: Example of shstrtab

 

Finally, we reached the Section Headers String table section :D. 
 As you see it contains some NULL-terminated strings that start with a “.”.

 Now we want the name of the second section. If you remember it was at index 0x1B in the
string table. So we can find it. The name is “.interp”.

 Now we understand how to traverse in sections with the help of section headers and ELF
header.

In this part we learned about section headers which are some tables that indicate information
about sections. Also we find out how travers in the sections step by step.

If you confused, I advice to read again this part exactly and doing steps handly to understand
it better. 

 In the next part of this story, you will learn sections in detail. Ready for it because it will be a
long and hard story

Good Bye…



18/18

*


