
1/15

Intercepting and modifying Linux system calls with
ptrace

notes.eatonphil.com/2023-10-01-intercepting-and-modifying-linux-system-calls-with-ptrace.html

How software fails is interesting. But real-world errors can be
infrequent to manifest. Fault
injection
is a formal-sounding term that just means: trying to explicitly
trigger errors in the
hopes of discovering bad logic, typically
during automated tests.

Jepsen
and ChaosMonkey are two
famous examples that help to trigger process and
network failure. But
what about disk and filesystem errors?

A few avenues seem worth investigating:

A custom FUSE filesystem
An LD_PRELOAD interception layer
A ptrace system call interception layer
A SECCOMP_RET_TRAP interception layer
Or, symbolic analysis a la Alice from University of
Wisconsin-Madison

I would like to try out FUSE sometime. But LD_PRELOAD layer only works
if IO goes
through libc, which won't be the case for all
programs. ptrace is something I've wanted to
dig into for years since
learning about
gvisor.

SECCOMP_RET_TRAP doesn't have the same high-level guides that ptrace
does so maybe I'll
dig into it later. And symbolic analysis might be
able to detect bad workloads but it also isn't
fault injection. Maybe
it's the better idea but fault injection just sounds more fun.

So this particular post will cover intercepting system calls
(syscalls) using ptrace with code
written in Zig. Not because readers
will likely write their own code in Zig but because
hopefully the Zig
code will be easier for you to read and adapt to your language
compared
to if we had to deal with the verbosity and inconvenience of
C.

In the end, we'll be able to intercept and force short (incomplete)
writes in a Go, Python,
and C program. Emulating a disk that is having
an issue completing the write. This is a case
that isn't common, but
should probably be handled with retries in production code.

This post corresponds roughly to this
commit
on GitHub.

A bad program

https://notes.eatonphil.com/2023-10-01-intercepting-and-modifying-linux-system-calls-with-ptrace.html
https://course.ece.cmu.edu/~ece749/docs/faultInjectionSurvey.pdf
https://github.com/jepsen-io/jepsen
https://github.com/Netflix/chaosmonkey
https://research.cs.wisc.edu/adsl/Publications/alice-osdi14.html
https://www.usenix.org/system/files/hotcloud19-paper-young.pdf
https://github.com/eatonphil/badio/tree/720c3ee0482e6dcb1dd49d1789bccf86747b7776

2/15

First off, let's write some code for a program that would exhibit a
short write. Basically, we
write to a file and don't check how many
bytes we wrote. This is extremely common code;
or at least I've
written it often.

$ cat test/main.go

package main

import (

 "os"

)

func main() {

 f, err := os.OpenFile("test.txt", os.O_RDWR|os.O_CREATE|os.O_TRUNC, 0755)

 if err != nil {

 panic(err)

 }

 text := "some great stuff"

 _, _ = f.Write([]byte(text))

 _ = f.Close()

}

With this code, if the Write() call doesn't actually succeed in
writing everything, we won't
know that. And the file will contain less
than all of some great stuff.

This logical mistake will happen rarely, if ever, on a normal
disk. But it is possible.

Now that we've got an example program in mind, let's see if we can
trigger the logic error.

ptrace

ptrace is a somewhat cross-platform layer that allows you to intercept
syscalls in a process.
You can read and modify memory and registers in
the process, when the syscalls starts and
before it finishes.

gdb and strace both use ptrace for their magic.

Google's gvisor that powers various serverless runtimes in Google
Cloud was also
historically based on ptrace (PTRACE_SYSEMU specifically, which we
won't explore much in
this post).

Interestingly though,
gvisor switched
only this year (2023) to a different default backend for
trapping system calls. Based
on SECCOMP_RET_TRAP.

You can get similar vibes
from this
Brendan Gregg post on the dangers of using strace (that
is based
on ptrace) in production.

https://cloud.google.com/run/docs/container-contract
https://gvisor.dev/blog/2023/04/28/systrap-release/
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
https://www.brendangregg.com/blog/2014-05-11/strace-wow-much-syscall.html

3/15

Although ptrace is cross-platform, actually writing
cross-platform-aware code with ptrace
can be complex. So this post
assumes amd64/linux.

Protocol

The ptrace protocol is described in the ptrace
manpage, but
Chris Wellons and a
University
of Alberta
group
also wrote nice introductions. I referenced these three pages
heavily.

Here's what the UAlberta page has to say:

We fork and have the child call PTRACE_TRACEME. Then we handle each
syscall entrance by
calling PTRACE_SYSCALL and waiting with wait
until the child has entered the syscall. It is in
this moment we can
mess with things.

Implementation

Let's turn that graphic into Zig code.

https://man7.org/linux/man-pages/man2/ptrace.2.html
https://nullprogram.com/blog/2018/06/23/
https://webdocs.cs.ualberta.ca/~paullu/C498/meng.ptrace.slides.pdf

4/15

const std = @import("std");

const c = @cImport({

 @cInclude("sys/ptrace.h");

 @cInclude("sys/user.h");

 @cInclude("sys/wait.h");

 @cInclude("errno.h");

});

const cNullPtr: ?*anyopaque = null;

// TODO //

pub fn main() !void {

 var arena = std.heap.ArenaAllocator.init(std.heap.page_allocator);

 defer arena.deinit();

 var args = try std.process.argsAlloc(arena.allocator());

 std.debug.assert(args.len >= 2);

 const pid = try std.os.fork();

 if (pid < 0) {

 std.debug.print("Fork failed!\n", .{});

 return;

 } else if (pid == 0) {

 // Child process

 _ = c.ptrace(c.PTRACE_TRACEME, pid, cNullPtr, cNullPtr);

 return std.process.execv(
 arena.allocator(),
 args[1..],

);

 } else {

 // Parent process

 const childPid = pid;

 _ = c.waitpid(childPid, 0, 0);

 var cm = ChildManager{ .arena = &arena, .childPid = childPid };

 try cm.childInterceptSyscalls();

 }

}

So like the graphic suggested, we fork and start a child process. That
means this Zig
program should be called like:

$ zig build-exe --library c main.zig

$./main /actual/program/to/intercept --and --its args

Presumably, as with strace or gdb, we could instead attach to an
already running process
with PTRACE_ATTACH or PTRACE_SEIZE (based
on the ptrace
manpage) rather
than going the
PTRACE_TRACEME route. But I haven't tried that out
yet.

https://man7.org/linux/man-pages/man2/ptrace.2.html

5/15

With the child ready to be intercepted, we can implement the
ChildManager that actually
does the interception.

ChildManager

The core of the ChildManager is an infinite loop (at least as long
as the child process lives)
that waits for the next syscall and then
calls a hook for the sytem call if it exists.

const ChildManager = struct {

 arena: *std.heap.ArenaAllocator,

 childPid: std.os.pid_t,

 // TODO //

 fn childInterceptSyscalls(

 cm: *ChildManager,

) !void {

 while (true) {

 // Handle syscall entrance

 const status = cm.childWaitForSyscall();

 if (std.os.W.IFEXITED(status)) {

 break;

 }

 var args: ABIArguments = cm.getABIArguments();

 const syscall = args.syscall();

 for (hooks) |hook| {

 if (syscall == hook.syscall) {

 try hook.hook(cm.*, &args);

 }

 }

 }

 }

};

Later we'll write a hook for the sys_write syscall that
will force an incomplete write.

Back to the protocol, childWaitForSyscall will call PTRACE_SYSCALL
to allow the child
process to start up again and continue until the
next syscall. We'll follow that by wait-ing for
the child
process to be stopped again so we can handle the syscall entrance.

 fn childWaitForSyscall(cm: ChildManager) u32 {

 var status: i32 = 0;

 _ = c.ptrace(c.PTRACE_SYSCALL, cm.childPid, cNullPtr, cNullPtr);

 _ = c.waitpid(cm.childPid, &status, 0);

 return @bitCast(status);

 }

6/15

Now that we've intercepted a syscall (after waitpid finishes
blocking), we need to figure out
what syscall it was. We do this by
calling PTRACE_GETREGS and reading the rax register
which
according to amd64/linux calling
convention is the
syscall called.

Registers

PTRACE_GETREGS fills out the following
struct:

struct user_regs_struct

{

 unsigned long r15;

 unsigned long r14;

 unsigned long r13;

 unsigned long r12;

 unsigned long rbp;

 unsigned long rbx;

 unsigned long r11;

 unsigned long r10;

 unsigned long r9;

 unsigned long r8;

 unsigned long rax;

 unsigned long rcx;

 unsigned long rdx;

 unsigned long rsi;

 unsigned long rdi;

 unsigned long orig_rax;

 unsigned long rip;

 unsigned long cs;

 unsigned long eflags;

 unsigned long rsp;

 unsigned long ss;

 unsigned long fs_base;

 unsigned long gs_base;

 unsigned long ds;

 unsigned long es;

 unsigned long fs;

 unsigned long gs;

};

Let's write a little amd64/linux-specific wrapper for accessing
meaningful fields.

https://stackoverflow.com/a/54957101/1507139
https://sites.uclouvain.be/SystInfo/usr/include/sys/user.h.html

7/15

const ABIArguments = struct {

 regs: c.user_regs_struct,

 fn nth(aa: ABIArguments, i: u8) c_ulong {

 std.debug.assert(i < 4);

 return switch (i) {

 0 => aa.regs.rdi,

 1 => aa.regs.rsi,

 2 => aa.regs.rdx,

 else => unreachable,

 };

 }

 fn setNth(aa: *ABIArguments, i: u8, value: c_ulong) void {

 std.debug.assert(i < 4);

 switch (i) {

 0 => { aa.regs.rdi = value; },

 1 => { aa.regs.rsi = value; },

 2 => { aa.regs.rdx = value; },

 else => unreachable,

 }

 }

 fn result(aa: ABIArguments) c_ulong { return aa.regs.rax; }

 fn setResult(aa: *ABIArguments, value: c_ulong) void {

 aa.regs.rax = value;

 }

 fn syscall(aa: ABIArguments) c_ulong { return aa.regs.orig_rax; }

};

One thing to note is that the field we read to get rax is not
aa.regs.rax but
aa.regs.orig_rax. This is because rax is also
the return value and PTRACE_SYSCALL gets
called twice for some
syscalls on entrance and exit. The orig_rax field preserves the
original rax value on syscall entrance. You can read more about this
here.

Getting and setting registers

Now let's write the ChildManager code that actually calls
PTRACE_GETREGS to fill out one of
these structs.

 fn getABIArguments(cm: ChildManager) ABIArguments {

 var args = ABIArguments{ .regs = undefined };

 _ = c.ptrace(c.PTRACE_GETREGS, cm.childPid, cNullPtr, &args.regs);

 return args;

 }

Setting registers is similar, we just pass the struct back and call
PTRACE_SETREGS instead:

https://stackoverflow.com/questions/6468896/why-is-orig-eax-provided-in-addition-to-eax/6469069#6469069

8/15

 fn setABIArguments(cm: ChildManager, args: *ABIArguments) void {

 _ = c.ptrace(c.PTRACE_SETREGS, cm.childPid, cNullPtr, &args.regs);

 }

A hook

Now we finally have enough code to write a hook that can get and set
registers; i.e.
manipulate a system call!

We'll start by registering a sys_write hook in the hooks field we
check in
childInterceptSyscalls above.

 const hooks = &[_]struct {

 syscall: c_ulong,

 hook: *const fn (ChildManager, *ABIArguments) anyerror!void,

 }{.{

 .syscall = @intFromEnum(std.os.linux.syscalls.X64.write),

 .hook = writeHandler,

 }};

If we look at the manpage for
write we see it
takes three arguments

1. The file descriptor (fd) to write to
2. The address to start writing data from
3. And the number of bytes to write

Going back to the calling
convention
that means the fd will be in rdi, the data address in
rsi, and the
data length in rdx.

So if we shorten the data length, we should be creating a short
(incomplete) write.

 fn writeHandler(cm: ChildManager, entryArgs: *ABIArguments) anyerror!void {

 const fd = entryArgs.nth(0);
 const dataAddress = entryArgs.nth(1);

 var dataLength = entryArgs.nth(2);

 // Truncate some bytes

 if (dataLength > 2) {

 dataLength -= 2;

 entryArgs.setNth(2, dataLength);

 cm.setABIArguments(entryArgs);

 }

 }

In a more sophisticated version of this program, we could randomly
decide when to truncate
data and randomly decide how much data to
truncate. However, for our purposes this is
sufficient.

https://man7.org/linux/man-pages/man2/write.2.html
https://stackoverflow.com/questions/2535989/what-are-the-calling-conventions-for-unix-linux-system-calls-and-user-space-f

9/15

But there are some real problems with this code. When I ran this
program against a basic
Go program, I saw duplicate requests.

Ah ok, PTRACE_SYSCALL gets hit when you both enter and exit a syscall.

So each time you call PTRACE_SYSCALL and you do stuff, you just call it again
afterwards to handle/wait for the exit. pic.twitter.com/PjmNwcMepG

— Phil Eaton (@eatonphil) September 29, 2023

So the deal with PTRACE_SYSCALL is that for (most?) syscalls, you
get to modify data before
the data actually is handled by the
kernel. And you get to modify data after the kernel has
finished the
syscall too.

This makes sense because PTRACE_SYSCALL (unlike PTRACE_SYSEMU)
allows the syscall to
actually happen. And if we wanted to, for
example, modify the syscall exit code, we'd have
to do that after the
syscall was done not before it started. We are modifying registers
directly after all.

All this means for our Zig code is that when we handle sys_write, we
need to call
PTRACE_SYSCALL again to process the syscall
exit. Otherwise we'd reach this writeHandler
for both entries and
exits, which would require some additional way of disambiguating
entrances from exits.

 fn writeHandler(cm: ChildManager, entryArgs: *ABIArguments) anyerror!void {

 const fd = entryArgs.nth(0);
 const dataAddress = entryArgs.nth(1);

 var dataLength = entryArgs.nth(2);

 // Truncate some bytes

 if (dataLength > 2) {

 dataLength -= 2;

 entryArgs.setNth(2, dataLength);

 cm.setABIArguments(entryArgs);

 }

 const data = try cm.childReadData(dataAddress, dataLength);

 defer data.deinit();

 std.debug.print("Got a write on {}: {s}\n", .{ fd, data.items });

 // Handle syscall exit

 _ = cm.childWaitForSyscall();

 }

We could put the cm.childWaitForSyscall() waiting for
the syscall exit in the main loop
and I did try that at
first. However, not all syscalls seemed to have the same entry and
exit
hook and this resulted in the hooks sometimes starting with a
syscall exit rather than a

https://t.co/PjmNwcMepG
https://twitter.com/eatonphil/status/1707846783035183267?ref_src=twsrc%5Etfw

10/15

syscall entry. So rather than making the
code more complicated, I decided to only wait for
the exit on
syscalls I knew had an exit (by observation at least), like
sys_write.

Multiple writes? No bad logic?

So I had this code as is, correctly handling syscall entrances and
exits, but I was seeing
multiple write calls. And the text file I was
writing to had the complete text I wanted to write.
There was no short
write even though I truncated the data length.

Ok so what happens in this Go program if I truncate the amount of data?

I assumed Go would do nothing since all I did was call `f.Write()` once and `f.Write()`
returns a number of bytes written.

But actually, it still writes everything! pic.twitter.com/OSalKEbERM

— Phil Eaton (@eatonphil) September 29, 2023

This took some digging into Go source code to understand. If you trace
what
os.File.Write() does on Linux you eventually get to
src/internal/poll/fd_unix.go:

https://t.co/OSalKEbERM
https://twitter.com/eatonphil/status/1707854642250408119?ref_src=twsrc%5Etfw
https://cs.opensource.google/go/go/+/refs/tags/go1.21.1:src/internal/poll/fd_unix.go

11/15

// Write implements io.Writer.

func (fd *FD) Write(p []byte) (int, error) {

 if err := fd.writeLock(); err != nil {

 return 0, err

 }

 defer fd.writeUnlock()

 if err := fd.pd.prepareWrite(fd.isFile); err != nil {

 return 0, err

 }

 var nn int

 for {

 max := len(p)

 if fd.IsStream && max-nn > maxRW {

 max = nn + maxRW

 }

 n, err := ignoringEINTRIO(syscall.Write, fd.Sysfd, p[nn:max])

 if n > 0 {

 nn += n

 }

 if nn == len(p) {

 return nn, err

 }

 if err == syscall.EAGAIN && fd.pd.pollable() {

 if err = fd.pd.waitWrite(fd.isFile); err == nil {

 continue

 }

 }

 if err != nil {

 return nn, err

 }

 if n == 0 {

 return nn, io.ErrUnexpectedEOF

 }

 }

}

This might be common knowledge but I didn't realize Go did this. And
when I tried out the
same basic program in Python and even C, the
behavior was the same. The builtin write()
behavior on a file (in
many languages apparantly) is to retry until all data is written, with
some exceptions.

This makes sense since files on disk, unlike file descriptors backed
by network sockets, are
generally always available. Compared to a
network connection, disks are physically close
and almost always
stay connected. (With some obvious exceptions like
network-attached
storage and thumb drives.)

So to trigger the short write, the easiest way seems to have the
sys_write call return an
error that is NOT EAGAIN since the code
will retry if that is the error.

After looking through the list of errors that sys_write can
return,
EIO seems like a nice one.

https://man7.org/linux/man-pages/man2/write.2.html#ERRORS

12/15

So let's do our final version of writeHandler and on the syscall
exit, we'll modify the return
value (rax in amd64/linux) to be
EIO.

 fn writeHandler(cm: ChildManager, entryArgs: *ABIArguments) anyerror!void {

 const fd = entryArgs.nth(0);
 const dataAddress = entryArgs.nth(1);

 var dataLength = entryArgs.nth(2);

 // Truncate some bytes

 if (dataLength > 2) {

 dataLength -= 2;

 entryArgs.setNth(2, dataLength);

 cm.setABIArguments(entryArgs);

 }

 // Handle syscall exit

 _ = cm.childWaitForSyscall();

 var exitArgs = cm.getABIArguments();

 dataLength = exitArgs.nth(2);

 if (dataLength > 2) {

 // Force the writes to stop after the first one by returning EIO.

 var result: c_ulong = 0;

 result = result -% c.EIO;

 exitArgs.setResult(result);

 cm.setABIArguments(&exitArgs);

 }

 }

Let's give it a whirl!

All together

Build the Zig fault injector and the Go test code:

$ zig build-exe --library c main.zig

$ (cd test && go build main.go)

And run:

$./main test/main

And check test.txt:

$ cat test.txt

some great stu

Hey, that's a short write! :)

Sidenote: Reading data from the child

13/15

We accomplished everything we set out to, but there's one other useful
thing we can do:
reading the actual data passed to the write syscall.

Just like how we can get the child process registers with
PTRACE_GETREGS, we can read
child memory with
PTRACE_PEEKDATA. PTRACE_PEEKDATA takes the child process id and
the
memory address in the child to read from. It returns a word of
data (which on amd64/linux is
8 bytes).

We can use the syscall arguments (data address and length) to keep
calling
PTRACE_PEEKDATA on the child until we've read all bytes of
the data the child process
wanted to write:

 fn childReadData(

 cm: ChildManager,

 address: c_ulong,

 length: c_ulong,

) !std.ArrayList(u8) {

 var data = std.ArrayList(u8).init(cm.arena.allocator());

 while (data.items.len < length) {

 var word = c.ptrace(

 c.PTRACE_PEEKDATA,

 cm.childPid,

 address + data.items.len,

 cNullPtr,

);

 for (std.mem.asBytes(&word)) |byte| {

 if (data.items.len == length) {

 break;

 }

 try data.append(byte);

 }

 }

 return data;

 }

And we could modify writeHandler to print out the entirety of the write message each time
(for debugging):

14/15

 fn writeHandler(cm: ChildManager, entryArgs: *ABIArguments) anyerror!void {

 const fd = entryArgs.nth(0);
 const dataAddress = entryArgs.nth(1);

 var dataLength = entryArgs.nth(2);

 // Truncate some bytes

 if (dataLength > 2) {

 dataLength -= 2;

 entryArgs.setNth(2, dataLength);

 cm.setABIArguments(entryArgs);

 }

 const data = try cm.childReadData(dataAddress, dataLength);

 defer data.deinit();

 std.debug.print("Got a write on {}: {s}\n", .{ fd, data.items });

 // Handle syscall exit

 _ = cm.childWaitForSyscall();

 var exitArgs = cm.getABIArguments();

 dataLength = exitArgs.nth(2);

 if (dataLength > 2) {

 // Force the writes to stop after the first one by returning EIO.

 var result: c_ulong = 0;

 result = result -% c.EIO;

 exitArgs.setResult(result);

 cm.setABIArguments(&exitArgs);

 }

 }

That's pretty neat!

Next steps

Short writes are just one of many bad IO interactions. Another fun one
would be to
completely buffer all writes on a file descriptor (not
allowing anything to be written to disk at
all) until fsync is called
on the file descriptor. Or forcing fsyncs to
fail.

An interesting optimization would be to apply seccomp
filters
so that rather than paying a
penalty for watching every syscall, I
only get notified about the ones I have hooks for like
sys_write. Here's another
post
that explores ptrace with seccomp filters.

Credits: Thank you Charlie Cummings and Paul Khuong for reviewing a draft
of this post!

Selected responses after publication

oscooter on Reddit gave some
tips
on using ptrace, including using
process_vm_readv instead of
PTRACE_PEEKDATA to read memory from the tracee
process.

https://www.usenix.org/conference/atc20/presentation/rebello
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
https://www.alfonsobeato.net/c/filter-and-modify-system-calls-with-seccomp-and-ptrace/
https://www.reddit.com/r/linux/comments/16x32l3/comment/k380m9q/?utm_source=reddit&utm_medium=web2x&context=3

15/15

Fault injection is a scary-sounding term. Intercepting and modifying Linux system calls
sounds scary too.

But it's a neat way to trigger logical errors in programs, to build confidence we wrote
code correctly.

Let's trigger short writes to disk in Zig!https://t.co/0C3tWt3vtT
pic.twitter.com/OS7auDe8jR

— Phil Eaton (@eatonphil) October 1, 2023

Feedback

As always,
please email
or tweet me
with questions, corrections, or ideas!

https://t.co/0C3tWt3vtT
https://t.co/OS7auDe8jR
https://twitter.com/eatonphil/status/1708482934863180004?ref_src=twsrc%5Etfw
mailto:phil@eatonphil.com
https://twitter.com/eatonphil

